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Abstract: The rapid spread of the Coronavirus Disease 2019 (COVID-19) pandemic, caused by
the Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) pathogen has generated a
huge international public health emergency. Currently the reference diagnostic technique for virus
determination is Reverse Transcription Polymerase Chain Reaction (RT-PCR) real time analysis that
requires specialized equipment, reagents and facilities and typically 3–4 h to perform. Thus, the
realization of simple, low-cost, small-size, rapid and point-of-care diagnostics tests has become a
global priority. In response to the current need for quick, highly sensitive and on-site detection of
the SARS-CoV-2 virus in several aqueous solutions, a specific molecularly imprinted polymer (MIP)
receptor has been designed, realized, and combined with an optical sensor. More specifically, the
proof of concept of a SARS-CoV-2 sensor has been demonstrated by exploiting a plasmonic plastic
optical fiber sensor coupled with a novel kind of synthetic MIP nano-layer, especially designed
for the specific recognition of Subunit 1 of the SARS-CoV-2 Spike protein. First, we have tested
the effectiveness of the developed MIP receptor to bind the Subunit 1 of the SARS-CoV-2 spike
protein, then the results of preliminary tests on SARS-CoV-2 virions, performed on samples of
nasopharyngeal (NP) swabs in universal transport medium (UTM) and physiological solution (0.9%
NaCl), were compared with those obtained with RT-PCR. According to these preliminary results,
the sensitivity of the proposed optical-chemical sensor proved to be higher than the RT-PCR one.
Furthermore, a relatively fast response time (about 10 min) to the virus was obtained without the use
of additional reagents.

Keywords: SARS-CoV-2; optical-chemical sensors; molecularly imprinted polymers (MIPs); surface
plasmon resonance (SPR); optical fiber sensors

1. Introduction

The rapid spread of the COVID-19 pandemic has generated a huge international
public health emergency [1]. The pathogen responsible for COVID-19, initially called
2019-nCoV and then SARS-CoV-2 [2], is a single positive strand RNA virus belonging to the
betacoronavirus genus (Coronaviridae family) and is closely related to other coronaviruses
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responsible for similar respiratory syndrome (SARS) contagions in 2002-2003 [3] and more
recent MERS-CoV (2012).

Like other coronaviruses [4–6], the 2019-nCoV exploits a glycosylated spike (S) protein,
protruding from the viral surface, to enter the host cell. This surface protein consists of two
functional subunits: the S1 subunit, which contains the receptor-binding-domain (RBD)
responsible for host cell receptor recognition and binding, and S2 subunit, which is involved
in viral and host membrane fusion. It is already known that this SARS-CoV-2 entry into the
host cell is mediated by its binding to the host cell receptor ACE2 (Angiotensin-converting
enzyme 2) [7,8].

The speed of transmission of this emerging coronavirus has made its containment
extremely difficult [9] and has forced national healthcare systems to reduce their daily
activities to a minimum [10]. Diagnostic testing becomes a particularly important tool,
in the absence of an effective therapy or a vaccine, to improve patient management and
potentially save lives by limiting the contagion [11,12]. To this end, detection sensitivity is
crucial for early-stage diagnostics.

Currently, the presence of the virus in patients is routinely determined by molecu-
lar techniques which identify viral RNA through nucleic acid reverse transcription and
amplification, Reverse Transcription Polymerase Chain Reaction (RT-PCR) [13]. However,
the above technique is not readily deployable in the field due to the high cost of real-time
PCR machines and the expertise needed to carry out the analysis. Furthermore, the huge
demand for testing has caused shortages of reagents and materials and serious difficulties
in the service provision of laboratories.

Real-time PCR based diagnosis takes at least 3 h including sample preparation. More-
over, collected samples (oral or nasopharyngeal swabs, sputum, bronchoalveolar lavage
fluid etc) are often stored, after sampling, up to 24–48 h prior to analysis.

Consequently, the SARS-CoV-2 pandemic highlighted the need for more suitable and
effective tools for the detection and prevention of outbreaks [14]. In fact, the shortcomings
related to the use of oropharyngeal swabs have strongly emerged due to the need for
laboratory post analysis and as a result of inaccuracies stemming from data transmission
and handling [15]. The adopted approach has proven to be slow in response delivery,
onerous in terms of human resources and laden with problems in data transmission which
inspired ineffective choices in terms of prevention measures.

Moreover, in pandemic events the use of swabs for laboratory analysis could prove
to be a great hindrance in crisis management in that the gap between the high demand
and low offer of the required materials cannot easily and rapidly be bridged and therefore
creates bottlenecks along the entire material and service supply chain. After this SARS-CoV-
2 pandemic, in order to obtain a low-cost, simple to use and small-size sensing platform
to detect the virus in the population, novel sensor systems will be required to analyze
biological fluids in real-time and transmit the results via the Internet, exploiting an Internet
of Things (IoT) approach.

Thus, the realization of simple, low-cost, rapid and point-of-care diagnostics has be-
come a global priority. Many efforts have been done in realizing more rapid diagnostic tools,
mostly based on the determination of antibodies in blood [16,17] and few concerning sens-
ing devices for the detection of the virus in other biological samples. Recently, Seo G. et al.
realized a graphene-based Field-Effect Transistor (FET) biosensor for detecting SARS-CoV-2
in clinical specimens [18]. The authors used an antibody as the recognition element.

This kind of sensors are interesting because they represent a general-purpose sensing
platform, able to monitor a reprogrammable Molecular Recognition Element (MRE), and
could be highly desirable to face the next crisis.

Alternatively, surface plasmon resonance sensing platform is technologically suitable
to monitor specific receptors (natural or synthetic). In fact, surface plasmon resonance (SPR)
is widely exploited as an optical detection method for monitoring interactions between an
analyte in solution and an MRE immobilized on the SPR sensor [19].
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SPR is based on the interaction of light and free electrons in a semi-transparent
noble metal layer placed on a dielectric substrate [20]. When a biological or chemical
receptor (ligand) is bonded on the metallic layer surface, its interaction with the target
molecules changes the refractive index at the outer interface, and this variation is detected
by optical interrogation. The sensitivity of the plasmonic phenomenon exponentially
decreases with the distance from the metal-dielectric interface as the effective interaction
length is usually no larger than a few hundred nanometers. So, in SPR detection, the
MRE coupled with a metal surface (usually gold), selectively recognizes and captures the
substance in the sample, producing a local variation of the refractive index. The extent
of the change in the refractive index depends on the thickness of the selective layer (for
example molecularly imprinted polymers) and on the structure and size of the target
element (virus, molecule, etc).

