ﬁ Sensors

Article
IoTCrawler: Challenges and Solutions for Searching the
Internet of Things

Thorben Iggena *(J, Eushay Bin Ilyas 1, Marten Fischer 1%, Ralf Tonjes (0, Tarek Elsaleh 20,

Roonak Rezvani 2(”, Narges Pourshahrokhi 2(*, Stefan Bischof 3, Andreas Fernbach 3, Josiane Xavier Parreira 3,
Patrik Schneider 3, Pavel Smirnov 4, Martin Strohbach 4(%, Hien Truong °, Aurora Gonzélez-Vidal ¢,

Antonio F. Skarmeta ¢, Parwinder Singh 7, Michail J. Beliatis ’("’, Mirko Presser ’, Juan A. Martinez 307,
Pedro Gonzalez-Gil ¢, Marianne Krogbak ® and Sebastian Holmgérd Christophersen °

Faculty of Engineering and Computer Science, University of Applied Sciences Osnabrtick,

49076 Osnabriick, Germany; e.bin-ilyas@hs-osnabrueck.de (E.B.1.); m.fischer@hs-osnabrueck.de (M.E);
r.toenjes@hs-osnabrueck.de (R.T.)

2 Centre for Vision, Speech and Signal Processing, University of Surrey, Guildford GU2 7XH, UK;
t.elsaleh@surrey.ac.uk (T.E.); r.rezvani@surrey.ac.uk (R.R.); n.pourshahrokhi@surrey.ac.uk (N.P.)
Siemens AG Austria, 1210 Vienna, Austria; bischof.stefan@siemens.com (S.B.);
andreas.fernbach@siemens.com (A.F.); josiane.parreira@siemens.com (J.X.P);
patrick-schneider@siemens.com (P.S.)

AGT International, 64295 Darmstadt, Germany; PSmirnov@agtinternational.com (P.S.);
MStrohbach@agtinternational.com (M.S.)

NEC Labs Europe, 69115 Heidelberg, Germany; hien.truong@neclab.eu

Information and Communication Engineering Department, University of Murcia, 30100 Murcia, Spain;
aurora.gonzalez2@um.es (A.G.-V.); skarmeta@um.es (A.ES.); pedrog@um.es (P.G.-G.)

Department of Business Development and Technology, Aarhus University, 7400 Herning, Denmark;
parwinder@btech.au.dk (P.S.); mibel@btech.au.dk (M.].B.); mirko.presser@btech.au.dk (M.P.)

check for
updates

Citation: Iggena, T,; Bin Ilyas, E.;

Fischer, M.; Tonjes, R.; Elsaleh, T.;
Rezvani, R.; Pourshahrokhi, N.;
Bischof, S.; Fernbach, A.;

Xavier Parreira, J.; et al. IoTCrawler:

Challenges and Solutions for
Searching the Internet of Things.
Sensors 2021, 21, 1559. https://
doi.org/10.3390/521051559

Odin Solutions, R&D Department, 30820 Murcia, Spain; jamartinez@odins.es
9 City of Aarhus, 8000 Aarhus, Denmark; mkrog@aarhus.dk (M.K.); sech@aarhus.dk (S.H.C.)
Correspondence: t.iggena@hs-osnabrueck.de

Abstract: Due to the rapid development of the Internet of Things (IoT) and consequently, the
availability of more and more IoT data sources, mechanisms for searching and integrating IoT data
sources become essential to leverage all relevant data for improving processes and services. This
paper presents the IoT search framework IoTCrawler. The IoTCrawler framework is not only another

IoT framework, it is a system of systems which connects existing solutions to offer interoperability
Academic Editor: Paolo Bellavista and to overcome data fragmentation. In addition to its domain-independent design, IoTCrawler

features a layered approach, offering solutions for crawling, indexing and searching IoT data sources,
Received: 27 January 2021

Accepted: 18 February 2021
Published: 24 February 2021

while ensuring privacy and security, adaptivity and reliability. The concept is proven by addressing
a list of requirements defined for searching the IoT and an extensive evaluation. In addition, real
world use cases showcase the applicability of the framework and provide examples of how it can be

instantiated for new scenarios.
Publisher’s Note: MDPI stays neutral S ed for new sce 0s

with regard to jurisdictional claims in

published maps and institutional affil- Keywords: Internet of Things; search; security; privacy; reliability; IoT search framework; IoT data

iations. sources

Copyright: © 2021 by the authors.
Licensee MDPI, Basel, Switzerland.

1. Introduction

During the last years, the Internet of Things (IoT) has grown massively and is still
growing because of the availability of cheap sensor devices and more and more widespread
IoT frameworks, increasing the number of devices and services. This leads to new possibil-
ities for use cases and scenarios in the IoT (e.g., http:/ /www.ict-citypulse.eu/scenarios/
accessed on 24 February 2021). These scenarios range from agriculture, Industry 4.0, to
smart cities and many others. A quite common problem for all of these domains is the

This article is an open access article
distributed under the terms and
conditions of the Creative Commons
Attribution (CC BY) license (https://
creativecommons.org/licenses /by /
4.0/).

Sensors 2021, 21, 1559. https:/ /doi.org/10.3390/s21051559 https://www.mdpi.com/journal/sensors

https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0001-8309-5620
https://orcid.org/0000-0002-3060-1363
https://orcid.org/0000-0003-3107-6465
https://orcid.org/0000-0003-3239-9282
https://orcid.org/0000-0002-9134-0232
https://orcid.org/0000-0001-5580-5058
https://orcid.org/0000-0003-1308-1666
https://orcid.org/0000-0001-7281-0879
https://orcid.org/0000-0002-4398-0243
https://orcid.org/0000-0002-5525-1259
https://orcid.org/0000-0003-4106-111X
https://orcid.org/0000-0002-7902-6144
https://orcid.org/0000-0001-8270-9942
https://orcid.org/0000-0001-6338-1603
https://doi.org/10.3390/s21051559
https://doi.org/10.3390/s21051559
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
http://www.ict-citypulse.eu/scenarios/
https://doi.org/10.3390/s21051559
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/1424-8220/21/5/1559?type=check_update&version=2

Sensors 2021, 21, 1559

2 of 32

search and discovery of available IoT devices, which is the main purpose of the loTCrawler
framework.

To realize the envisaged IoT search framework, a two-layered approach is foreseen,
containing the Discovery and Processing Layer and the Search and Orchestration Layer. The
term Discovery refers to the process of connecting new data sources to the framework. This
may require a step to extract additional information from other databases named Crawling.
The Processing refers to actions to ease up and enhance the later search. Processing includes
the Indexing, i.e., preparing ordered references to discovered data sources for faster access;
the Semantic Enrichment (SE), i.e., the deduction of new data, either describing higher-
level context or the data stream itself. The Search and Orchestration Layer becomes
active when a search process is started. Search refers to the act of finding suitable data
sources in the system by an application and includes a ranking mechanism to sort out
the results to fit best the specific use case. Creating the ability for an application to
receive live observations from a data stream is done during the orchestration step. When
designing an IoT search framework, there are several issues to be considered: volume (the
amount of data), heterogeneity (different kinds of data sources), dynamics (changes in
data sources/environments) and security and privacy (e.g., loT data sources measuring
sensitive data). By analysing these issues, a number of general requirements for an IoT
search platform can be derived:

R-1 Scalability: Coming from the issue of Volume, a requirement for scalability arises
when designing products for the IoT. The huge amount of available, and often
heterogeneous, data sources, which have to be considered for the process of search,
leads to a challenge of scalability. All components and solutions in this environment
have to be designed to work with large scale data. As a result, the machine initiated
search shall be answered within a reasonable time.

R-2 Semantics and Context for Machine Initiated Search: Newly emerging search
models require to tackle the search problems based on the human- and machine
originated users’ contexts and requirements such as location, time, activity, previous
records and profile. The search results are targeted to be based on emerging IoT
application models, where search can be initiated without human involvement. The
generation of higher-level context, such as traffic conditions, e.g., from low-level
observations, can enhance the search functionality for applications that require
information on trends and profiles about sensory data. Generated data from IoT
deployments are largely multivariate, and therefore require aggregation methods
that can preserve and represent its key characteristics, while reducing the processing
time and storage necessities.

R-3 Discovery and Search: To provide a well performing and responsive IoT search
framework, the entire process needs to be considered as a two stages approach,
namely Discovery and Search. In the first stage, knowledge about available IoT
devices and the data streams they provide has to be crawled. The goal is to build
up a data repository containing available information about the data streams. In
the second stage, while processing a search request, the potential data streams,
satisfying the search query, are then extracted from the repository. Before being
returned to the requester, the list of candidates needs to be ranked, to allow the
application to use the best fitting data streams.

R-4 Security and Privacy by Design: It is vital that Privacy and Security are addressed
from the beginning in a design phase and through all the development of a project. It
requires authentication, access control and privacy mechanisms in order to provide
a controlled environment where providers can specify the access policy attached
to their data, and even broadcast it in a privacy preserving manner, so that only
legitimate consumers are able to access the information.

While traditional IoT middleware platforms allow users to search for particular IoT
devices, they still require manual interaction to integrate data sources into a use case. As
the number of IoT devices has increased profoundly in last couple of years, many middle-

Sensors 2021, 21, 1559

30f32

wares have also surfaced to introduce more flexibility and functionality to IoT solution
providers. Middlewares like Kaa (https://www.kaaproject.org/ accessed on 24 February
2021) and SiteWhere (https://sitewhere.io/ accessed on 24 February 2021) provide fea-
tures like data storage, data analysis, device management along with the tools to analyse
infrastructure and optimise computation or provide additional functionality like digital
twins in Kaa. MainFlux (https://www.mainflux.com/ accessed on 24 February 2021) and
OpenRemote (https://openremote.io/ accessed on 24 February 2021) employ protocol and
device agnostic strategies to ease the connectivity of devices. Distributed Services Architec-
ture (DSA) (http:/ /iot-dsa.org/ accessed on 24 February 2021) provide solutions for the
devices to communicate in a decentralised manner. With all these different middlewares,
there is still a lack of searching mechanisms that facilitates both Machine-to-Machine (M2M)
and Machine-to-Human (M2H) communication. The main goal of IoTCrawler is to provide
tools that answer search queries according to user’s preferences such as sensor types, loca-
tion, data quality. For better M2M communication, automated context dependent access is
provided based on a machine initiated semantic search. IoTCrawler also monitors these
IoT devices and informs the users about changes in data quality and the availability of new
relevant sensors to provide flexibility and additional information. Moreover, loTCrawler
envisions a platform which can provide any user an easy access to open data while also
facilitating private users such as industries and businesses. For this, research has been
conducted to implement strategies which ensure that private data stays protected and is
only provided to the authenticated user.

This paper provides an overview of the IoT search framework IoTCrawler, which is
able to crawl IoT data sources and provides an interface to allow for human- as well as
machine-initiated search requests. The IoTCrawler framework consists of a series of loosely
coupled components and is thoroughly designed to address the identified requirements.
The components are designed to be used individually or as a whole framework to allow
the search for IoT data sources in a fast, stable and secure way.

The remainder of this paper is organised as follows. Section 2 presents related work
in regarding the solutions and components of the loTCrawler framework. Section 3
describes the idea of IoTCrawler as a search framework for data sources in the IoT, while
Sections 4 and 5 depict the two layered approach and present the enablers for the discovery
and the enablers for the search layer in detail, including solutions to address the presented
requirements. Section 6 provides an overall evaluation of several IoTCrawler framework
instances running for certain use cases in real-world environments. Finally, Section 7
concludes the paper.

2. Related Work

The question of search and discovery in the internet is not new. The developed
techniques range from the well-known and widely deployed Domain Name System (DNS),
the Lightweight Directory Access Protocol (LDAP), to decentralised Distributed Hash Table
(DHT). However, none of them address all the challenges in the IoT domain introduced in
Section 1. This section highlights the current technical state of topics relevant for a search
engine in the IoT.