Several SPR sensors have been realized to date, from the classic prism-based configu-
rations to the latest fiber-optic-based ones [21–23]. Among the latter, SPR sensors based on
plastic optical fibers (POFs) are particularly suitable for the development of very low-cost,
simple, and small-size sensor devices due to some advantageous properties of the POFs,
such as easy manufacturing and high flexibility [24,25].

In our recent works, we have developed POF-based SPR sensors in different configu-
rations, coupled with either biological (antibodies, aptamers, etc) [26] or chemical receptors
such as molecularly imprinted polymers (MIPs) [27] for environmental [28], industrial
and medical applications [29]. In particular, to obtain a general-purpose plasmonic sensor,
suitable for different kinds of receptor layers (i.e., bio-receptors or MIPs), several years ago
we designed and realized an SPR sensor in D-shaped POFs [30]. The Authors’ aim was to
produce a very highly sensitive, robust, low-cost, and reliable SPR-POF sensor with the
following specifications: a planar sensing area to spin the pre-polymeric mixture of MIPs
and to drop the aqueous solutions; an SPR sensor with a wide refractive index range to
work in different matrices; a sensor that could be used with a very simple and low-cost
experimental setup connected to the Internet [31]; an SPR optical fiber sensor, with remote
sensing capability, based on a highly flexible, durable, easy to manufacture and low cost
device. To obtain these technical specifications we designed the SPR sensor as a 10 mm
long D-shaped POF that can be monitored exploiting only two components: a white light
source and a spectrometer.

In response to the current need for simple and fast methods to detect SARS-CoV-2, we
designed and realized a first prototype of SPR-POF-MIP sensor for direct determination of
SARS-CoV-2 virions in aqueous solutions. In particular, as shown in Figure 1, an SPR-POF
sensor based on the configuration previously reported [30] was coupled with a novel
kind of molecularly imprinted polymer nano-layer, properly designed for the specific
recognition of the S1 subunit of SARS-CoV-2 spike protein. Figure 1 shows an outline of
the proposed sensing approach for the SARS-CoV-2 detection in water solutions.
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As the MRE is concerned, it is important to recall that the molecular imprinting
technique can be used to create synthetic receptors for a specific analyte (biomimetic
receptors) and these can be coupled with SPR-POF platforms to realize versatile, small size,
low-cost optical-chemical sensors for different targets. As schematically shown in Figure 2,
on the SPR-POF platform we could use different specific MIPs, imprinted for different
substances, to realize a versatile sensing system, based on the same optical platform and
an “MIP-coding”, as in the case of the personal computer, where hardware and software
are present.
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This diagnostic approach, based on a general-purpose sensor POF platform able to
monitor “reprogrammable” MRE, will be highly desirable to face the next pandemic crisis.

In molecular imprinting techniques, the synthesis process involves a co-polymerization
between appropriate functional monomers and a cross-linking agent, in the presence of the
template molecule (the target analyte) [32,33]. For example, Figure 2a shows three different
MIPs that interact with the target substances. The functional monomers coordinate the
template molecule by interacting in very specific points, the cross-linking agent fixes the
complex by creating a highly organized structure around it. At the end of the process the
template is removed leaving the molecular recognition sites free. An outline on the MIP’s
realization process has been reported in Figure 2b.
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Synthetic receptors are very resistant, low-cost and able to work in wide ranges of
pH and temperature [34–36]. Moreover, MIP receptors can be used by the optoelectronics
industry to make optical-chemical sensors.

Presently we have no evidence of low-cost optical sensors based on molecularly
imprinted polymers for the specific detection of SARS-CoV-2. We have evidence that
MIPs are used (but not entirely described) as a potential synthetic MRE for SARS-CoV-2 in
therapeutic applications [37] and as commercial synthetic receptors, see for instance the
SARS-COV-2 nanoMIP for the SARS-CoV-2 spike protein developed by MIP Diagnostics
(Colworth Park, Sharnbrook Bedford, UK).

Moreover, an interesting MIP-based electrochemical sensor for the detection of SARS-
CoV-2 nucleoprotein has been recently presented [38].

2. Materials and Methods

Reagents: Acrylamide (Aam) (CAS 79-06-1), N-tert-butylacrylamide (TBAm) (CAS
107-58-4), N,N’-methylenebisacrylamide (BIS) (CAS 110-26-9), 2-hydroxyethyl methacrylate
(HEMA) (CAS 868-77-9), N,N,N’,N’-tetramethylethylenediamine (TEMED) (CAS 110-18-9),
ammonium persulfate (APS) (CAS 7727-54-0), sodium dodecyl sulfate (SDS) (CAS 151-
21-3), phosphate buffer solution 1.0 M were obtained from Sigma-Aldrich (Darmstadt,
Germany) and used without any further purification. All other chemicals were of analytical
reagent grade. The solvent was Milli-Q water.

The human serum albumin (BSA) (CAS 9048-46-8) and trypsin (CAS 9002-07-7) were
from Sigma-Aldrich. The SARS-CoV-2 (2019-nCoV) Spike protein (S1 subunit, His-Tag)
and MERS-CoV Spike protein (S1 subunit, His-Tag) were from Sino Biological (Düsseldor-
fer, Germany).

All optical measurements were performed using a very simple and low-cost equip-
ment, including a halogen lamp at the input and a spectrometer at the output. In particular,
the halogen lamp (HL-2000-LL, manufactured by Ocean Optics, Dunedin, FL, USA) used as
white light source had an emission range from 360 nm to 1700 nm, whereas the spectrome-
ter (FLAME-S-VIS-NIR-ES, manufactured by Ocean Optics) had a detection range from 350
nm to 1023 nm. The POF sensor was connected to the light source and to the spectrometer
by two SMA connectors. The transmission spectra, along with data values, were displayed
online on the computer screen and saved with the help of software provided by Ocean
Optics, setting the integration time at 1000 µs and the averaging of the scans at 150. The
SPR transmission spectra were normalized to a reference spectrum, achieved with air as
surrounding medium, using the MatLab software (MathWorks, Natick, MA, USA).

3. Sensing Approach for Measuring SARS-CoV-2
3.1. Photonic Device Fabrication

To realize the SPR sensor, a D-shaped plastic optical fiber (POF) has been obtained by
modifying a POF with a 980 µm core of polymethylmethacrylate (PMMA) and a 10 µm
cladding of fluorinated polymer [30]. In particular, the cladding and part of the core
were removed along half of the circumference by a polishing process that was carried
out in two steps. First, we used a 5 µm polishing paper in order to remove the cladding
and part of the core. Then, after about 20 complete strokes with an “8-shaped” pattern
in order to completely expose the core, a 1 µm polishing paper was used for another
20 complete strokes performed according to an “8-shaped” pattern. The refractive index,
in the visible range of interest, of the used POF is about 1.49 for PMMA (core) and 1.41
for fluorinated polymer (cladding). On the exposed POF core, about 0.1 mL of Microposit
S1813 photoresist was deposited as a single drop and spun for 60 s at 6000 rpm. After
15 min in the oven at about 70 ◦C, a uniform layer of approximately 1.5 µm thickness was
formed, with a refractive index (~1.61), higher than the one of the POF core. This layer was
used to improve both the sensor’s performances and the adherence of the gold film. Finally,
gold was sputtered by using a Bal-Tec SCD 500 machine to obtain a 60 nm thick film. In
particular, to implement a low temperature sputtering process, it was repeated three times
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by applying a current of 60 mA, at 0.05 mbar of pressure, for 35 s (20 nm of gold per step).
The gold film was preferred because it can be safely coated with bio-chemical/bio-mimetic
receptors to realize specific sensors for several substances. The realized D-shaped sensing
region was about 10 mm long and can be covered with a specific receptor to realize the
biochemical sensor.

3.2. Receptor for SARS-CoV-2 Detection

We had to realize a very thin MIP receptor layer in order to optimize the sensing for
the direct virion detection. In fact, the exponential decrease of the optical field from the
metal-dielectric interface allows an effective interaction length that is no longer than a few
hundred nanometers, so considering the virus size (falling in the range of one hundred
nanometers, as well) the MRE thickness has to be kept as small as possible.

Since the specific interaction involves the molecular recognition of the S1 subunit and
the anchoring of the entire virion, the polymer was grown on the transducer surface up to
a thickness of less than 10 nm. This size allows to obtain enough superficial sites which are
the only ones that can bind the spike proteins covering the external virion surface.

The resonance wavelength variation, due to the receptor deposition step, was used as an
indirect measure of the receptors thickness, as reported in the Results and Discussion section.

The SPR optical fiber transducer has been suitably modified with an allyl thiol in order
to allow to covalently bind the polymer layer to it.

In particular, the gold surface of the transducer was modified by immersing it in
a 10% v/v solution of allyl thiol in 80% v/v ethanol solution and 10% v/v water for 12 h.
Subsequently, the platform was washed with Milli-Q water (flushing with 3 mL five times).
Through this process a self-assembled monolayer with a terminal allyl group is formed.

After a treatment of the gold surface with an alcoholic solution of allyl mercaptan
and the relative formation of a monolayer which exposes allyl groups, the polymerization
reaction of the monomer mixture deposited on the SPR platform was initiated.

The polymeric receptor specific for SARS-CoV-2 was synthetized by using functional
monomers able to interact, by non-covalent interactions, with functional groups of the
S1 subunit of SARS-CoV-2 spike protein. The obtained complex was then frozen in the
polymeric structure by a cross-linking reagent.

In order to meet the above requirements, we developed a novel strategy to realize a
protein specific MIP receptor layer in non-denaturing conditions, as it has been described
below. This molecular recognition strategy is object of a national pending patent (More-
sense, Milan-Italy, Patent application number 102020000015145, filed on 24 June 2020).

Acrylamide (Aam), N-t-butylacrylamide (TBAm), 2-hydroxyethyl methacrylate (HEMA)
were added at 1:0.5:0.6 molar ratio, in 15 mM phosphate buffer (PB) pH 7.4. The final
concentration of N,N′-methylene bisacrylamide (BIS) in the monomeric mix was 0.19M.

The pre-polymeric mixture was dispersed by sonication (sonic bath model VWR
USC200T) for 10 min and bubbled with (nitrogen) N2 for 30 min at room temperature.
The template (S1 subunit SARS-CoV-2 Spike protein) was added to the pre-polymeric
mixture to the final concentration of 1 µM. Then APS (0.08% w/v) and TEMED (0.06% w/v)
were added.

About 50 µL of the pre-polymeric mixture were dropped over the planar D-shaped
sensing region and let polymerize for 15 min at room temperature, after which the reticula-
tion process was stopped by washing the sensor surface with Milli-Q water. The template
was removed by incubating trypsin 4.2 × 10−8 M for 2 h at room temperature on the sensor
surface and then by washing with an SDS 5% (w/v) solution. The trypsin is commonly used
to degrade proteins because of its proteolytic activity.

The synthesis protocol conditions were preliminarily studied and optimized with an
MIP specific for bovine serum albumin (BSA) protein, in which BSA was used as a test
template molecule instead of SARS-CoV-2 spike protein.
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The binding between the receptor and the target analyte, was tested on a sensor
covered with a non-imprinted polymer (NIP) layer. In this case, the composition was the
same as the MIP layer, previously described, but without adding any template.

Finally, we have investigated the specificity of the imprinted receptor for SARS-CoV-2
by testing the cross-reactivity with the MERS-CoV spike protein.

3.3. Experimental Protocol

All experiments were performed by dropping about 50 µL of the sample (spiked
or real) over the planar sensing region of the SPR-POF sensor which was incubated at
room temperature for ten minutes to let the interaction between the MIP sites and analyte
occur. At the end of this incubation, a washing step with Milli-Q water was performed and
subsequently the spectrum was recorded. By adopting this protocol, only the shift of the
resonance wavelength determined by the specific analyte-receptor binding was measured,
eliminating shifts due to bulk changes or non-specific interactions.

We have repeated all the experimental measures five times to test the reproducibility
of the developed sensor. For instance, to test the reproducibility of the measurements,
from one anonymous negative and one anonymous positive patient, we have used five
different swabs, usually utilized for the treatment/clinical assessment, to carry out these
preliminary tests on negative and positive swabs. These swabs have been acquired in three
consecutive days.