2.1. Search over Discovered Metadata

A number of approaches for managing IoT metadata and performing a search over
it can be found in literature. In the Dyser search engine [1], a query-based search mech-
anism is used for tracking the states of physical entities in real-time. Using a typical
link-traversing approach, it performs crawling and maintains the actual state of dynami-
cally changing metadata. Another service for semantic search and sensor discovery among
the Web of Things (WoT) is DiscoWoT [2]. Using a RESTful approach, it enables the in-
tegration of WoT entities. The service is based on extensible discovery strategies. Along
with that, it allows publishers to semantically annotate WoT sources. The Thingful engine
(https:/ /www.thingful.net/ accessed on 24 February 2021) uses a ranking algorithm over

https://www.kaaproject.org/
https://sitewhere.io/
https://www.mainflux.com/
https://openremote.io/
http://iot-dsa.org/
https://www.thingful.net/

Sensors 2021, 21, 1559

4 0f 32

geographical indexed resources. A map-based Web Ul is provided for verified sensors with
locations. A contextual search allows to query sensors based on their type and location
and nearby surroundings. A wrapping approach for integrating real-time data sources
is applied in a platform called Linked Stream Middleware (LSM) [3], which uses Seman-
tic Web technology for integrating real-time physical sensory data. For annotating and
visualising data, the platform exposes a web UI with a SPARQL endpoint for querying.
A predefined taxonomy includes location, physical context, accuracy and other metadata
used for displaying types of sensing devices. SPARQL 1.1 with federation extension is used
for federating queries from distributed endpoints [4]. WOTS2E [5]—a search engine for
a Semantic WoT proposes a novel method for discovering WoT devices and services and
semantically annotated data related to IoT/WoT. The engine relies on results of traditional
search engines (e.g., Google), where it crawls Linked Data endpoints (SPARQL), which are
semantically analysed. For the relevant endpoints, metadata will be extracted and stored
in the service description repository, used later by IoT applications such as WoT index.
In [6], authors analyse the state-of-art literature about IoT search engines and conclude
that the most influencing (citing) contributions were done around 2010. This explains the
fact that major references might look obsolete in 2021. Along with that, authors outlined
two major functionalities performed by IoT search engines (content discovery and search
over it), proposed a so-called meta-path methodology, identified 8 types of meta-paths and
classified search mechanisms of existing IoT search engines. According to their classifica-
tion (combinations of R, D, S, F), search mechanisms of IoTCrawler are able to consider the
following assets: aspects of streams representatives (R) and stream observations (Dynamic
Content, D), semantics of sensors and sensing devices (Representatives of IoT things pos-
sessing streams, again R). Due to the use of ontologies (IoTStream, Sosa) and extensible
GraphQL-based querying mechanism [7], a submission of new information models is not a
problem for the IoTCrawler metadata storage. For example, one of the crawling mecha-
nisms [8] uses the DogOnt ontology [9] and enriches the Metadata Repository (MDR) and
searches over it by the following assets: (a) types of sensors and sensing devices; (b) types
of electrical appliances connected to energy-metering smart home sensors. Submission
of new ontologies and extension of search mechanism with their facets share the same
principles and would easily let [oTCrawler for cover functionality aspects (F) of IoT things.
Considering that, we can conclude that the search mechanism of IoTCrawler covers the
most of the proposed meta-path categories (except of microsensors level, S) and competes
the search capabilities of engines belonging to them. Together with other capabilities (such
as security and publish-subscribe, virtual sensors) IoTCrawler framework outperforms
capabilities of pure search IoT search engines.

2.2. Semantics, Ontologies and Information Models for Interoperability

Over the past decade, a number of efforts have been made to define information
models for IoT using ontologies and semantic annotations, although since these ontologies
are developed by different entities, they are bound to be a diverge in semantics, since the
IoT domain is quite broad in general. An important focus of [oTCrawler is the description
of sensors and IoT data streams. Regarding sensors, one of the main initiatives made in
this field is the W3C SSN ontology [10]. It defines an ontology for describing Sensors
and Observations, but also expands to Systems, Deployments and Processes. SOSA [11]
was created as an extension to SSN to simplify the ontology and to separate Sensors and
Observations from other concepts that are deemed relevant for Sensor and Observations
management. IoT-lite [12] was an effort to bind the core concepts of SSN with IoT concepts
that were not covered by it, such as the concept of Service, but to support the scalability
of annotations to IoT resources in a minimalist manner. The Stream Annotation Ontology
(SAO) [13] is another effort which extends SSN to address sensor data streams. It employs a
class taxonomy for stream analysis techniques, which is useful for high granularity. For this
reason, the IoT-Stream [14] ontology was developed to serve the framework by carrying
the principles that were adopted for IoT-lite to data streams, in the sense that stream

Sensors 2021, 21, 1559

50f 32

annotations should be annotated as minimally as possible to support scale in the context
of IoT data, but also to be flexible to increase the granularity of annotation as needed by
the system.

2.3. Security and Privacy in IoT

Security and privacy cover different areas such as authentication, authorisation, in-
tegrity, as well as confidentiality to name a few. In the scope of IoT, Abomhara and
Koien [15] identified three different core aspects: privacy for humans, confidentiality of
business processes and third-party dependability. They also classified different attacks
related to eavesdropping communications, which together with traffic analysis techniques
allow attackers to identify information with special roles and activities in IoT devices and
data. Nevertheless, they state that there are still open issues related to privacy in data
collection, sharing and management, as described by Riahi et al. [16]. Another security
aspect which has gained a lot of attention in both academia and industry, is the combi-
nation of authentication and identity management. This is widely acknowledged in the
literature, such as the works of Mahalle et al. [17] or Bernal et al. [18], the latter associates
the term privacy-preserving to identity management with the objective of representing
not only users, but also devices or services. These aspects, together with the access con-
trol, have been also dealt in different EU research projects, such as Smartie, SocloTal or
CPaaS.io, where the integration of these technologies are also proved as an appropriate
solution for different domains such as smart buildings or smart cities. These projects
also propose the use of access control mechanisms based on eXtendible Access Control
Markup Language (XACML) [19], even in a decentralised manner by using Attriute-Based
Access Control (ABAC) [20], and to deal with privacy over the data by using encryption
techniques based on attributes, such as Perez et al. [21] which composes an identity.

Hwang [22] also raises the well-known concern regarding the security threats related
to IoT, for example the possibility to overwhelm a system by means of a few IoT attackers
using Denial-of-Service (DoS)-based attacks [23]. The most remarkable point from this
paper’s perspective is that, as Hwang states, a demand exists for security solutions capable
of supporting multi-profile platforms with different security levels. On the other hand,
Hernandez-Ramos et al. [24] address the issue of security and privacy from the point of
view of the smart city. In this work, the necessity of having a mechanism for empowering
citizens to manage their security and privacy by tools such as access control management,
as well as decentralised data sharing, are addressed. This idea is endorsed also in another
research work [25] where they describe a future data-driven society requiring a harmonised
vision of cybersecurity.

2.4. Reliability in [oT

In the past, reliability in IoT has been handled by diverse techniques and solutions,
from quality analysis to algorithms for fault detection and recovery, or replacement of
faulty data sources. The term Quality of Information (Qol) determines the “fitness for
use” of an information that is being processed [26]. It has been originally described as a
quality indicator in the context of database systems [27], but has also been used in several
frameworks for information processing. The authors of [28] proposed a framework for
data translation and identity resolution for heterogeneous data sources including Qol. In
comparison to other frameworks, their framework relies on linked data sets instead of
real-time data. Other frameworks using Qol are shown in [29] for dealing with security
in the context of healthcare including Qol or [30], which deals with streaming data that
are stored into a database. For later analysis, they also store calculated Qol bundled
to the data. A subscription system for data streams, which are selected on their data
quality, is proposed in [31]. Puiu et al. [32] focused on real-time information processing
with integrated semantic annotation [33] and Qol calculation for fault-recovery and event
processing. Whereas all of these solutions integrate QoI and some of them provide real-time

Sensors 2021, 21, 1559

6 of 32

capabilities and semantics, they are bound to specific domains and none of these solutions
are flexible enough to work as a decoupled solution supporting different IoT sensors.

As a result of the recent popularity of IoT, different platforms are trying to integrate
large numbers of IoT devices in their systems. For this reason, there is already some
research done for fault detection in IoT systems. IoTRepair [34] is a fault diagnosis system
for IoT systems. Its diagnosis is facilitated by developer configuration files along with
user preferences and works by monitoring the states of each sensor and how they correlate
with the states of their neighbours. Power and Kotonya [35] provide an architecture with
micro-services for fault diagnosis, through event handling and online machine learning,
as a two-step approach. To provide a reasonable sensor value in case of faults, different
imputation techniques are defined in the literature. Izonin et al. [36] developed a missing
data recovery method by using Adaboost regression on transformed sensor data through
Itd decomposition and compared the results with other algorithms like Support Vector
Regression (SVR), Stochastic Gradient Descent (SGD) regressor, etc. Liu et al. [37] defined
a procedure to deal with large patches of faulty data in uni-variate time-series data. Al-
Milli and Almobaideen [38] proposed a recurrent Jordan neural network with weight
optimisation through genetic algorithms. Most of the techniques that are used for the
detection and recovery of faults are computationally expensive techniques that would
evidently become a burden on the processing units with the increase of devices in IoT
systems. In contrast to the aforementioned approaches for a search engine for the IoT that
can be used in cross-domain scenarios, an objective approach to calculate the quality of
received information is presented in this work.

2.5. Indexing of Discovered Resources

The large volumes of heterogeneous and dynamic IoT data sources that are available
nowadays should be indexed in a distributed and scalable way in order to provide fast
retrieval to user queries [39]. Depending on the attributes to be indexed, different tech-
niques are required. For location attributes, the work in [40] proposed a framework that
supports spatial indexing of the geographic values of data collected from sensing devices
based on geohash (Z-order curve). Barnaghi et al. [41] combines the use of geohashing
and the semantic annotation of sensor data for creating a spatio-temporal indexing. Before
applying the k-means clustering algorithm to distribute data in the repository and allow
data query, dimensionality reduction is performed to the geohash vectors by means of
Singular Value Decomposition (SVD). An index structure is proposed in [42]. The process
starts by clustering the resources based on their spatial characteristics and creating a tree
structure in each cluster, where each branch represents a type of resource (e.g., humidity
or CO; sensors). The most notable works that are used for indexing time series are Sym-
bolic Aggregate Approximation (SAX) and its variants (e.g., iSAX 2.0 [43] and adaptive
iSAX [44]). A great deal of IoT data can be considered as a time-series, since by nature each
observation will have a timestamp associated to it. These methods consider that the data
follow a Gaussian distribution and use z normalisation processing, by which the magnitude
of data vanishes. Since IoT data do not necessarily follow the Gaussian distribution and/or
due to concept drift, the data distribution may change over time, SensorSAX [45] adapts the
window size of the data according to its standard deviation in a online manner. Another
work that is relevant in this sense is Blocks of Eigenvalues Algorithm for Time Series
Segmentation (BEATS) [46], since it uses a non-normalized algorithm for constructing the
segment representation of the time-series raw data. The mentioned methods, derived from
SAX, are used to convert raw sensor data into symbolic representations and to infer higher
level abstractions (for example, dark rooms or warm environments).

2.6. Ranking of Search Results

While the index cares for fast retrieval of search results, users and applications might
still face the problem of sorting through a potentially large number of search results.
Ranking mechanisms can help to sort and prioritise resources and services by selecting

Sensors 2021, 21, 1559

7 of 32

the most suitable one. In the Web domain, Google’s PageRank [47] is probably one of the
most notable ranking algorithms. PageRank explores the links among Web pages to assign
scores to documents, which are used in combination with text similarity metrics in the
context of Web document search. In the IoT domain, on the other hand, the definition of
similarity varies and resources can relate to each other based on a number of different
features such as their type or their location. Not only the number of features for IoT
resources can vary, but also the notion of similarity itself. Therefore, IoT ranking requires a
multi-objective decision-making process in which the criteria to be considered are heavily
dependent on the application and the domain. There exists work that already explores the
multi-criteria nature of IoT domains for assigning ranking scores [39]. Guinard et al. [48]
propose a ranking method for IoT resources which takes into account the resources’ type
(e.g., temperature), their multi-dimensional attributes (e.g., location) and /or the Quality
of Service (QoS) (e.g., latency), and applies different ranking strategies for multi-criteria
evaluation with different criteria weights which are determined by the query (e.g., 40% for
location, 40% for resource type and 20% for network latency). The work in [49] ranks sensor
services based on two different QoS categories in Wireless Sensor Network (WSN), namely
network-based (bandwidth, delay, latency, reliability and throughput) and sensor-based
(accuracy, cost and trust). Other works incorporate user feedback/rating into their ranking
mechanisms [50,51]. In IoTCrawler, we have devised a ranking method which can be
tailored to the different applications.

3. Search Framework for IoT

In contrast to web search engines, a search engine for the IoT is used mainly by other
machines or applications that need information to work properly. While a human user has
the ability to assess the usability of a search result to his needs, a machine is not able to
do so. It is expected that all search results returned satisfy the search query, as there is no
objective way to decide between them. Therefore, an IoT search engine should rank the
results beforehand, even without specifically stated requirements within the search query.
For this, it should use all available information about the IoT device, such as long-term
availability and reliability. Search results for a human can be presented in different ways.
Not only text-based results, but also images, tables and videos are popular ways to transfer
knowledge. A machine, in contrast, requires not only a fixed endpoint, but also predefined
data formats. It needs to know beforehand how to interpret a received search result as well
as the IoT data stream.

Like with any conventional search engine, looking for available resources at the time
a search request was issued is not feasible. To provide search results in a timely manner, a
data repository or database about the data sources needs to be built in advance. To further
decrease the search time, the data within the database needs to be setup with appropriate
indices. For example, as the location of a device is an important factor when searching the
IoT device, providing indices related to the location can significantly improve the search.
Before all of that, the search engine needs to be aware of IoT devices. This is probably the
most challenging task since there exists a variety of different IoT devices and configuration
possibilities. In addition, the IoT domain is more dynamic than the World Wide Web.
While web servers usually remain online and stationary over a long period of time, the IoT
devices may appear and disappear frequently. Thus, once an IoT device has been identified
and integrated into the search engine’s database, it needs to be monitored for availability
and stream quality. At the same time, the environmental context of the IoT device can
change, which needs to be captured to provide additional search criteria.