Before the analysis on real samples, a preliminary test was performed by incubating
aqueous solutions of BSA and SARS-CoV-2 Spike S1 subunit at increasing concentrations.

Furthermore, a specificity test was carried out by incubating aqueous solutions of
MERS-CoV Spike S1 and SARS-CoV-2 Spike S1 subunit at high concentration (1 µM).

Subsequently real swab samples in both universal transport medium (UTM) and
physiological solution were tested. Serial dilutions performed with physiological solution
were prepared for each sample and a dose-response curve was obtained by incubating
from the most diluted to the whole sample.

3.4. RT-PCR Analysis

Nasopharyngeal (NP) swabs were collected from a patient, previously diagnosed as
Covid-19 positive, for analysis by Operative Unit of Chemical-Clinical and Microbiological
Analysis (San Luca Hospital, Usl Toscana Nord Ovest, Lucca, Italy), which is approved by
the Ministry of Health in 2020 to test for SARS-CoV-2 infections. The laboratory employs
the SARS-CoV-2 detection kits by SeeGene (Seegene, Seoul, Korea) for both viral nucleic
acid extraction and RT-PCR-based amplification for 3 SARS-CoV-19 genes (STARMag
and 2019-nCoV Assay kits, respectively, carried out in the Nimbus robot). The Allplex
2019-nCoV assay was designed so as to amplify three viral targets: the E gene (specific of
the subgenus Sarbecovirus), the N and the RdRP genes (both specifics of the SARS-CoV-2).
Regarding nucleic acid amplification, the Seegene assay was performed on the dedicated
Bio-Rad CFX96 real-time thermal cycler according to the manufacturer’s’ instructions. The
assay is approved for in vitro diagnostic use.

The first assessment of its performances by the manufacturer demonstrates a specificity
of 100% and a limit of detection of 100 RNA copies/PCR reactions. NP swab samples
were analyzed according to manufacturer’s instructions. The NP swab samples were also
diluted 1:2 and 1:10 both in UTM and water respectively. All the dilutions were tested on
both platforms starting from the same sample dilution.

4. Results
4.1. Preliminary Analysis: Spike Protein SARS-CoV-2 Detection

Our proposed device is based on the use of an universal plasmonic plastic optical
fiber platform combined with a novel MIP receptor nano-film, designed for the specific
recognition of the S1 subunit SARS-CoV-2 spike protein, for on-site specific and fast
measurement of SARS-CoV-2. The preliminary development of the synthesis procedures
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and the characterization of the optical-chemical sensor were carried out using BSA protein
as a test template molecule, to optimize the concentration of the initiators and the growth
times of the surface layer. In fact, the BSA protein is cheaper than the commercial S1
subunit of SARS-CoV-2 spike protein.

The immobilization of the bio-chemical receptor on the optical sensor surface can
be confirmed by the SPR results. In fact, before and after the functionalization step, the
SPR spectra show a red-shift (an increase of the resonance wavelength) in presence of the
same bulk refractive index (water, 1.332 RIU). As already demonstrated in [26,29], this shift,
due to an increase of the refractive index of the medium in contact with the gold surface,
indicates that the receptors were properly immobilized on the gold surface itself; so, in SPR
platforms, when the thickness of the MIP layer on the gold surface increases, the average
refractive index “seen” by the plasmonic phenomenon increases as well, and the resonance
wavelength shifts to the right (red-shift). For example, a typical resonance shift, associated
to a self-assembled monolayer (SAM) of receptors on an SPR-POF platform ranges from
5 nm to 20 nm, as previously found in the case of aptamers SAM, antibodies or chemical
receptors [26]. In these cases, the SPR spectra have been used to check the functionalization
process, whereas in this work the SPR spectra can be exploited to monitor the thickness
of the MIP film in real time, allowing to stop its growth at the desired thickness value. In
Figure 3a the resonance shift Vs time of polymerization reaction, is reported. After the
growth of the MIP layer and the release of the template molecule from the sites, it was also
possible to use the SPR technique to develop measurement protocols on the sensor to test
BSA binding. In Figure 3b, different SPR curves obtained at different BSA concentrations
in the phosphate buffer, are shown. When the protein is recognized by the receptor, the
refractive index increases, and we observe a red-shift. Figure 3c reports the dose-response
curve carried out for the BSA binding test, together with the Hill fitting of the experimental
values. Table 1 reports the Hill fitting equation (when n = 1 it is similar to the Langmuir
fitting) with its parameters used to calculate the chemical parameters of interest shown
in Table 2.

In parallel, an NIP layer was synthesized and deposited on the sensor platform in
order to check the imprinting process and to investigate the binding interaction with
the target analyte. Binding tests were performed with this sensor and no Red-Shift was
detected at different BSA concentrations, as reported in Figure 3d.

Table 1. Hill parameters of bovine serum albumin (BSA) detection.

Hill Equation: ∆λc = ∆λ0 + (∆λmax − ∆λ0) × (cn/(Kn + cn))

∆λ0 (nm) ∆λmax (nm) K (µM) n Statistics

Value Stand. Err. Value Stand. Err. Value Stand. Err. Value Reduced Chi-Sqr Adj. R-Square

0.115 0.360 3.055 0.068 1.510 0.566 1 0.170 0.996

Table 2. Chemical parameters for bovine serum albumin (BSA) detection.

Value BSA-Parameters

1.947 (nm/µM)

Sensitivity at low conc = (∆λmax − ∆λ0)/K
Low conc Hypothesis: (c << K)

Hill Equation at low conc (with n = 1):
∆λc ≈ [(∆λmax − ∆λ0)/K] × c

0.37 (µM) Limit of detection (LOD)
LOD = [(2 × standard deviation of blank) / Sensitivity at low conc]

0.662 (µM)−1 K aff = 1/K
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The next step concerned the transfer of the collected information to the synthesis of the
MIP for the specific S1 subunit SARS-CoV-2 Spike protein, using the commercial protein.
Figure 4a illustrates the curves relative to the bare gold surface and the MIP modified
platform before and after the extraction of the template protein. Once the S1 subunit MIP
sensor was obtained, the spectra (useful to dose/response curve) were collected using
commercial S1 subunit solutions (see Figure 4b).