For the IoTCrawler framework we adopted the search concept for IoT into the follow-
ing two steps: (a) by presenting the Crawling and Processing Layer and (b) by presenting
an incoming search request into the Search and Orchestration Layer. The parts labelled
with a number (1-5) belong to the former layer and the ones labelled with an alphabetical
character (A-D) belong to the later layer.

Sensors 2021, 21, 1559

8 of 32

The Crawling and Processing Layer is the “online” part of the framework. It is
constantly running and responsible for integrating new data sources into the framework.
In this first step (1), data sources of different kinds are found and integrated in the MDR
level. The federated MDR is the anchor point of the loTCrawler framework (cf. Section 4.2),
and holds metadata information for all data streams available in the framework. In step (2),
the IoTCrawler information model is applied. IoTCrawler features an extensive Information
Model based on the Next Generation Service Interface for Linked Data (NGSI-LD) standard
and centred around the concept of IoTStreams [14]. The model provides the basis for the
information stored in the MDRs and the integration of heterogeneous data sources. Both
steps enable other parts of the framework to handle heterogeneous data sources. After the
integration of new data sources, the SE comes into play (3) to further add new information
to the data sources. The SE component enriches known data sources with new information
extracted from the received data. The SE includes a quality analysis component that adds
Qol (cf. Section 4.4.1) as well as a Pattern Extractor (PE) (cf. Section 4.4.2), which analyses
data and provides higher level information.

In parallel, the enriched data (streams) are monitored (4) to enable the Fault Detection
(FD) and Fault Recovery (FR) solutions of the framework. The Monitoring component
ensures a constant user experience by detecting faulty streams and providing data recovery
mechanisms (cf. Section 4.3). In addition, it features a virtual sensor creator to replace
faulty data streams by an ML-based virtual copy. In the last step (5), within this layer, the
search indices are created, allowing data sources to be found in the search process in a
fast manner. The Indexing component is directly supporting the search of data streams by
building indexes for the stream types and their attributes, such as locations (cf. Section 4.5).

The Search and Orchestration Layer contains components for handling search and
subscription requests coming from IoT applications or individual users (A). The Orches-
trator (B) is the main entry point for any user or application that wants to search for IoT
devices (cf. Section 5.4). It organises the search process and orchestrates the needed data
streams. The Orchestrator utilises the Search Enabler component (C), to resolve context-
aware GraphQL requests to NGSI-LD requests and thus providing an easy-to-use interface
hiding the complex NGSI-LD query mechanisms. For subscription requests coming from
IoT applications, the Orchestrator can process the information gathered from the Search
Enabler and is able to provide an endpoint to receive notifications about the stream proper-
ties, e.g., detected faults. NGSI-LD requests are redirected to the Ranking (D) component,
which uses the built indices, given (user) constraints, and enriched information to rank the
found data sources before they are sent back to the user or application.

All steps, in both upper and lower layers, are constantly supported by loTCrawler’s
Privacy and Security components (cf. Section 5.1) to continuously ensure restricted access
to IoT data sources for legitimate users (indicated with a * in Figure 1).

IoTCrawler enables users and applications to search for data sources, while addressing
the challenges mentioned before. Due to the loose coupling of components via publish
and subscribe APIs and the design of the single components, the framework is designed to
reach high scalability (R-1).

Sensors 2021, 21, 1559

9 of 32

Incoming search request
(human or machine)

Application interface and
notification endpoint

Search endpoint

Ranking found data sources using
constraints and Qol

- _J_J_J

Search and Orchestration

Ensuring privacy and security for
restricted IoT data sources

Crawling for IoT data sources

model
sources

d
1 o o
Building search indices

Applying loTCrawler information
Analysing Qol and enriching data

Running fault-detection and -
recovery algorithms

“ Data Sources
Sensors, IoT Gateways, [oT Platforms

Discovery and Processing Layer

— J_J _J_JL_J -

Figure 1. IoTCrawler addressing search in Internet of Things (IoT).

4. Enablers for Discovery and Processing Layer

This section addresses enablers for the discovery in the IoTCrawler framework, intro-
duced in Section 3. A detailed description for each enabler is provided and complemented
by an evaluation on the enabler’s performance.

4.1. Information Model

The IoTCrawler information model is built upon standards. It follows the NGSI-LD
standard and combines it with well-known ontologies, to reflect IoT use cases in the con-
text of loTCrawler and to address the requirement of semantics (R-2) to provide machine
readable results. The choice of NGSI-LD is justified by several factors: being based on an
standard makes it easier to inter-operate with, to integrate with other technologies and to
maintain and evolve. Added to that, NGSI-LD supports semantics from the ground-up,
which is one of the core strengths of [oTCrawler and an enabler for some of the functionali-
ties that it provides. NGSI-LD provides not only the incorporation of semantic information
to the data, but also a core information model and a common API to interact with that
information (commonly called context). It was chosen as the main anchor point for the
interactions between the components in IoTCrawler, greatly reducing and simplifying
the number of different APIs to implement and keep track of, as well as data formats
and models. This “common language” not only serves an internal purpose to simplify
and optimise, but also makes IoTCrawler components easier to be integrated outside
of IoTCrawler itself, and has already allowed to integrate existing components (like the
MDR) seamlessly into loTCrawler. The model has been designed to capture a domain
that focuses primarily on sensors and stream observations. To achieve this and following
best practises [52], concepts were reused from the SOSA ontology [11]. To enable search
based on phenomena, the ObservableProperty is also reused. The Platform class is used
to capture where the Sensor is hosted on. In addition to SOSA, the SSN ontology is used
to capture what Systems sensors belong to and where they are deployed. Although SOSA
captures concepts for sensors and observations, the concept of streams is missing, which is
a fundamental aspect for IoTCrawler as it involves stream processing. For this, the IoT-
Stream ontology provides the concept by defining an IotStream [14]. The IotStream class
represents the data stream that is generatedBy the sensor as an entity. It also extends the
SOSA ontology by defining a subclass of the Observation class, StreamObservation. This

Sensors 2021, 21, 1559

10 of 32

has been done to extend the temporal properties of an Observation to include windows as
well as time points. For accessing the Service exposing the IotStream, the Service class
from the IoT-lite ontology is used, and this enables direct invocation of the data source. The
IoT-Stream ontology also provides concepts for Analytics and Events, which represent
aspects of the semantic enrichment process. Moreover, with regard to the semantic enrich-
ment process, IoT-Streams link to external concepts that capture Qol information about
the streams. The Qol ontology provides this, which captures aspects of quality such as
Age, Artificiality, Completeness, Concordance, Frequency and Plausibility [53]. An
important aspect to any entity is location. Here, the NGSI-LD meta-model which defines
a GeoProperty is used. The main classes and relationships of the IoTCrawler model are
illustrated in Figure 2.

NGSI-LD Qol
GeoProperty — ————————— Quality

hasQuality

derivedFrom

observeredProperty

SSN 1 StreamObservation

LSystem ObservableProperty madeBySensor
observes
Sensor

belongsTo analysedBy

lotStream —————— Analytics

T generatedBy
detectedFrom
Event

providedBy

hasQuantityKind
hasUnit

madeObservation

generatedBy

loT-Stream

isHostedBy

Deployment

loT-Lite

[Unit] [QuantityKind (]w

Figure 2. IoTCrawler information model.

4.2. Federation of Metadata Repositories

A key enabler in the IoTCrawler framework is the federation of multiple MDRs.
The MDRs stores all available metadata information gathered by the discovery process.
Considering the requirements from Section 1, the MDR has not only to support the IoT
search as a whole, but also to address the requirements for scalability (R-1) and semantics
to allow machines and applications to use available IoT data sources (R-2).

In addition to other technologies, e.g., triple stores or relational databases, IoTCrawler
has chosen to use the NGSI-LD standard, which not only defines a data model for con-
text information forming the basis for loTCrawler’s data model (see Section 4.1), but
also defines an API, which will be used by consumers and providers alike, to access
information. Among the API functionalities offered by the MDR are: the direct query
and publish/subscribe mechanisms, which allow context consumers to receive notifica-
tions whenever new information is made available in the system. This publish/subscribe
mechanism is extensively used in IoTCrawler for communication and synchronisation
between different components, which will subscribe to context information relevant for
their purpose, and will publish the processed information to make it available to other
components.

NGSI-LD brokers can be interconnected in different ways to achieve scalability. The
most best performing deployment configuration of NGSI-LD brokers, which is used in
the IoTCrawler framework, is the federated one as shown in Figure 3. It consists of
a federation of brokers, in which all information of the different federated brokers is
accessible automatically through the federation broker. This last broker acts as the central
point of IoTCrawler’s architecture and is the key in making IoTCrawler horizontally
scalable and well performing. This allows all other components in IoTCrawler to use the
MDR in a scalable and standardised way and, being based on the NGSI-LD standard, not

Sensors 2021, 21, 1559

11 0f 32

only makes the MDR inter-operable and compliant to standards, but also allows for the
use of different already existing implementations.

For our current deployment, we have used Scorpio (https://github.com/ScorpioBroker/
ScorpioBroker accessed on 24 February 2021) because it is the only implementation which
considers a federated scenario. Nevertheless, in the frame of this paper we have focused our
metrics on a single instance of this broker, obtaining both latency and scalability metrics. To
do so, we have deployed a virtual machine with the following features: 8 CPU cores and 28
GB of RAM inside a Google cloud. Latency has been evaluated over the different operations
provided by the MDR, specifically: entity management, publication/subscription and
context provisioning.

Discover

Federation Subscribe/
Broker Notify

Discovery

Register (coarse-
grained, scope-based)

Query
Subscribe/
Notify

Distribution
Broker

Context Context Context Context Context Context Context Context Context
Producer Producer Producer Producer Producer Producer Source Source Source

Figure 3. Federated broker architecture [54].

Measurements show that the most time consuming operation is the process of getting
entities specified by their ID, which takes around 800 ms. This operation should not be
so cumbersome and we think that the low performance associated with this task could be
due to the maturity of this software. Apart from this operation, the rest of the operations
take from 17 to 37 ms to perform, which is a more affordable processing time. Regarding
subscription management, the creation of subscriptions is a heavier task taking up to 270 ms,
whereas the other operations take only about 17 ms. Finally, context provisioning tasks,
which comprise the registration of the information coming from context providers pointing
at the end-point services provided by them, take more time compared to the previous tasks.
Nevertheless, the registration and deletion of context providers are operations which are
usually executed once per context provider. By contrast, the operations to obtain context
providers take about 100 ms.

Finally, regarding the scalability metric, we have focused on the CPU and memory
resources consumed by the instance of the NGSI-LD broker according to a specific range of
simultaneous connections (2, 4, 8, 16, 32, 64, 128, 256, 512 and finally 1024). In addition, we
have repeated this process four times. The results of these tests are presented in Figure 4,
depicting that the CPU resources’ consumption follows a logarithmic curve where the
steepness of the slope is lowered from 8 simultaneous communications on. On the other
hand, we can see that the increase in simultaneous communication does not impair the
memory resources notably.

https://github.com/ScorpioBroker/ScorpioBroker
https://github.com/ScorpioBroker/ScorpioBroker

Sensors 2021, 21, 1559

12 of 32

MDR Scalability - CPU MDR Scalability - Memory

100 72

90 70
68
66
64
62
30 60

58

56
0 2 A 8 18 32 s4 128 26 512 1024 0 2 4 8 16 32 64 128 256 512 1024

Threads Threads

Percentage
5
8
Percentage

(a) Use of CPU Resources (b) Use of Memory Resources

Figure 4. Metadata Repository (MDR) scalability assessment.

4.3. Monitoring

IoTCrawler allows aforementioned participants to connect their sensors to the system,
to make them available for a broader audience. As sensors are often deployed in environ-
ments where their operation cannot be controlled or even guaranteed, and given that many
of them are battery powered and have a limited life span, it is to be expected that their
reliability might fluctuate over time. It is therefore important to observe the performance
of the sensors. For this, loTCrawler has developed the Monitoring component, which is
responsible for observing the incoming data streams of different sensors, detecting possible
faults in the data, and, if possible, providing counter measures to mitigate them. The
proposed monitoring concept with its different subcomponents provides an extensive set
of features for addressing issues of dynamics in IoT environments.

4.3.1. Fault Detection and Fault Recovery

The Fault Detection (FD) component monitors the data streams that are available to
the IoTCrawler framework and follows a two-layered approach. In the first layer, the com-
ponent categorises faults as definite faults (due to hardware issues) or as anomalies, which
could occur because of brief environmental factors, an unexpected behaviour detected
through learned patterns. These anomalies can be categorised as faults, if they persist
for a longer period of time. To cater to the needs of most of the sensor streams, the FD
component uses different algorithms, e.g., the Prophet algorithm [55] for time series analy-
sis and stochastic algorithms which determines the likelihood for a value to occur based
on the previous observations of the sensor. The FD component subscribes to new data
streams that become available through the MDR. Through the metadata, the FD determines
which approach should be used. This is differentiated based on how much information is
provided in metadata. The MDR is then notified in case of faults and trigger the recovery
mechanism. To deal with faulty sensors, loTCrawler has developed a two-stage counter
measure. The Fault Recovery (FR) mechanism is a first response to handle missing sensor
observations by imputing artificially generated sensor readings. The goal here is to have
a quick solution to provide uninterrupted data streams for the applications using them.
For long-lasting faults, the FD can issue the deployment of a virtual sensor to replace the
broken one.