Figure 4c reports the dose-response curve obtained for the SARS-CoV-2 Spike protein
binding test together with the Hill fitting of the data. Table 3 reports the Hill fitting
parameters used to calculate the chemical parameters of interest for SARS-CoV-2 Spike
protein detection, reported in Table 4.

Table 3. Hill parameters of SARS-CoV-2 Spike protein detection.

Hill Equation: ∆λc = ∆λ0 + (∆λmax − ∆λ0) × ( cn/(Kn + cn))

∆λ0 (nm) ∆λmax (nm) K (µM) n Statistics

Value Stand. Err. Value Stand. Err. Value Stand. Err. Value Reduced
Chi-Sqr Adj. R-Square

−0.149 0.188 2.647 0.102 0.431 0.123 1 0.317 0.991

Table 4. Chemical parameters for SARS-CoV-2 Spike protein detection.

Value SARS-CoV-2 Spike Protein-Parameters

6.483 (nm/µM)

Sensitivity at low conc = (∆λmax−∆λ0)/K
Low conc Hypothesis: (c << K)

Hill Equation at low conc (with n=1):
∆λc ≈ [(∆λmax − ∆λ0)/ K] × c

0.058 (µM) Limit of detection (LOD)
LOD = [(2 × standard deviation of blank) / Sensitivity at low conc]

2.318 (µM)−1 Kaff = 1/K
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Figure 4. (a) Blue resonance peak: bare gold surface before the functionalization. Red resonance
peak: red shifted resonance due to the MIP layer before template extraction with trypsin enzyme
4.2 × 10−8 M in buffer phosphate pH 7.4 and sodium dodecyl sulfate (SDS) 5%. Magenta resonance
peak: Blue shift due to the freeing of sites from the template protein. (b) Response curves of Sars-
Cov-2 Spike S1 subunit-MIP at different concentrations of protein. (c) SARS-CoV-2 Spike protein
dose-response curve with the Hill fitting of the data. (d) Specificity test: sensor’s responses for
MERS-CoV Spike protein and SARS-CoV-2 Spike protein, both with a concentration of 1 µM in
UTM buffer.

This MIP synthesized for the specific Spike S1 subunit SARS-CoV-2 protein is very
specific for Spike SARS-CoV-2 protein in comparison to very similar substances, such
as the Spike protein of MERS-CoV. Figure 4d shows the specificity test obtained by the
same concentration of 1 µM of a MERS-CoV Spike protein and a SARS-CoV-2 Spike
protein in UTM buffer. There is no detectable response of the developed sensor when a
high concentration (1 µM) of MERS-CoV Spike protein is present, indicating a very good
specificity of the MIP receptor layer.

From the chemical parameters reported in Tables 2 and 4, the limit of detections
(LODs) obtained for BSA and SARS-CoV-2 Spike protein detection, exploiting this type of
MIP receptor combined with an SPR-POF probe, are lower than the LODs obtained by a
similar SPR probe with different kinds of MIPs, i.e., in trinitrotoluene (TNT) detection by
SPR-POF-MIP the LOD is equal to 51 µM [39]. The thin MIP film here presented could be
the motivation of this performances’ improvement, together with the different molecular
weight of the target.

4.2. SARS-CoV-2 Detection

After the preliminary analysis on the detection of the SARS-CoV-2 Spike S1 subunit
protein, we have tested the SARS-CoV-2 virions in two real matrices. Thus SARS-CoV-
2 positive and negative samples in different matrices were tested. The samples were
collected from a patient, previously diagnosed as Covid-19 positive, and analyzed in
parallel with RT-PCR technique. In particular, Figures 5a and 6a report the experimental
results obtained by the SPR-POF-MIP sensor with real SARS-CoV-2 positive and negative
samples of nasopharyngeal (NP) swabs in UTM and physiological solution (0.9% NaCl),
respectively. Each experimental value is the average of five measurements and the error
bars represent the upper bound of the standard deviation.

In Figures 5b and 6b, the SPR curves of different dilution in physiological solution
of NP swabs were reported, in order to investigate the detection sensitivity in both inves-
tigated media (UTM and physiological solution). For this NP swab, no resonance shifts
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in UTM are observed when the dilutions are higher than 1:10. The SARS-CoV-2 sensor
sensitivity is higher in physiological solution, probably due to the complexity of the UTM
formulation. Furthermore, it is important to stress that the SARS-CoV-2 measurement takes
approximately 10 min.

The tests enabled us to appreciate SPR shifts on positive samples diluted up to
500 times (in physiological solution), thus allowing to detect very few viral units. The
same diluted samples were tested in RT-PCR and the samples resulted positive only at
1:2 dilution. For instance, the whole positive swab in UTM shows positivity at gene E:
34,85; gene R: neg; gene N: 38,33; IC (internal control): 26,72 and the whole positive swab
in physiological solution exhibits positivity at gene E: 32,39; gene R: 34,34; gene N: 34,89;
IC: 26,65.

Figure 7 shows the picture of two sensor systems, used in parallel, for the SARS-CoV-2
detection in two different matrices (UTM and physiological solution).
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Figure 5. (a) Comparison of the response obtained by the MIP-SPR sensor with a negative SARS-CoV-
2 swab in UTM (universal transport medium) and a positive SARS-CoV-2 swab in UTM (confirmed
by RT-PCR). (b) Response curves of SARS-CoV-2 Positive UTM swab (36th RT-PCR cycle), at different
dilutions, tested with SARS-CoV-2 MIP-sensor. The samples were diluted with physiological solution.
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5. Discussion

In a similar way to the graphene-based field-effect transistor (FET) biosensor for
SARS-CoV-2, presented by Seo et al. [18], these preliminary results demonstrated that the
proposed sensing approach could be used to develop a simple, low-cost, small-size, and
rapid sensor device.

This novel SARS-CoV-2 sensor could be easily used on-site and connected to the
Internet. Following the presented proof of concept, the subsequent experimental phase
will be performed on a larger number of SARS-CoV-2 samples to achieve full validation
of the approach. This will be carried out, also in collaboration with a company able to
produce the sensing devices at industrial level, by comparing this SARS-CoV-2 sensor with
the commonly recognized approach represented by RT-PCR.

In addition, the applied general-purpose plasmonic platform could be used to mon-
itor a reprogrammable molecular recognition element which represents another highly
desirable feature for the management of future pandemic crises. In fact, in consideration of
the economic impact (or financial returns) of the device we are experimenting with ways of
transforming our handcrafted product into one that can be industrially manufactured by
exploiting, for example, silicon wafers. This should enable mass production, high quality,
reliability and low-cost due to the advantages of the typical processes of the semiconductor
industry. Furthermore, not only does a planar approach allow to produce single devices,
but it also allows to devise complex arrays of a variety of sensors with the same or different
geometries and functionalization to support fast screening tests for a large number of
people. Moreover, the main strategic advantage of our approach is that the industrialized
optical platform is the same for many different applications, which means that it could be
used for the current pandemic and for future ones as well.

Proper attention should just be paid to the appropriate design of the MIP on top of
it that, being the last step of the sensor production process, allows to implement a sort of
specific MIP coding, creating a really “open” and extremely versatile sensing platform.

6. Conclusions

The proof of concept of SARS-CoV-2 selective detection has been demonstrated ex-
ploiting a low-cost optical-chemical sensor system. The refractive index of an MIP nanofilm,
deposited on the sensing gold film, changes when the binding with the SARS-CoV-2 virion
occurs. The MIP’s refractive index variation has been monitored by a simple plasmonic
D-shaped POF-platform. These preliminary results have proven an elegant approach to
achieve fast SARS-CoV-2 detection at the point-of-care. The reported data demonstrate a
prototype sensor capable of detecting the spike protein of SARS-CoV-2 in various solutions
and the virions as well. Nevertheless, the actual ability of the technique to be exploited
in the detection of a SARS-CoV-2 infection requires further validation on a large number
of SARS-CoV-2 samples and the thorough comparison with RT-PCR, exploiting a sensor
system realizable at an industrial level.

Author Contributions: Conceptualization, G.D., C.P., N.C.; methodology, G.D., C.P., N.C., E.M.P.,
G.C. (Giulio Camarlinghi), R.C., F.D.M., L.Z.; validation, G.D., C.P., N.C.,E.M.P., G.C. (Giulio Ca-
marlinghi), R.C., F.D.M., L.Z., G.C. (Guido Chiaretti), C.V., G.P., F.A.; formal analysis, G.D., C.P.,
N.C., E.M.P., G.C. (Giulio Camarlinghi), R.C., F.D.M., L.Z.; investigation, G.D., C.P., N.C., E.M.P.,
G.C. (Giulio Camarlinghi), R.C., F.D.M., L.Z., G.C. (Guido Chiaretti), C.V., G.P., F.A.; data curation
G.D., C.P., N.C., E.M.P., G.C. (Giulio Camarlinghi), R.C., F.D.M., L.Z., G.C. (Guido Chiaretti), C.V.,
G.P., F.A.; writing—original draft preparation, G.D., C.P., N.C., E.M.P., G.C. (Giulio Camarlinghi),
R.C., F.D.M., L.Z., G.C. (Guido Chiaretti), C.V., G.P., F.A.; writing—review and editing, G.D., C.P.,
N.C., E.M.P., G.C. (Giulio Camarlinghi), R.C., F.D.M., L.Z., G.C. (Guido Chiaretti), C.V., G.P., F.A.;
supervision, L.Z. All authors have read and agreed to the published version of the manuscript.

Funding: This work was supported by the VALERE program of the University of Campania “Luigi
Vanvitelli” (Italy).



Sensors 2021, 21, 1681 16 of 17

Institutional Review Board Statement: This study does not require ethical approval: dataset was
obtained from properly anonymized swab without any clinical practice variation.

Informed Consent Statement: This study does not require informed consent: dataset was oblatined
from properly anonymized swab without any clinical practice variation.

Acknowledgments: The authors kindly thank Giuseppina Nuzzo for proofreading the manuscript
and Tiziano Chiaretti for graphical editing contribution.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Guo, Y.R.; Cao, Q.D.; Hong, Z.S.; Tan, Y.Y.; Cheng, S.D.; Jin, H.J.; Tan, K.S.; Wang, D.Y.; Yan, Y. The origin, transmission and clinical

therapies on coronavirus disease 2019 (COVID-19) outbreak—An update on the status. Mil. Med. Res. 2020, 7, 11. [CrossRef]
2. Zhu, N.; Zhang, D.; Wang, W.; Li, X.; Yang, B.; Song, J.; Zhao, X.; Huang, B.; Shi, W.; Lu, R.; et al. A novel coronavirus from

patients with pneumonia in China. N. Engl. J. Med. 2020, 382, 727–733. [CrossRef] [PubMed]
3. Drosten, C.; Günther, S.; Preiser, W.; Van der Werf, S.; Brodt, H.R.; Becker, S.; Rabenau, H.; Panning, M.; Kolesnikova, L.; Fouchier,

R.A.; et al. Identification of a novel coronavirus in patients with severe acute respiratory syndrome. N. Engl. J. Med. 2003,
348, 1967–1976. [CrossRef]

4. Li, W.; Moore, M.J.; Vasilieva, N.; Sui, J.; Wong, S.K.; Berne, M.A.; Somasundaran, M.; Sullivan, J.L.; Luzuriaga, K.; Greenough,
T.C.; et al. Angiotensin-converting enzyme 2 is a functional receptor for the SARS coronavirus. Nature 2003, 426, 450–454.
[CrossRef] [PubMed]

5. Hoffmann, M.; Kleine-Weber, H.; Krüger, N.; Müller, M.; Drosten, C.; Pöhlmann, S. The novel coronavirus 2019 (2019-nCoV)
uses the SARS-coronavirus receptor ACE2 and the cellular protease TMPRSS2 for entry into target cells. bioRxiv 2020, 929042.
[CrossRef]

6. Wan, Y.; Shang, J.; Graham, R.; Baric, R.S.; Li, F. Receptor Recognition by the Novel Coronavirus from Wuhan: An Analysis Based
on Decade-Long Structural Studies of SARS Coronavirus. J. Virol. 2020, 94, e00127-20. [CrossRef]