In the case of multiple sensors, we employ a knowledge-based Bayesian Maximum
Estimation (BME) for imputing an identified faulty value [56]. BME is a mapping method
for spatiotemporal estimation that allows various knowledge bases to be incorporated
in a logical manner—definite rules for prior information, hard (high precision) and soft
(low precision) data into modelling [57]. More details about this algorithm can be checked
in [56].

To evaluate the working of FD and FR, an instance of FD is presented in the example
below. Sensors deployed in three different parking areas in the city of Murcia are integrated
into the JoTCrawler framework. These sensors record the information about the number
of free parking spots in their respective parking lots with an update interval of 2 min. A
model was trained on the data of several days from the parking areas to learn the normal

Sensors 2021, 21, 1559

13 of 32

behaviour. As an instance of the results, Figure 5 shows the original data for one day from
each sensor, each along with one injected anomaly.

—— Anomalies —— Original

" 300 250 A 200 A
Q 250

200 A
o 200 150
= 150
S 1504 1004

100
& 100

50
$ 50 501
s
Lo 0 0
0 100 200 300 400 0 100 200 300 400 0 100 200 300 400
Samples

Figure 5. Data with injected anomalies at different instances.

The algorithm detected two anomalous patches in each instance. The first detected
patch consists of the initial samples where the values do not change and the second
anomalous patch is the actual anomalies. The first fault in each instance, caused by the
sensor, is considered to be in stuck-at fault condition as this behaviour was not observed in
the training set. The stuck-at condition is fulfilled when a sensor repeats an observation
more times than was observed in the training set.

For the stuck-at fault, an estimated value cannot be interpolated by the neighbouring
sensors, as all of the sensors show the same faulty behaviour at the same instance. The
second anomalous patch in each sensor occurs when the data from another sensor is normal
at those time instances. A recovery value is then generated using data from sensors with
normal behaviour and BME as the interpolation technique (explained above). Results can
be seen in Figure 6.

| — BME Imputation Realvalue —— Faulty value

<
— s

100
100

60
\

60
0 20 40 60 80 100

0 20

i

Free parking spaces

Figure 6. Comparison of actual and recovery values at the anomalous patch.

4.3.2. Virtual Sensor

To replace a faulty sensor in the longer term, loTCrawler provides the virtual sensor
component. A virtual sensor is capable of providing artificial sensor observations for a
longer time as it is trained on larger data sets with different algorithms. As a result of the
FR mechanisms as a first response, virtual sensors are allowed to train for a longer period of
time, hence allowing the algorithms to learn more patterns which also make them capable
of learning data drift. The concept of virtual sensors is that it takes historical data from
a broken sensor and its correlating sensors and use the relationship to predict the values
in place of the broken sensor. For instance, in the case of a broken temperature sensor,
a virtual sensor can be trained to project the temperature at the failed sensor’s location
using nearby temperature sensors as predictors. To achieve this, the component searches
for neighbouring sensors that can be used as predictors in the ML model. The correlation
between the broken sensor and each candidate is calculated to train only with the most
promising data sets. Via a grid search approach, the most promising ML model is selected.

To test the component, different scenarios are considered and the results are docu-
mented in [58]. The viability of virtual sensors has been shown in different environments
by considering neighbouring sensors with the same and different sensor types than the
faulty one. Models selected through grid searching along with models created through

Sensors 2021, 21, 1559

14 of 32

ensembling were used to make the predictions, both of which showed promising solutions.
The results show that a fully autonomous deployment of virtual sensors is possible, al-
though it should be mentioned that their effectiveness highly depends on the availability
of correlating surrounding sensors.

4.4. Semantic Enrichment

The IoTCrawler framework is capable of adding new meta-information to known data
and data sources. For this purpose, the Semantic Enrichment (SE) is being used. Currently,
the component contains two parts, but can be extended further: the Qol Analyser and the
Pattern Extractor, where the first one is responsible to add information about Qol to a data
stream and the second one to extract patterns and therefore learn additional information
from a stream.

4.4.1. Qol Analyser

The Qol Analyser is responsible to annotate data streams within the MDR with
additional Qol metadata. By combining metadata and predefined Qol metrics, it is possible
to rate incoming data from data streams and therefore to annotate these streams with Qol.
This additional information about quality enables other components of the framework
to provide (better) results, especially the Monitoring (cf. Section 4.3) and the Ranking
(cf. Section 5.2) components.

An important step is the definition of Qol metrics that are available within the
IoTCrawler framework. Currently, the Qol Analyser supports five Qol metrics that have
been defined: Completeness, Age, Frequency, Plausibility, Concordance and Artificiality.
For details and calculation of the Qol metrics, we refer to [59-61]. To integrate the results
of the Qol calculation an ontology has been created and integrated into the information
model as shown in Section 4.1.

A main anchor point for the integration is the publish/subscribe interface provided
by the MDR. Figure 7 provides an overview of the interactions of the Qol Analyser and
the IoTCrawler framework. When a data source is registered or updated at the MDR, the
registration contains additional metadata, e.g., a detailed description of the data sources
properties and its characteristics. This allows to adopt the Qol calculation to changes in
the metadata or to connect to a new data endpoint description to access data. Finally, the
Qol Analyser calculates the Qol for each known data source and adds the results to the
metadata. This allows other IoTCrawler components as well as third-party users to access
the additional information.

subscribe(Data)

ubscribe(IoTStreams
Data Source/

notify(new IoTStream
IoT Gateway ¥

updateQol(IoTStream)

notify(new Data)

register(new IoTStreamy)

Figure 7. Semantic Enrichment (SE)-MDR communication.

For the following experiment, data from the city of Aarhus, Denmark are used. The
data set named “CityProbe” is a real-time data source, which consists of 24 sensors that
are mounted on light poles. The devices are solar powered and provide different sensor
values, e.g., humidity, temperature, rain or CO. These data are analysed and it is shown
how the Qol Analyser detects increasing or decreasing quality of the incoming data. For
the experiment, the metadata annotation has been set to the following values: The range
for the measured temperature has been set to —30 °C to 40 °C, which depicts a common
temperature range for a northern country, whereas the humidity ranges from 0% to 100%.
These ranges are used for the calculation of the Plausibility metric by checking if the
observations remain in the defined ranges. Figure 8 shows an analysis of two sensor
devices for temperature and humidity data for a time span of one week. The first graph
depicts the measured values, whereas the second one shows the calculated Plausibility

Sensors 2021, 21, 1559

15 of 32

values. Figure 8a shows some suspicious temperature and/or humidity peaks in the
minus area. From a human point of view, they can assumed to be wrong. In addition, the
Plausibility metric decreases as it can be seen in Figure 8b. This example shows a use case
of a decreasing Qol metric. A possible subscriber of the Qol, e.g., the Monitoring, can now
react to the dropping information quality. In case of the Monitoring, it is now possible to
initialise a more complex FD or FR algorithm or to create a new virtual sensor instance.

With the Qol Analyser, it is possible to identify data streams with decreasing quality.
As an example, the Frequency metric is able to detect if a data stream does not provide data
in the annotated time interval. Of course, it is not possible to directly detect the reason for
a decreasing Frequency as IoTCrawler has no access to the sensor devices, but it provides
the results of the Qol calculation to other components, which can then react to a changing
Qol, e.g., by selecting an alternative data source. With that, the Qol Analyser enhances the
Reliability in IoT environments. The Qol annotations also give objective criteria to choose
between data streams, especially when the search is performed by a non-human system
(Requirement R-2).

—— sensorl Temperature —— sensor2 Temperature —— sensorl Temperature —— sensor2 Temperature
—— sensorl Humidity —— sensor2 Humidity —— sensorl Humidity —— sensor2 Humidity
Temperature/Humidity Qol Plausibility Temperature/Humidity
100 1.00
=
£
> 504 0.95 4
k=]
£
2 oA £ 0.901
o 3
£ 2
o -504 S 0.85
5
©
g 0.80
g _
g -100
ki
-150 1— 0751 : . . , , . .
N 6 0 > & S © A >)
0 @ @ a® a2 g g g R R ST N S KA S L A KAl E
o o o o o o o o 400 (o° 40P of o® of of o
AT g8 @ g T T g 20 20 10 20 20 20 10 20
Date Date
(a) Humidity and Temperature (b) Plausibility for Humidity and Temperature

Figure 8. Aarhus CityProbe sensor’s data and Plausibility.

4.4.2. Pattern Extractor

To allow context-based search (Requirement R-2), the Pattern Extractor (PE) module
enables the generation of higher-level context The context itself would be defined by the
domain(s) of interest of the deployment, e.g., traffic congestion levels or personal health
activity monitoring. The PE relies on a pre-training process in which it creates a set of
clusters, each corresponding to a state or event. The PE analyses annotated IoT data streams
that are pushed to the Metadata Repository to detect Events, by employing a data analysis
technique. A subscription to the MDR is made for StreamObservations that have a certain
property, and can also include spatial and temporal filters. iot-stream:StreamObservations
of iot-stream: IotStreams that meet the requirements are then pushed as notifications the
PE component. The PE temporarily stores a certain number of observations that correspond
to the time window pre-defined by the deployer. The output of the analysis is a textual label
that interprets the pattern of data. The label is then encapsulated in an iot-stream:Event
instance, along with the start and end times of the window in question, and published to
the MDR.

The algorithm for pattern extraction is based on aggregating observations from a
time window for pattern representation. Observations are grouped in time windows of
predetermined size. On each window, Lagrangian Pattern Representation (LPR) [62,63] is
applied to determine the patterns. Patterns are then clustered and grouped using Gaussian
Mixture Models (GMM). The number of clusters depends on the number of expected
events for a specific scenario. A label representing the pattern is given to each cluster. Label
nomenclature is defined by the topical domain ontology for the specific use case.

Sensors 2021, 21, 1559

16 of 32

In the PE component, there are two models that represent patterns [63]. K-means
clustering was used for the first approach of representing patterns and our model applied
to some data sets from UCR Time-series Classification Archive [64], which is known as a
benchmark data set for clustering and classification methods. The data sets Arrowhead,
Lightning?7, Coffee, Ford A and Proximal Phalanx Outline Age Group from the time-series
archive were used. The Arrowhead data set contains shapes of projectile points in time
series. Lightning7 has data of time-domain electromagnetic from lightnings. The Coffee
data set contains data from measurements of infrared radiation interaction with coffee
beans, which is used to verify the coffee species. Ford A has measurements of car engine
noise and Proximal Phalanx Outline Age Group has observations from radiography images
from hands and bones. Silhouette coefficient was used to evaluate the model. Silhouette is
a measure of how separated the constructed clusters are from each other. To evaluate the
clustering technique in the real-world scenario, we need to use a measurement to evaluate
the separation of the clusters as we do not have the true classes. The results were compared
by using K-means on raw data without Lagrangian representation. Table 1 proves that our
method improves the clustering results of these data sets.

Table 1. Silhouette evaluation of Lagrangian representation using k-means.

Model/Data Set Arrow Head Lightning7 Coffee Ford A Proximal

Raw Data k-means 047 0.12 0.33 0.05 0.46
Lagrangian k-means 0.67 0.57 0.69 0.56 0.62

The measurements for the above data sets were conducted using a machine with a
4.00 GHz 4-core CPU and 32 GB of RAM. In the case of the time series in the Ford A data set,
the averaging processing time for applying LPR on it was between 400-500 milliseconds.
Figure 9 shows the relative comparison of the clustering algorithm processing time applied
to each data set.

Arrowhead |
= Coffee GG
7]
(%]
S Ford A I —
©
e Lightning7

Proximal I

0.00 0.50 1.00 1.50 2.00 2.50 3.00 3.50 4.00 4.50
Log (ms)

Figure 9. Processing time of the clustering algorithm for different data sets.

For the evaluation of Principal Component Analysis (PCA)-Lagrangian representation,
the method was applied to both synthetic and real-world data. GMM was then used for
clustering. We generated a synthetic data set using a multivariate Gaussian distribution
and generated a time series including 2400 samples with four dimensions with three
different Gaussian distributions which have the same covariance matrix and different mean
vectors. Each distribution had 800 samples. In addition, another data set was generated by
adding white noise with Signal-to-Noise Ratio (SNR) of 0.01. The results of the Silhouette
coefficient are 0.87 for data w/o noise and 0.47 for data with noise.

For a real-world scenario, we used air quality data from Aarhus’ open data. We used
air quality data from a period of two months with a sampling frequency of every five
minutes. The data have two dimensions; Nitrogen-dioxide (NO;) and Particulate Matter
(PM). There are three different clusters: low risk, medium risk and high risk. We evaluated

Sensors 2021, 21, 1559

17 of 32

the results using Silhouette coefficient and compared the results. The results are shown in
Table 2.

Table 2. Results of Silhouette coefficient for the Aarhus data set.

Method Silhouette Coefficient
PCA-Lagrangian + GMM 0.69
Raw data + GMM 0.46
Lagrangian scaling + GMM 0.45
PCA + GMM 0.39

The proposed algorithms for pattern extraction allow to extract high level events
directly from the IoTCrawler framework (R-2). They also reduce the need for external ap-
plications to subscribe to raw data and decrease the amount of transferred data, improving
scalability (R-1).