7. Ou, X.; Liu, Y.; Lei, X.; Li, P.; Mi, D.; Ren, L.; Guo, L.; Guo, R.; Chen, T.; Hu, J.; et al. Characterization of spike glycoprotein of
SARS-CoV-2 on virus entry and its immune cross-reactivity with SARS-CoV. Nat. Commun. 2020, 11, 1620. [CrossRef] [PubMed]

8. Walls, A.C.; Park, Y.J.; Tortorici, M.A.; Wall, A.; McGuire, A.T.; Veesler, D. Structure, Function, and Antigenicity of the SARS-CoV-2
Spike Glycoprotein. Cell 2020, 180, 1–12. [CrossRef]

9. Chan, J.F.W.; Yuan, S.; Kok, K.H.; To, K.K.W.; Chu, H.; Yang, J.; Xing, F.; Liu, J.; Yip, C.C.Y.; Poon, R.W.S.; et al. A familial cluster of
pneumonia associated with the 2019 novel coronavirus indicating person-to-person transmission: A study of a family cluster.
Lancet 2020, 395, 514–523. [CrossRef]

10. Di Marzo, F.; Sartelli, M.; Cennamo, R.; Toccafondi, G.; Coccolini, F.; La Torre, G.; Tulli, G.; Lombardi, M.; Cardi, M. Recommenda-
tions for general surgery activities in a pandemic scenario (SARS-CoV-2). Br. J. Surg. 2020. [CrossRef] [PubMed]

11. Yang, P.; Wang, X. COVID-19: A new challenge for human beings. Cell. Mol. Immunol. 2020, 17, 555–557. [CrossRef]
12. Patel, R.; Babady, E.; Theel, E.S.; Storch, G.A.; Pinsky, B.A.; St George, K.; Smith, T.C.; Bertuzzi, S. Report from the American

Society for Microbiology COVID-19 International Summit, 23 March 2020: Value of diagnostic testing for SARS–CoV-2/COVID-19.
mBio 2020, 11, e00722-20. [CrossRef] [PubMed]

13. Shen, M.; Zhou, Y.; Ye, J.; AL-maskri, A.A.A.; Kang, Y.; Zeng, S.; Cai, S. Recent advances and perspectives of nucleic acid detection
for coronavirus. J. Pharm. Anal. 2020, 10, 97–101. [CrossRef]

14. Moraz, M.; Jacot, D.; Papadimitriou-Olivgeris, M.; Senn, L.; Greub, G.; Jaton, K.; Opota, O. Clinical importance of reporting
SARS-CoV-2 viral loads across the different stages of the COVID-19 pandemic. medRxiv 2020. [CrossRef]

15. Tang, Y.W.; Schmitz, J.E.; Persing, D.H.; Stratton, C.W. Laboratory Diagnosis of COVID-19: Current Issues and Challenges.
J. Clin. Microbiol. 2020, 58, e00512-20. [CrossRef]

16. Xiang, J.; Yan, M.; Li, H.; Liu, T.; Lin, C.; Huang, S.; Shen, C. Evaluation of Enzyme-Linked Immunoassay and Colloidal
Gold-Immunochromatographic Assay Kit for Detection of Novel Coronavirus (SARS-Cov-2) Causing an Outbreak of Pneumonia
(COVID-19). medRxiv 2020. [CrossRef]

17. Djaileb, A.; Charron, B.; Jodaylami, M.H.; Thibault, V.; Coutu, J.; Stevenson, K.; Forest, S.; Live, L.S.; Boudreau, D.; Pelletier,
J.N.; et al. A rapid and quantitative serum test for SARS-CoV-2 antibodies with portable surface plasmon resonance sensing.
ChemRxiv 2020. [CrossRef]

18. Seo, G.; Lee, G.; Kim, M.J.; Baek, S.H.; Choi, M.; Ku, K.B.; Lee, C.S.; Jun, S.; Park, D.; Kim, H.G.; et al. Rapid Detection of
COVID-19 Causative Virus (SARS-CoV-2) in Human Nasopharyngeal Swab Specimens Using Field-Effect Transistor-Based
Biosensor. ACS Nano 2020, 14, 5135–5142. [CrossRef]

19. Homola, J. Present and future of surface plasmon resonance biosensors. Anal. Bioanal. Chem. 2003, 377, 528–539. [CrossRef]
20. Homola, J. Surface plasmon resonance sensors for detection of chemical and biological species. Chem. Rev. 2008, 108, 462–493.

[CrossRef]
21. Nguyen, H.H.; Park, J.; Kang, S.; Kim, M. Surface Plasmon Resonance: A Versatile Technique for Biosensor Applications. Sensors

2015, 15, 10481–10510. [CrossRef]

http://doi.org/10.1186/s40779-020-00240-0
http://doi.org/10.1056/NEJMoa2001017
http://www.ncbi.nlm.nih.gov/pubmed/31978945
http://doi.org/10.1056/NEJMoa030747
http://doi.org/10.1038/nature02145
http://www.ncbi.nlm.nih.gov/pubmed/14647384
http://doi.org/10.1101/2020.01.31.929042
http://doi.org/10.1128/JVI.00127-20
http://doi.org/10.1038/s41467-020-15562-9
http://www.ncbi.nlm.nih.gov/pubmed/32221306
http://doi.org/10.1016/j.cell.2020.02.058
http://doi.org/10.1016/S0140-6736(20)30154-9
http://doi.org/10.1002/bjs.11652
http://www.ncbi.nlm.nih.gov/pubmed/32323878
http://doi.org/10.1038/s41423-020-0407-x
http://doi.org/10.1128/mBio.00722-20
http://www.ncbi.nlm.nih.gov/pubmed/32217609
http://doi.org/10.1016/j.jpha.2020.02.010
http://doi.org/10.1101/2020.07.10.20149773
http://doi.org/10.1128/JCM.00512-20
http://doi.org/10.1101/2020.02.27.20028787
http://doi.org/10.26434/chemrxiv.12118914.v1
http://doi.org/10.1021/acsnano.0c02823
http://doi.org/10.1007/s00216-003-2101-0
http://doi.org/10.1021/cr068107d
http://doi.org/10.3390/s150510481


Sensors 2021, 21, 1681 17 of 17

22. Gandhi, M.S.A.; Chu, S.; Senthilnathan, K.; Babu, P.R.; Nakkeeran, K.; Qia, L. Recent Advances in Plasmonic Sensor-Based Fiber
Optic Probes for Biological Applications. Appl. Sci. 2019, 9, 949. [CrossRef]

23. Singh, P. SPR Biosensors: Historical Perspectives and Current Challenges. Sens. Actuat. B 2016, 229, 110–130. [CrossRef]
24. Bilro, L.; Alberto, N.; Pinto, J.L.; Nogueira, R. Optical sensors based on plastic fibers. Sensors 2012, 12, 12184–12207. [CrossRef]

[PubMed]
25. Jin, Y.; Granville, A.M. Polymer Fiber Optic Sensors—A Mini Review of their Synthesis and Applications. J. Biosens. Bioelectron.