4.5. Indexing

Indexing provides a means for clients to search for IoT entities efficiently. It focuses
on IoT streams and sensors, where queries can be based on sensor type and absolute or
relative location. To initiate the process of indexing, a platform manager needs to register a
MDR with the Indexing component. In turn, this will trigger the subscription to sensors
and streams at the registered MDR. As the metadata descriptions are updated at the MDR,
the Indexing component will be notified and then index the sensors and streams based on
location. For scalability, the Indexing component can be configured so that the persistence
it relies on (MongoDB) can be shared (see Figure 10).

Indexing exposes a query interface which complies with the NGSI-LD specification.
Upon querying by a client, entities that relate specifically to sensors, IoT streams, location
points or Qol will be responded to directly. Else the query is the forwarded to the MDR
for complete query resolution. The approach enhances the query resolution performance
significantly, as co-located entities and common types are indexed and grouped, allowing
reduced latency in query processing.

The indexing technique applied is based on a geospatial approach defined by Janeiko
et al. [65]. The index is a tripartite whereby two of the indices link iot-stream: IoTStream
and sosa:Sensor entities to a geo-partition key. The other index contains the actual
data and is also geo-partitioned. The partition key is determined by intersecting the
location of the sensor represented as GeoJSON objects with predefined GeoJSON polygons
representing geographical regions. The index contains the entities in the form of a graph,
whereby linked entities are stored as a single entry. Here, the loTStream entity is the root
entity with all other indexed entities are nested within it, hence any query for any entity
must be linked to an IoTStream entity. The structure defined allows to construct compound
indices, which accelerates nested queries. By providing its indices for search, the Indexing
component addresses scalability R-1.

— — Sharded Geo Index
Stream Index

Sensor Index

Notification Index
Handler Manager

Indexing

Figure 10. Indexing sensors and IoTStreams.

Sensors 2021, 21, 1559

18 of 32

Request No.

The Indexing component is responsible for creating and updating the metadata indices
to allow fast search and retrieval of the metadata stored in the MDR, using geospatial
indexing. The initial approach for geospatial indexing IoT Streams and Sensors was to use
geohash, whereby the location is represented by a string of characters with a predefined
length reflecting the granularity of the bounding box the entity will be associated with.
A new approach has been taken to maintain the exact location of the entity by using a
Quad Search Tree. The main KPI that is applicable is the latency and retrieval time. The
Indexer partitions the notifications from MDR broker notifications for stream or sensor
data location by country. Latency and retrieval time can be measured based on: a data set’s
size or number of entities, i.e., streams and sensors, a number of countries or a number of
concurrent requests.

Therefore, the approach to evaluation will be applied to a data set with different sizes,
multiple countries. Data sets were randomly generated which covered entities located
within 6 countries. In terms of hardware, the experiment was conducted on a computer
with an Intel CORE i7 CPU of 6 cores, 1.9 GHz and 32 GB RAM. Concurrency tests were
performed using the Apache Bench tool. Two sets of tests were performed. Each set had a
number of entities stored in the indexer. For each set, two sets of concurrency tests were
performed: one with 100 requests (the graphs show the total time for all requests) with a
concurrency of 10; and 10,000 requests with a concurrency of 1000. Regarding the query
response time, two factors are measured, the total time for the response, the wait time and
the time the indexer receives the requests and responds, irrespective of the connection time.

Between the 3 sets of tests, the wait- and total response times show a gradual increase
with respect to the number of stored entities. What is also noted is that for the last set of
concurrency requests, a significant change in delay is observed, especially in the case of
requests with a concurrency of 1000. Figure 11a,b show the response times for requests
with increasing concurrency. The plots have been smoothed out with a moving average of
10 and 20, respectively.

===-200 per. Mov. Avg.

(ttime (e=10))
200 per. Mov. Avg.
(wait (e=10))
200 per. Mov. Avg.
(ttime (e=100))
200 per. Mov. Avg.
(wait (e=100))

+++200 per. Mov. Avg
(ttime (e=1000))

-+:200 per. Mov. Avg
(wait (e=1000))

----- 10 per. Mov. Avg.
(ttime (e=10))
10 per. Mov. Avg.
(wait (e=10))
10 per. Mov. Avg.
(ttime (e=100))
10 per. Mov. Avg.
(wait (€=100))
—10 per. Mov. Avg.
(ttime (e=1000))
——10 per. Mov. Avg.
(wait (=1000))

(a) 100 Requests and Concurrency of 10 (b) 10000 Requests and Concurrency of 1000

Figure 11. Indexing response times.

5. Enablers for Search and Orchestration Layer

This section addresses the enablers for search in the IoTCrawler framework. Based on
the description in Section 3, all enablers will be shown in detail, including experimental
results and evaluations.

5.1. Privacy and Security

The IoTCrawler framework places security and privacy as a traversal pillar interacting
with the different layers of its architecture (cf. Figure 1). This pillar comprises: Identity
Management (idM), access control management, for both intra-domain and inter-domain
and finally privacy from a data point of view. Starting with idM, this component is
responsible for handling the different identities that are registered in the IoTCrawler

Sensors 2021, 21, 1559

19 of 32

framework. An identity, which can be a user, device or service comprises different attributes
such as: name, email, role and organisation, to name a few. They are quite important for the
definition of access control and privacy encryption policies as we will see below. Another
important function carried out by the idM is that of authentication. Any entity registered
in the system must perform the login operation due to the exposed API. In our case, we
have selected the FIWARE KeyRock GE (https://fiware-idm.readthedocs.io/en/latest/
accessed on 24 February 2021), which exposes an OAuth2 APL

To deal with this heterogeneous landscape, we have designed a comprehensive ap-
proach where we are combining a distributed authorisation solution called Distributed
Capability-Based Access Control (DCapBAC) with Distributed Ledger Technology (DLT),
specifically Hyper Ledger Fabric (https:/ /www.hyperledger.org/use/fabric accessed on 24
February 2021) and the use of smart contracts. DCapBAC decouples traditional authorisa-
tion solutions, such as XACML framework, in two different phases: authorisation request
and access. For that, a new component, called Capability Manager (CM), is introduced.
It is the end-point for the authorisation requests and it also issues an authorisation token
called Capability Token (CT) after validating the authorisation request by communicating
with the XACML framework. Regarding the access phase, the XACML Policy Enforcement
Point (PEP) is moved as a Proxy located close to the server where resources are stored. In
this case, CT acts as a proof of possession which allows the PEP Proxy to validate it easily
without querying any other third party. This CT contains all details regarding the resources
to be accessed, the access mode among others.

DLT provides numerous advantages in term of resilience, and traceability because
of its consensus approach where all nodes of the network must agree on global policies.
For this reason, in IoTCrawler, an additional step is taken as showcased in Figure 12, by
introducing the Blockchain as an added element in the security process; by storing policies
in the Blockchain, as well as CTs that can later be revoked; and thus need to be checked by
the PEP Proxy in the Blockchain for validity.

[userﬁsewice] [Blockchain_Hand\er] PEP-Proxy MDR
T T 7

Authorisation DCapBAC - Access to the resource /
! MDR AP| Request + k-auth-token (Cap.Token)

Blockchain __/

| Request ftoken/ + Cap.Token(id) |

| Cap.Token status

!
>

T
' Walidate Cap.Token
| CP_ABE_Encrypt{attribs) |

| MDR AP| Request
| MDR API Response

| I
| MDR API Response,

T
[userfservice] [BlockchainiHamd\er] PEP-Proxy MDR

Figure 12. Policy Enforcement Point (PEP) Proxy interaction diagram.

Access control components are integrated into the Blockchain to enhance security and
scalability. By leveraging Blockchain, several issues of current access control systems can
be overcome.

e Untrustworthy entities: First, Policy Administration Point (PAP) might be subject to
an attack and perform malicious actions such as updating a policy against the resource
owner’s will. Having a Blockchain helps avoid misbehaviour of PAP. The access
control policy’s integrity is checked by registering and checking its meta-data, such as
the hash value managed by the Blockchain network. Second, policy evaluation done
by Policy Decision Point (PDP), which could be manipulated by an untrusted PAP.
The Blockchain ensures this misbehaviour to be detectable.

https://fiware-idm.readthedocs.io/en/latest/
https://www.hyperledger.org/use/fabric

Sensors 2021, 21, 1559

20 of 32

e Auditability: The verifiable property of Blockchain allows detecting if an access control
service falsely denied access to a subject that the policy would grant or if the access
control service granted a permission while the policy was not satisfied.

® Revocability: The attribute-based access control model that we have in this framework
assumes, once a subject has granted an access permission, that the subject will receive
an access token. It is challenging to revoke the token once it has been misused or
stolen. Blockchain resolves this issue by executing a token smart contract to invalidate
the vulnerable token.

e Fault tolerance: Access control components are distributed among peers over the
Blockchain network. Such components are PAP, PDP and CM, among others. By
having functions executed as smart contracts and invoked by a peer of the network, it
avoids becoming a single point of failure as it would be the case with traditional PAP,
PDP or CM.

e Integrity: New changes may cause disruption of such services and therefore they
should be done cautiously. No single individual can introduce changes. This property
is essential in the network where the participants often do not trust each other.

To address the scalability requirements R-1, we carefully design the security compo-
nents so that only critical parts are executed on-chain and other parts can be done off-chain.
Policy and capability managing operations are on-chain with policy enforcement and
identity management can be done off-chain or access to another service. In addition, we
carefully select the consensus algorithm, which is one of the core parts of the Blockchain,
so that it provides efficient throughput and latency performance. As a result, security
and privacy enablers provide by-design secure access to IoT data thanks to the DCapBAC
access control model in privacy-preserving using attribute-based encryption. DCapBAC is
coupled with Blockchain to provide distributed trust among untrusted domains by agree-
ing on common policies and ensuring policies’ integrity. In addition, Blockchain offers
transparency, auditability and fault tolerance to access control. Our chosen Blockchain
deployment with sufficient consensus algorithm ensures low overhead, in another word,
high scalability.

For the evaluation of these components we have measured the latency associated to
each of the operations that these components perform to grant authentication and authori-
sation, as well as the performance metrics linked to the CPU and memory consumption of
these operations by increasing the number of simultaneous requests up to 2048 connections.
We ran the benchmark experiment on a server with Intel Xeon E-2146G CPU, 32GB RAM,
in a local network environment.

5.1.1. Identity Management and Authentication Evaluation

Starting with Keyrock, we have evaluated the latency on two different sets of oper-
ations, the first one is related to the generation, information retrieval and deletion of the
Identity Management Token, while the second set is focused on the user point of view,
providing information about common operations related to user management. For the
evaluation of this metric, we have launched 100 executions of these operations to provide
the average latency value and 95% confidence intervals as presented in the following
graphs and tables. As we can see in Figure 13a, the delay obtained for the difference
is really low, reaching up to 30 ms for the generation of the idM token. This operation,
compared to the others, is the heaviest one because it comprises the different mathematical
operations required to generate the token. The most common authentication operations
usually triggered via web interface or REST API are shown in Figure 13b. In light of these
results, we can also state that user operations last about 30 ms, which is reasonable in terms
of latency.

Sensors 2021, 21, 1559

21 of 32

%percentage

30

25

20

5

3
30 0
25 25
2 20
15 15
10 }
° 5
0 0

Create Or ti

Update O tion Obtain O tion infe@btain O tion info. Delete O i
i) (i Create user Update User Obain User info, Delete User

(a) Token Operations (b) User Operations

Figure 13. Delay of Identity Management Operations (units in milliseconds).

Regarding the scalability aspect, we have assessed the performance of the idM in terms
of CPU and memory consumption resources. The objective was to provide a trend as the
number of requests increases, so that we can provide an estimation for a higher number of
simultaneous requests. Therefore, to achieve this goal we have launched different number
of simultaneous connections: 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024 and 2048. Additionally,
we have repeated the experiments 4 times. More specifically, we have employed a query
for authenticating a user. According to Figure 14a,b, we can state that the CPU resources
managed by the idM remain stable as the simultaneous requests increase. Regarding the
memory resources, we can see that up to 256 simultaneous connections, the increase is
less than 1.5%. From that number on, the memory resources increase again about 1.5%.
Therefore, we can state that it is able to handle a large number of communications.

23.5

23

16

225
22

o /

21

%percentage

20.5
32 64 128 256 512 1024 2048 0 2 4 8 16 32 64 128 256 512 1024 2048

Avg Simultaneous communications Avg Simultaneous communications

(a) CPU Consumption vs. Number of Simultaneous Communications (b) Memory Consumption vs. Number of Simultaneous Communications

Figure 14. Identity Management Resources consumption.

5.1.2. Authorisation Evaluation

Authorisation addresses two different scenarios, intra-domain and inter-domain sce-
narios. Regarding the former, DCapBAC has been implemented. From this point of view,
we have assessed different metrics with the objective of measuring the time to grant ac-
cess to a user to a specific resource, and also to measure the performance in terms of
simultaneous connections.

Consider thePDP request, which is the XACML validation process that is performed
by the PDP after receiving the authorisation request coming from the CM. This takes
around 200 ms. The CT generation considers the previous task, and includes also the
processing time required by the CM to issue a CT, which takes about 1.6 s. Finally, the
overall authorisation process from the point of view of the clients from the moment
they issue an authorisation request, to the moment they receive the authorisation answer
together with the CT was measured with around 1.65 s. Since the token includes a validity
period to the resources to be accessed, issuing a CT is not required for every access.

The DLT operates using Hyperledger Fabric framework with the Kafka consensus
algorithm. The most essential and critical factor that affects the overall performance of a
Blockchain network is the ordering service. Ordering service is a part of the consensus

Sensors 2021, 21, 1559

22 of 32

protocol. It generates a unique ordered sequence of transactions in a block and the block is
delivered to nodes. We measured the Blockchain latency and throughput as the primary
performance metrics for Blockchain, with various parameter settings of network size
(number of ordering nodes) and block size (blocks committed to the Blockchain of each
transaction). Ordering latency is the time a transaction needs to wait for the ordering
service until its order in a block is assigned. Ordering throughput is the capacity the service
can handle a certain number of transactions per second. Figure 15a,b show benchmark
results of our Blockchain network. With small size network (7 ordering nodes), latency
is very low (less than 0.5 s for 1000 concurrent clients). When the size of the network
increases, the latency also increases (at size of 151 nodes, the latency at 1000 concurrent
clients is 3 s). The same pattern for throughput performance. Throughput drops when
network size grows (at size of 151 nodes, throughput at 1000 concurrent clients goes
below 500 transaction/second). These benchmark results show the tradeoff between
latency /throughput performance and network resilience against faulty requests. When the
network size is larger it is more resilient to tolerate faulty nodes, however, it bears higher
latency and lower throughput.

35 4500

Tnodes ——
55 nodes —s—

3 4000 103 nodes

151 nodes

3500

25

3000

2 2500

15 2000

Latency (second)

1500
1

1000
05 7 nodes ——
- 55 nodes —x—
103 nodes 0
w_f_—k_f—* 151 nodes

0 0
0 200 400 600 800 1000 1200 1400 1600 1800 2000 0 200 400 600 800 1000 1200 1400 1600 1800 2000
Number of Concurrent Clients Number of Concurrent Clients

Throughput (transaction/second)

(a) Latency for Blockchain Transactions (b) Throughput for Blockchain Transactions

Figure 15. Latency and throughput performance for Blockchain transactions.

We have excluded the cost for the execution of transactions in the benchmark. In-
stead, we vary the block sizes which simulate various application scenarios in practice.
Figure 15a,b show results at a typical block size of 100 bytes. For other block sizes, the
patterns of latency and throughput hold the same. The overall performance of Blockchain
network needs to consider also the transaction execution time, smart contract invocation
time and transaction validation cost, which are application dependent.

5.2. Ranking

The Ranking component implements ranking mechanisms for IoT resources. Its
purpose is to aid users and applications to not only find a set of resources relevant to
their needs, but also to select the best or most appropriate one(s) from that set. There
are multiple criteria for ranking IoT resources such as data type, proximity, latency and
availability. Therefore, [oTCrawler’s Ranking component supports application-dependent,
multi-criteria ranking. Within the IoTCrawler framework, the Ranking component is
available to the Search Enabler component to facilitate entity discovery. The Ranking
component relies on an NGSI-LD compliant endpoint as a backend, which is often times
the Indexing component but could also be any NGSI-LD broker. Upon receiving a query
request and its ranking criteria, the Ranking component initially forwards the query to
the underlying index or broker to get the set of IoTStreams entities matching the query. A
ranking function then computes, for each result, a ranking score, according to the ranking
criteria. The score is then attached to each IoTStream result as an additional property.
The ranking criteria specifies the relevance of different properties to the application. The
current ranking function computes a weighted average of the Qol values of a IToTStream

Sensors 2021, 21, 1559

23 of 32

entity, where the weight values are specified in the ranking criteria, but it can be easily
adapted to other ranking criteria. In this way, the ranking is addressing the requirement
for search R-3 by successfully ordering the search results.

The Ranking component offers an extended NGSI-LD interface, where ranking criteria
can be specified in addition to the query. To avoid any influence of indexing strategies
implemented by the Indexing component and be able to focus on the performance of the
Ranking component itself, we have evaluated the Ranking component in a simplified
architecture consisting only of the Ranking component and an NGSI-LD broker. Although
the Ranking component supports horizontal scaling (adding more instances behind a load
balancer for better scalability) due to its stateless implementation, in this evaluation we
have only tested on a single instance. To assess the scalability of the component, multiple
queries have been sent, both directly to the broker and to the ranking + broker combination.
For the ranking + broker combination, we used a single ranking weight as the ranking
criterium, that means that results were sorted based on the value of a single property.
We have varied the number of concurrent query requests and measured the latency in
retrieving the results. Each request returned 1000 entities, where the entities” size was
approximately 7 kB.

The results shown in Figure 16 indicate that the Ranking component introduces a
small latency in retrieving the results, but it can nevertheless scale with the volume of
query requests.

21,724

1000 20,053
-
2 100 2112
2 BN 1934
o
;:: 10 293 Ranking (incl. Broker)
< | 179
5 W Broker alone
°
S 1 ;Z
0 5000 10,000 15,000 20,000 25,000

Latency (ms)
Figure 16. Ranking latency.

5.3. Search Enabler

The Search Enabler component is responsible for providing functionally rich query
language and the search interface for seeking over metadata of discovered sensors and
streams. Using GraphQL technology, the IoTCrawler search component offers end-to-end
functionality for performing complex queries, allowing users to access data coming from
distributed large-scale IoT deployments. Any complex GraphQL query is decomposed
and resolved via a corresponding number of atomic NGSI-LD queries, as it is prescribed
by the NGSI-LD standard. The schema-based approach of GraphQL allows to describe key
entities (see loTStream Ontology [14]) and the relationships between them. A compiled
schema becomes a basis for query parser/validator engine and for a GUI, where users
can design their queries. To comply with the linked data approach, all types and their
properties in the schema are annotated with type URIs according to the IoTCrawler data
model. Annotations describe hierarchical relations (equal to the subclass0f) between
types, which are considered during query resolution process. This allows to be fully
compliant with ontologies used for data modelling. For example, to describe a set of
sensors hosted by a platform, a correct definition in terms of SOSA ontology would be:
“system hosted by a platform”, which means that sensors, actuators and others subtypes
belong to the more generic type used in this statement. Use of types and subtypes and
considering their relations during query resolution process is an exclusive feature of the
Search Enabler component developed for the IoTCrawler platform. Another exclusive
feature developed for IoTCrawler is the resolution of nested filters made on top of NGSI-LD.
Nested filters are equivalent to join clauses in traditional query languages (e.g., SPARQL),

Sensors 2021, 21, 1559

24 of 32

where multiple entity types can be returned or used as filters in a query. The recursive
query resolution processor carefully passes through all the types used as filters or output
fields and initiates the corresponding number of NGSI-LD requests. GraphQL queries
designed and tested via GraphiQL (GUI) might be integrated into IoT applications and
executed programmatically. Results are returned in machine-interpretable JSON format.
Alongside the GraphQL-based search, the IoTCrawler is equipped with a rule-/pattern-
based generator and mapping mechanism for generating filter conditions [7]. As a result,
a state-based context model empowers GraphQL queries with context-based reasoning.
The described Search Enabler’s search functionality is performed on top of the federated
metadata infrastructure, which employs security and privacy-aware mechanisms.

The Search Enabler component offers a GraphQL interface, where search queries
expressed in GraphQL are resolved via HTTP-requests over NGSI-LD interface. Since
NGSI-LD allows to query only one type of entities per request, complex GraphQL queries
(requesting more than one data type) require a corresponding number of NGSI-LD requests
to be performed. The number and order of subsequent requests are prescribed by Search
Enabler according to a structure of a GraphQL query. For example, a simple query of
stream identifiers (streams{ id }) would be resolved by a single NGSI-LD request for
entities with type iot-stream:IotStream (query #1). The extension of the query by the
names of sensors (query #2) requires an additional resolution step: one NGSI-LD request
for each sensor ID associated with the stream from the list of query #1. Further extension
of query #2, e.g., by the names of properties observed by sensors, requires an additional
resolution step: one NGSI-LD request for each property IDs associated with sensors. In
case different sensors observe the same property, the Search Enabler avoids duplicating
NGSI-LD requests.

For performance benchmarking, four different GraphQL queries have been selected.
The difference between queries is in their complexity (requesting from 1 to 4 different entity
types), which would require a different number of NGSI-LD requests to be performed. The
expected number of NGSI-LD requests N depends on (1) a number of requested types T
and if T > 1, then on (2) a number of unique entities R of subsequent types referenced in
the results set. More formally, it is described as follows:

N=(T—-1)*R+1 1)

The caching mechanism avoids duplicating requests, so a real number of them might
be significantly lower than was expected. During the experiments, we have measured
the average GrahpQL query execution times and summarised the execution time of the
corresponding NGSI-LD queries. Dependency on a number of results is demonstrated
via limiting them within the range 1-500 with step size 100. Each experiment was re-
peated 10 times and the average times were calculated. In Figure 17, an average query
execution time depending on number of results is demonstrated. Figure 18 represents a
GraphQL query execution time against the summarised execution time of the correspond-
ing NGSI-LD requests. From Figure 18d, it can be seen that GraphQL query execution goes
faster than execution of the corresponding NGSI-LD requests. This can be explained by a
particular query’s structure, where two types (observable properties and platforms) can be
resolved in parallel. In the case of no parallel type resolutions (Figure 18a—c), the overhead
of GraphQL engine is not higher than 0.2 s (1% of the overall query execution time). For
complex queries with parallel type resolution, the overhead is mitigated at all. Experiments
have been done using the NGSI-LD broker (Scorpio) running on Intel NUC i5-5250U with
8 GB of RAM. The Search Enabler and GraphQL client were running on a laptop Intel Core
17-5600U with 16GB of RAM, both were connected to a 1 GB/s local network.

The Search Enabler solves the machine-initiated search challenge (R-2) by providing
programmatic interfaces (APIs), to which remote IoT applications can send search requests
and get results back in an automated way.

Sensors 2021, 21, 1559

25 of 32

0.07
I 0.33

0.33
0.34

0.15

m 2,51

[y

2.76
2.96

Average Query Execution Time [s]

co =t
RN W 1 type (streams)
o r~ o
~ N ™ Al
~ G O SR= 1 %o P M 2 types (+sensors)
;o N ~g ™
o o W
by] o @ 3 types (+platforms)
[=] I (=] =] =]
- - 4 types (+observable properties)
200 300 400 500

Amount of results

Figure 17. GraphQL query execution times.
® Requests execution time (NGSI-LD) [s]
m Query execution time (GraphQL) [s]

o
o
Mo
S ©
~
o
. 33 3Ss
< =1
HH
o
~ ~ S
S o
== II
00

o o
@ O
< <F

300 500 1 100 200 300 400 500

Amouut of results Amount of results

I 0.38
I 0.43
1 032

1 033

N 249

. 251

I 7.02
I /.07
I ©.13
I 0.25
I 1151
I 11.58

(a) 1 Type (Streams) (b) 2 Types (+Sensors)

I 11.27
1 033
1 034
I 337
I 296
I S5 67
I 529

7.93
I 754
I 10.14
I 9.77
W]
I 11.64

I 11.15

1 033

1 033

. 274

. 276

I 4.94
I 499
I .77
I 6.81
I 5.73
I 8.32

1 100 200 300 400 500 1 100 200 300 400 500
Amount of results Amount of results

(d) 4 Types (+Platforms)
Figure 18. Requests execution time (Next Generation Service Interface for Linked Data (NGSI-LD))

(c) 3 Types (+Observable Properties)

vs. query execution time (GraphQL).

5.4. Orchestrator

The Orchestrator component is targeted to be the mediating component for IoT ap-
plications, which are expected to be running outside the IoTCrawler platform, interacting
with it via interfaces of the Orchestrator. The Orchestrator is an endpoint, which forwards
all metadata requests to a Ranking component and subscription requests are forwarded
directly to the MDR. At the same time, the Orchestrator provides its endpoint for receiv-
ing notifications coming from the MDR. Without it, applications would have to expose
their own REST endpoint, which is often not possible (e.g., for apps running on mobile
devices or in private networks). The Orchestrator mitigates that by providing its own end-
point (not exposed to the public) and redirecting all incoming notifications to a dedicated
queue in a publicly available publish-subscribe service (Advanced Messaging and Queuing
Protocol (AMQP)). It is enough for an IoT application to subscribe to a queue in the mes-
saging service to get notified immediately. The described publish-subscribe mechanism
also allows the setup to notify the IoT applications about stream failures detected by the
monitoring component.

The Orchestrator implements the NGSI-LD interface and redirects incoming NGSI-LD
requests to two components: MDR and Ranking. Entity subscription requests are analysed,
modified (if required) and forwarded to MDR. The metadata/discovery requests are

Sensors 2021, 21, 1559

26 of 32

forwarded directly to the Ranking component, which allows it to rank the results of
metadata requests according to a specified ranking criteria. As a result, the Orchestrator
hides two IoTCrawler components under a single NGSI-LD interface—one of the interfaces
used by IoTCrawler applications.

The evaluation of the Orchestrator component consists of measuring a dependency of
performance characteristics (throughput and latency) on the number of parallel connections—
IoT applications, running remotely. In this experiment, the Orchestrator component is
working on top of Djane Broker—a lightweight NGSI-LD broker, which is less functional
than Scorpio. The benchmarking process has been conducted using a single Intel Xeon
machine (4 cores, 16 GB Ram). Each value was obtained by averaging the values of
10 repetitive experiments. Results can be seen in Figure 19. The number of parallel clients
varied within the range 64-1024, where each client performed intensive and non-intensive
workloads. For the non-intensive workload (1 request by each of 64-1024 parallel clients),
the maximal average throughput is around 400 requests per second when the latency is less
than 0.2 s. For intensive workloads (100 consecutive requests by each of 64-1024 clients),
the maximal average throughput increases up to 1200 requests per second with the average
latency increased to 1 s.

. - ¢ : 28 ®25 2 2
Number of clients: #64 =128 256 512 m1024 1000 Number of clients: ®64 =128 6 =512 1024

;] S 400
— 20 300
200

200 . 100 -)

. o =

1 request per client 100 requests per client 1 request per client 100 requests per client

Avg. latency [ms]
g

(a) Throughput (requests per second) (b) Average Latency (ms)

Figure 19. Orchestrator performance.

6. Application Domain Instantiation

This section presents two application examples of how IoTCrawler is being instanti-
ated in real-world scenarios. Other scenarios for different domains are under development
and will be part of a future publication.

6.1. Smart Home—Semantic Integration Focus

The target of the smart home use case was to understand the challenges which smart-
home owners are facing when deploying and using their smart home devices. We have
implemented an energy insight dashboard and tested it in a longitudinal study with
end users in an early stage of the project. The energy insight dashboard was built with
the objective to provide smart home users insights about their energy consumption and
thereby to reduce their energy costs and carbon footprint. This was achieved by collecting
energy measurements from smart plugs and other smart energy meters. The web-based
application includes various aggregated and real-time views of the energy data as well as
information about the usage frequencies of appliances attached to the smart plugs.

Evaluation: As part of IoTCrawler, we extended the dashboard to a public test bed
running 24 h a week for almost a year. More than 60 homes and 3400 devices were
connected during that period. Power users have more than two hundred devices connected
to a smart home. Thus, we realised that managing these devices, which include knowing
their locations, and for smart plugs, what kind of appliances are connected to which, created
a considerable challenge for smart home owners. More importantly, the heterogeneity
of devices with respect to their communication technologies, APIs and the gateways to
which they are connected, makes it hard to develop smart home applications that run
seamlessly with different vendors. As a response to tackling this challenge, we integrated
an early version of an IoTCrawler feature for semantic annotation in which we used
machine learning to detect device types, their locations and connected appliances in real-
time [8]. We conducted a survey to validate the benefits of loTCrawler features. Most of

Sensors 2021, 21, 1559

27 of 32

the respondents indicated that comparing and analysing energy usage is a benefit of the
Energy Insights Dashboard (77%). On the second rank, respondents indicated that the
automatic device detection feature is a benefit of the Energy Insights Dashboard (41%).
Further conversations with smart home owners and application developers have
shown that IoTCrawler has the potential to be an effective IoT platform. For example,
smart home users will be able to keep their data on their own hardware (located in private
networks) and federate it into the IoTCrawler for processing by third-party analytical
services. A Blockchain-based security mechanism (part of IoTCrawler) enables data owners
to grant access to certain analytical services the similar way as a smart phone user grants
access to certain mobile apps. Analytical service developers are considered responsible
for managing their processing infrastructure and federating the processing results back
to IoTCrawler. The core of IoTCrawler consists of the NGSI-LD standard together with a
number of semantic ontologies, which makes data and metadata models more structured
and understandable by independent service developers, which opens a potential for service
compositions. As a result, raw data owners (smart-home users) will be authorised to access
the intermediate (if needed) and final processing results calculated out of their data.
Encouraged by these findings, we further developed crawling and semantic annota-
tion mechanisms to reduce time and effort when integrating smart home and other IoT and
stream data into IoTCrawler. As IoTCrawler provides a common, semantic abstraction for
finding and accessing the respective data streams, it becomes much easier to develop smart
home applications. Consequently, we developed the “What’s happening at home” proto-
type that is fully implemented on top of the IoTCrawler infrastructure and interacts with the
Orchestrator, Search Enabler, Ranking and Security components. The application detects
users’ activities based on the energy consumption of appliances attached to smart plugs.
Activities are modelled in terms of Home Activity ontology (http://sensormeasurement.
appspot.com/ont/home/homeActivity accessed on 24 February 2021), which is partly de-
scribed in one of the GraphQL schemas (https://github.com /loTCrawler/Search-Enabler/
blob/master/src/resources/schemas/homeActivity.graphqls accessed on 24 February
2021) used by the Search Enabler. The schema allows applications to filter households
by type or location of detected activities (considering privacy policies). The developed
application prototype demonstrates the separation between functionality and benefits from
the granularity of the loTCrawler data model by dealing with sensors and their streams.

6.2. Smart Parking—Security and Privacy Focus

Finding a free parking spot can be very cumbersome in populated cities with the
collateral effects of having more vehicles circulating in the city, such as the increase in noise
and pollution. In IoTCrawler, we provide a solution to alleviate this problem by offering a
parking recommendation service, which allows the user to define the destination, time of
arrival and the affordable walking distance. This solution takes advantage of loTCrawler
by gaining a way of representing the information homogeneously, allowing the new
information to be introduced without any modification to our solution. More specifically,
this solution uses Indexing and Ranking components to retrieve an ordered list of parking
sites and parking meter information. Additionally, we allowed the data providers to
specify different access policies, as an exercise for proving the security capabilities of our
IoTCrawler platform, which the latter will affect the consumers in terms of the visibility of
the information depending on the consumer’s attributes.

Evaluation: The SmartParking Most Valuable Product (MVP) is being tested in the
City of Murcia, in the south-east of Spain. Previous to this solution, the City of Murcia had
devoted efforts in research and development based on lIoTCrawler, in order to incorporate
and integrate promising solutions that would undertake the different challenges with
respect to working with data from competing parking providers and regulated parking
zones. The previous system was inspired by the participation in the CPAAS.IO project
by the University of Murcia, where a solution for parking was devised, using technology
derived from the FIWARE ecosystem: FogFlow. The parking solution based on FogFlow,

http://sensormeasurement.appspot.com/ont/home/homeActivity
http://sensormeasurement.appspot.com/ont/home/homeActivity
https://github.com/IoTCrawler/Search-Enabler/blob/master/src/resources/schemas/homeActivity.graphqls
https://github.com/IoTCrawler/Search-Enabler/blob/master/src/resources/schemas/homeActivity.graphqls

Sensors 2021, 21, 1559

28 of 32

utilised small “edge” devices that were to be installed in different parking locations,
charged with the task of gathering data and performing local computations (such as
aggregation or availability evaluation). This way, the system leveraged edge computing
to enable quick and efficient data transfer, while relying on cloud resources for the heavy-
lifting and edge workload-management centralisation. This solution already involved
the use of NGSI interfaces for data access, which later on eased the transition to the next
iteration, based on IoTCrawler. Some of the difficulties faced by the FogFlow approach
were caused by some locations that already had online systems in place. They had special
interfaces and connectors, which had to be developed in order to adapt the information and
make it available to the rest of the system. In some cases, security and privacy were an issue,
as providers wanted to be in control of what and was shared when with the system, and
furthermore, how that information was to be accessed later by different parking solutions.

Those gaps have been successfully addressed by the loTCrawler architecture, which
provides a better and broader fit to the parking scenario, by introducing security through
fine-detail policies that allow us to define how and whom is allowed to access or produce
data. It also considers different ways of which data are to be incorporated into the system,
be it directly from NGSI-LD enabled devices connecting to the parking system, through
adaptation of other devices or even integrating entire existing systems through connectors
and gateways. SmartParking leverages this security, providing a way to discriminate which
end-users can access certain information. This way, a user could have permission to access
specific parking alternatives. Although in our current implementation this functionality
is only utilised by two fictitious users “Juan”, who has access to private parking, and
“Pedro”, who has access to both parking and regulated parking zones. This functionality
will allow us to introduce special user roles, such as medical professionals, who would
have additional access to parking information for special private parking lots close to their
hospital, or city officials that would have access to parking in official buildings, students
having access to parking information in the city campus, etc. Furthermore, the security
components of the platform would easily allow to define other flows of information coming
from the end-users themselves, beyond the classical star ratings. This could mean the
ability of claiming parking spaces, updating parking availability in zones with no (or poor)
sensory information and it even opens up for future social/collaborative parking solutions,
in which end-users can temporarily offer others their domestic parking lot while at work.

SmartParking, through IoTCrawler, copes with the diversity of data existing in the
system, by using semantic technologies, such as those found in the semantic web. The
extended usage in loTCrawler of the NGSI-LD standard both for APIs and data modelling,
allows the precise representation of information coming from different parking providers
and allows for successful searches over highly diverse data. In a similar way to the previous
FogFlow solution, which had a local scalability strategy based on the usage of edge devices
as part of a distributed system, the loTCrawler solution allows for the distribution of
information through distributed MDRs, but it also provides a federation strategy that
allows for broader and more diverse architectures, in which existing parking platforms can
be integrated into loTCrawler’s framework, enabling the federation with other parking
systems. This federation capability, paired with the Indexing and Ranking components
of IoTCrawler, as well as security components, allows for scaling beyond the local city to
upper tiers, such as regional or national levels.

Finally, IoTCrawler integrates monitoring, fault-detection and fault-recovery mech-
anisms, providing useful data regarding the availability and reliability of the parking
information contained in the system that can be directly used as part of the parking recom-
mendation system with no further development needed. In short, the loTCrawler approach
for the SmartParking solution in Murcia, by far outperforms (feature-wise) the previous
solution based in FogFlow, by accounting for the security aspect of data access, the diversity
of data and the integration of existing solutions while allowing for greater scalability and
flexibility to adapt and adopt new strategies and ideas, making it, in a way, future-proof.

Sensors 2021, 21, 1559

29 of 32

References

7. Conclusions and Future Work

This paper presents the IoT search framework loTCrawler, which allows for the search
of data sources in the IoT. It features a domain-independent and layered design and
provides solutions for crawling, indexing and searching of IoT data sources. Key enablers
supporting the search process ensure privacy and security, scalability and reliability.

We started out the paper by presenting, several issues regarding an IoT search frame-
work listed and analysed to build the basis for our requirements. These requirements have
been successfully addressed by the loTCrawler framework and its components. The loosely
coupled components allow for different instantiations of the framework without blocking
the search process. The scalability of the discovery and search enablers has also been
evaluated to fulfil requirement R-1. With the adaptation of well-known ontologies and
standards, an information model has been created to ensure a reliable basis for semantic
annotation and context provision. This and the integration of standardised query interfaces
enables the framework to be used for machine-initiated search queries R-2.

Requirement R-3 is addressed by designing the framework in a layered approach,
which allows the discovery layer to work independently from the search layer. This enables
crawling and discovery of new data sources, constantly semantically enriching and moni-
toring the data sources as well as building indices to speed up incoming search requests.
In addition, it makes it possible to include existing solutions, it offers interoperability and
overcomes data fragmentation and heterogeneity. As data sources in the IoT are often of
private or restricted nature, security and privacy have to be considered R-4. Through the
integration of an extensive security and privacy component, from design time on into the
architecture of the framework, this requirement is successfully addressed.

To showcase the capabilities and applicability of loTCrawler, two real-world instanta-
tions in different domains have been realised, featuring the search process in a smart home
environment and the search in a Smart City use case. In future work, it is planned to enrol
the IoTCrawler framework to further use cases covering other domains. This will bring
“real” results and present how the framework could increase the benefits gained by the IoT.

Author Contributions: Conceptualization, T.I. and M.E; methodology, T.I,, TE.,] X.P, H.T,,] AM.,
P.G.-G. and PS. (Pavel Smirnov); software, T.I., E.B.I.,, M.E, P.G.-G., A.G.-V,, T.E,, PS. (Pavel Smirnov),
JJAM.,, S.B., AFE, N.P. and R.R;; validation, M.].B., PS. (Parwinder Singh), A.F.,, RR. and N.P;
formal analysis, T.I, E.B.I, A.G.-V, TE, RR. and N.P; investigation, E.B.I, RR.,, A.F, HT, A.G.-V,,
J.LAM. and PS. (Pavel Smirnov); resources and data curation, M.K. and S.H.C.; writing—original
draft preparation, T.IL, E.B.I, M.E, TE.,].X.P, P.S. (Patrik Schneider), H.T., A.G.-V,, P.S. (Parwinder
Singh), M.].B.,].A.M., PG.-G. and P.S. (Pavel Smirnov); writing—review and editing, R.T. and M.S;
visualization, T.I, E.B.I, PG.-G. A.G.-V,, .LAM., H.T. PS. (Pavel Smirnov),].X.P,, T.E.; supervision,
M.S. and M.P; project administration, A.F.S.; funding acquisition, A.ES. and R.T. All authors have
read and agreed to the published version of the manuscript.

Funding: This work has been funded by the EU Horizon 2020 Research and Innovation program
through the IoTCrawler project under grant agreement number 779852.

Institutional Review Board Statement: Not applicable.
Informed Consent Statement: Not applicable.

Data Availability Statement: No new data were created in this study. Data sharing is not applicable
to this article. Where available, source of data has been referenced in text.

Conflicts of Interest: The authors declare no conflict of interest.

1. Ostermaier, B.; Romer, K.; Mattern, F.; Fahrmair, M.; Kellerer, W. A real-time search engine for the web of things. In Proceedings
of the 2010 Internet of Things (IOT), Tokyo, Japan, 29 November—1 December 2010; pp. 1-8.

2. Mayer, S.; Guinard, D. An extensible discovery service for smart things. In Proceedings of the Second International Workshop on
Web of Things, San Francisco, CA, USA, 16 June 2011; pp. 1-6.

Sensors 2021, 21, 1559 30 of 32

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.
27.

28.

Le-Phuoc, D.; Quoc, HN.M.; Parreira,].X.; Hauswirth, M. The linked sensor middleware—connecting the real world and the
semantic web. Proc. Semant. Web Chall. 2011, 152, 22-23.

Le-Phuoc, D.; Dao-Tran, M.; Parreira, J.X.; Hauswirth, M. A native and adaptive approach for unified processing of linked
streams and linked data. In International Semantic Web Conference; Springer: Berlin/Heidelberg, Germany, 2011; pp. 370-388.
Kamilaris, A.; Yumusak, S.; Ali, M.I. WOTS2E: A search engine for a Semantic Web of Things. In Proceedings of the 2016 IEEE
3rd World Forum on Internet of Things (WF-IoT), Reston, VA, USA, 12-14 December 2016; pp. 436—441.

Tran, N.K,; Sheng, Q.Z.; Babar, M.A_; Yao, L.; Zhang, W.E.; Dustdar, S. Internet of Things search engine. Commun. ACM 2019,
62, 66-73. [CrossRef]

Smirnov, P,; Strohbach, M.; Schneider, P.; Gonzalez Gil, P.; Skarmeta, A.F; Elsaleh, T.; Gonzalez, A.; Rezvani, R.; Truong, H. D5.2
Enablers for Machine Initiated Semantic IoT Search. IoTCrawler 2020. Available online: https:/ /iotcrawler.eu/index.php/project/
d5-2-enablers-for-machine-initiated-semantic-iot-search/ (accessed on 24 February 2021).

Strohbach, M.; Saavedra, L.A.; Smirnov, P.; Legostaieva, S. Smart Home Crawler: Towards a framework for semi-automatic IoT
sensor integration. In Proceedings of the 2019 Global IoT Summit (GIoTS), Aarhus, Denmark, 17-21 June 2019; pp. 1-6.
Bonino, D.; Corno, F. Dogont-ontology modeling for intelligent domotic environments. In International Semantic Web Conference;
Springer: Berlin/Heidelberg, Germany, 2008; pp. 790-803.

Compton, M.; Barnaghi, P.; Bermudez, L.; Garcia-Castro, R.; Corcho, O.; Cox, S.; Graybeal, J.; Hauswirth, M.; Henson, C,;
Herzog, A.; et al. The SSN ontology of the W3C semantic sensor network incubator group. J. Web Semant. 2012, 17, 25-32.
[CrossRef]

Janowicz, K.; Haller, A.; Cox, S.J.; Le Phuoc, D.; Lefrangois, M. SOSA: A lightweight ontology for sensors, observations, samples,
and actuators. J. Web Semant. 2019, 56, 1-10. [CrossRef]

Bermudez-Edo, M.; Elsaleh, T.; Barnaghi, P.; Taylor, K. IoT-Lite: A lightweight semantic model for the internet of things and its
use with dynamic semantics. Pers. Ubiquitous Comput. 2016, 21, 475-487. [CrossRef]

Kolozali, S.; Bermudez-Edo, M.; Puschmann, D.; Ganz, F.; Barnaghi, P. A knowledge-based approach for real-time iot data stream
annotation and processing. In Proceedings of the 2014 IEEE International Conference on Internet of Things (iThings), and IEEE
Green Computing and Communications (GreenCom) and IEEE Cyber, Physical and Social Computing (CPSCom), Taipei, Taiwan,
1-3 September 2014; pp. 215-222.

Elsaleh, T.; Enshaeifar, S.; Rezvani, R.; Acton, S.T.; Janeiko, V.; Bermudez-Edo, M. IoT-Stream: A Lightweight Ontology for
Internet of Things Data Streams and Its Use with Data Analytics and Event Detection Services. Sensors 2020, 20, 953. [CrossRef]
[PubMed]

Abombhara, M.; Keien, G.M. Security and privacy in the Internet of Things: Current status and open issues. In Proceedings of the
2014 International Conference on Privacy and Security in Mobile Systems (PRISMS), Aalborg, Denmark, 11-14 May 2014; pp. 1-8.
Riahi, A.; Challal, Y.; Natalizio, E.; Chtourou, Z.; Bouabdallah, A. A systemic approach for IoT security. In Proceedings of
the 2013 IEEE International Conference on Distributed Computing in Sensor Systems, Cambridge, MA, USA, 20-23 May 2013;
pp. 351-355.

Mahalle, P; Babar, S.; Prasad, N.R.; Prasad, R. Identity management framework towards internet of things (IoT): Roadmap and
key challenges. In International Conference on Network Security and Applications; Springer: Berlin/Heidelberg, Germany, 2010;
pp. 430-439.

Bernal Bernabe, J.; Hernandez-Ramos, J.L.; Skarmeta Gomez, A.F. Holistic privacy-preserving identity management system for
the internet of things. Mob. Inf. Syst. 2017, 2017. [CrossRef]

Mazzoleni, P,; Crispo, B.; Sivasubramanian, S.; Bertino, E. XACML policy integration algorithms. ACM Trans. Inf. Syst. Secur.
(TISSEC) 2008, 11, 1-29. [CrossRef]

Hernéndez-Ramos,].L.; Jara, A.J.; Marin, L.; Skarmeta, A.F. Distributed capability-based access control for the internet of things.
J. Internet Serv. Inf. Secur. (JISIS) 2013, 3, 1-16.

Pérez, S.; Rotondi, D.; Pedone, D.; Straniero, L.; Nufiez, M.].; Gigante, F. Towards the CP-ABE application for privacy-preserving
secure data sharing in IoT contexts. In International Conference on Innovative Mobile and Internet Services in Ubiquitous Computing;
Springer: Berlin/Heidelberg, Germany, 2017; pp. 917-926.

Hwang, Y.H. Iot security & privacy: Threats and challenges. In Proceedings of the 1st ACM Workshop on IoT Privacy, Trust, and
Security; Association for Computing Machinery: New York, NY, USA, 2015; doi: 10.1145/2732209.2732216. [CrossRef]

Garcia, N.; Alcaniz, T.; Gonzélez-Vidal, A.; Bernabe,].B.; Rivera, D.; Skarmeta, A. Distributed real-time SlowDoS attacks detection
over encrypted traffic using Artificial Intelligence. J. Netw. Comput. Appl. 2021, 173, 102871. [CrossRef]

Hernandez-Ramos,].L.; Martinez,].A.; Savarino, V.; Angelini, M.; Napolitano, V.; Skarmeta, A.; Baldini, G. Security and Privacy
in Internet of Things-Enabled Smart Cities: Challenges and Future Directions. IEEE Secur. Priv. 2020. [CrossRef]
Hernandez-Ramos,].L.; Geneiatakis, D.; Kounelis, I.; Steri, G.; Fovino, LN. Toward a Data-Driven Society: A Technological
Perspective on the Development of Cybersecurity and Data-Protection Policies. IEEE Secur. Priv. 2019, 18, 28-38. [CrossRef]
Juran, J.; Godfrey, A.B. Quality Handbook, 5th ed.; McGraw-Hill: Irwin, NY, USA, 1999; Volume 173.

Wang, R.Y,; Strong, D.M.; Guarascio, L.M. Beyond accuracy: What data quality means to data consumers. J. Manag. Inf. Syst.
1996, 12, 5-33. [CrossRef]

Mendes, PN.; Miihleisen, H.; Bizer, C. Sieve: Linked data quality assessment and fusion. In Proceedings of the 2012 Joint
EDBT/ICDT Workshops; Association for Computing Machinery: New York, NY, USA, 2012; pp. 116-123.

http://doi.org/10.1145/3284763
https://iotcrawler.eu/index.php/project/d5-2-enablers-for-machine-initiated-semantic-iot-search/
https://iotcrawler.eu/index.php/project/d5-2-enablers-for-machine-initiated-semantic-iot-search/
http://dx.doi.org/10.1016/j.websem.2012.05.003
http://dx.doi.org/10.1016/j.websem.2018.06.003
http://dx.doi.org/10.1007/s00779-017-1010-8
http://dx.doi.org/10.3390/s20040953
http://www.ncbi.nlm.nih.gov/pubmed/32053898
http://dx.doi.org/10.1155/2017/6384186
http://dx.doi.org/10.1145/1330295.1330299
http://dx.doi.org/10.1145/2732209.2732216
http://dx.doi.org/10.1016/j.jnca.2020.102871
http://dx.doi.org/10.1109/MSEC.2020.3012353
http://dx.doi.org/10.1109/MSEC.2019.2939728
http://dx.doi.org/10.1080/07421222.1996.11518099

Sensors 2021, 21, 1559 31 of 32

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44.

45.

46.

47.

48.

49.

50.

51.

52.

Sicari, S.; Rizzardi, A.; Grieco, L.; Piro, G.; Coen-Porisini, A. A policy enforcement framework for Internet of Things applications
in the smart health. Smart Health 2017, 3, 39-74. [CrossRef]

Klein, A.; Do, H.H.; Hackenbroich, G.; Karnstedt, M.; Lehner, W. Representing data quality for streaming and static data. In
Proceedings of the 2007 IEEE 23rd International Conference on Data Engineering Workshop, Istanbul, Turkey, 17-20 April 2007;
pp- 3-10.

Kothari, A.; Boddula, V.; Ramaswamy, L.; Abolhassani, N. DQS-Cloud: A Data Quality-Aware autonomic cloud for sensor
services. In Proceedings of the 10th IEEE International Conference on Collaborative Computing: Networking, Applications and
Worksharing, Miami, FL, USA, 22-25 October 2014; pp. 295-303.

Puiu, D.; Barnaghi, P; Toenjes, R.; Kiimper, D.; Ali, M.I.; Mileo, A.; Parreira,].X.; Fischer, M.; Kolozali, S.; Farajidavar, N.; et al.
Citypulse: Large scale data analytics framework for smart cities. IEEE Access 2016, 4, 1086-1108. [CrossRef]

Iggena, T.; Fischer, M.; Kuemper, D. Quality Ontology. Available online: http://purl.oclc.org/NET/UASO/qoi (accessed on 8
January 2021).

Norris, M.; Celik, B.; Venkatesh, P.; Zhao, S.; McDaniel, P; Sivasubramaniam, A.; Tan, G. IoTRepair: Systematically Addressing
Device Faults in Commodity IoT. In Proceedings of the 2020 IEEE/ ACM Fifth International Conference on Internet-of-Things
Design and Implementation (IoTDI), Sydney, NSW, Australia, 21-24 April 2020; pp. 142-148.

Power, A.; Kotonya, G. A Microservices Architecture for Reactive and Proactive Fault Tolerance in IoT Systems. In Proceedings of
the 2018 IEEE 19th International Symposium on “A World of Wireless, Mobile and Multimedia Networks” (WoWMoM), Chania,
Greece, 12-15 June 2018; pp. 588-599.

Izonin, I.; Kryvinska, N.; Tkachenko, R.; Zub, K. An approach towards missing data recovery within IoT smart system. Procedia
Comput. Sci. 2019, 155, 11-18. [CrossRef]

Liu, Y,; Dillon, T.; Yu, W.; Rahayu, W.; Mostafa, F. Missing Value Imputation for Industrial IoT Sensor Data With Large Gaps.
IEEE Internet Things]. 2020, 7, 6855-6867. [CrossRef]

Al-Milli, N.; Almobaideen, W. Hybrid Neural Network to Impute Missing Data for IoT Applications. In Proceedings of the 2019
IEEE Jordan International Joint Conference on Electrical Engineering and Information Technology (JEEIT), Amman, Jordan, 9-11
April 2019; pp. 121-125.

Fathy, Y.; Barnaghi, P.; Tafazolli, R. Large-scale indexing, discovery, and ranking for the Internet of Things (IoT). ACM Comput.
Surv. (CSUR) 2018, 51, 1-53. [CrossRef]

Zhou, Y.; De, S.; Wang, W.; Moessner, K. Enabling query of frequently updated data from mobile sensing sources. In Proceedings
of the 2014 IEEE 17th International Conference on Computational Science and Engineering, Chengdu, China, 19-21 December
2014; pp. 946-952.

Barnaghi, P.; Wang, W.; Dong, L.; Wang, C. A Linked-Data Model for Semantic Sensor Streams. In Proceedings of the IEEE
International Conference on Green Computing and Communications and IEEE Internet of Things and IEEE Cyber, Physical and
Social Computing, Beijing, China, 20-23 August 2013; pp. 468-475. [CrossRef]

Fathy, Y.; Barnaghi, P.; Enshaeifar, S.; Tafazolli, R. A distributed in-network indexing mechanism for the Internet of Things. In
Proceedings of the IEEE 3rd World Forum on Internet of