2016, 7, 1000194. [CrossRef]
26. Cennamo, N.; Pesavento, M.; Lunelli, L.; Vanzetti, L.; Pederzolli, C.; Zeni, L.; Pasquardini, L. An easy way to realize SPR

aptasensor: A multimode plastic optical fiber platform for cancer biomarkers detection. Talanta 2015, 140, 88–95. [CrossRef]
[PubMed]

27. Cennamo, N.; Maniglio, D.; Tatti, R.; Zeni, L.; Bossi, A.M. Deformable molecularly imprinted nanogels permit sensitivity-gain in
plasmonic sensing. Biosens. Bioelectron. 2020, 156, 112126. [CrossRef]

28. Cennamo, N.; D’Agostino, G.; Sequeira, F.; Mattiello, F.; Porto, G.; Biasiolo, A.; Nogueira, R.; Bilro, L.; Zeni, L. A simple and
low-cost optical fiber intensity-based configuration for perfluorinated compounds in water solution. Sensors 2018, 18, 3009.
[CrossRef]

29. Zeni, L.; Perri, C.; Cennamo, N.; Arcadio, F.; D’Agostino, G.; Salmona, M.; Beeg, M.; Gobbi, M. A portable optical-fibre-based
surface plasmon resonance biosensor for the detection of therapeutic antibodies in human serum. Sci. Rep. 2020, 10, 11154.
[CrossRef]

30. Cennamo, N.; Massarotti, D.; Conte, L.; Zeni, L. Low cost sensors based on SPR in a plastic optical fiber for biosensor implemen-
tation. Sensors 2011, 11, 11752–11760. [CrossRef]

31. Cennamo, N.; Arcadio, F.; Capasso, F.; Perri, C.; D’Agostino, G.; Porto, G.; Biasiolo, A.; Zeni, L. Towards Smart Selective Sensors
exploiting a novel approach to connect Optical Fiber Biosensors in Internet. IEEE Trans. Instrum. Meas. 2020, 69, 8009–8019.
[CrossRef]

32. Haupt, K. Molecularly imprinted polymers in analytical chemistry. Analyst 2001, 126, 747–756. [CrossRef]
33. BelBruno, J.J. Molecularly Imprinted Polymers. Chem. Rev. 2019, 119, 94–119. [CrossRef]
34. Kriz, D.; Ramstroem, O.; Svensson, A.; Mosbach, K. Introducing Biomimetic Sensors Based on Molecularly imprinted Polymers

as Recognition Elements. Anal. Chem. 1995, 67, 2142–2144. [CrossRef]
35. Haupt, K.; Mosbach, K. Molecularly Imprinted Polymers and Their Use in Biomimetic Sensors. Chem. Rev. 2000, 100, 2495–2504.

[CrossRef] [PubMed]
36. Kupai, J.; Razali, M.; Buyuktiryaki, S.; Kecilic, R.; Szekely, G. Long-term stability and reusability of molecularly imprinted

polymers. Polym. Chem. 2017, 8, 666–673. [CrossRef] [PubMed]
37. Parisi, O.I.; Dattilo, M.; Patitucci, F.; Malivindi, R.; Pezzi, V.; Perrotta, I.; Ruffo, M.; Amone, F.; Puoci, F. “Monoclonal-type” plastic

antibodies for SARS-CoV-2 based on Molecularly Imprinted Polymers. bioRxiv 2020. [CrossRef]
38. Raziq, A.; Kidakova, A.; Boroznjak, R.; Reut, J.; Öpik, A.; Syritski, V. Development of a portable MIP-based electrochemical sensor

for detection of SARS-CoV-2 antigen. Biosens. Bioelectron. 2021, 178, 113029. [CrossRef]
39. Cennamo, N.; D’Agostino, G.; Galatus, R.; Bibbò, L.; Pesavento, M.; Zeni, L. Sensors based on surface plasmon resonance in a

plastic optical fiber for the detection of trinitrotoluene. Sens. Actuators B Chem. 2013, 188, 221–226. [CrossRef]

http://doi.org/10.3390/app9050949
http://doi.org/10.1016/j.snb.2016.01.118
http://doi.org/10.3390/s120912184
http://www.ncbi.nlm.nih.gov/pubmed/23112707
http://doi.org/10.4172/2155-6210.1000194
http://doi.org/10.1016/j.talanta.2015.03.025
http://www.ncbi.nlm.nih.gov/pubmed/26048828
http://doi.org/10.1016/j.bios.2020.112126
http://doi.org/10.3390/s18093009
http://doi.org/10.1038/s41598-020-68050-x
http://doi.org/10.3390/s111211752
http://doi.org/10.1109/TIM.2020.2987403
http://doi.org/10.1039/b102799a
http://doi.org/10.1021/acs.chemrev.8b00171
http://doi.org/10.1021/ac00109a037
http://doi.org/10.1021/cr990099w
http://www.ncbi.nlm.nih.gov/pubmed/11749293
http://doi.org/10.1039/C6PY01853J
http://www.ncbi.nlm.nih.gov/pubmed/28496524
http://doi.org/10.1101/2020.05.28.120709
http://doi.org/10.1016/j.bios.2021.113029
http://doi.org/10.1016/j.snb.2013.07.005

	Introduction 
	Materials and Methods 
	Sensing Approach for Measuring SARS-CoV-2 
	Photonic Device Fabrication 
	Receptor for SARS-CoV-2 Detection 
	Experimental Protocol 
	RT-PCR Analysis 

	Results 
	Preliminary Analysis: Spike Protein SARS-CoV-2 Detection 
	SARS-CoV-2 Detection 

	Discussion 
	Conclusions 
	References

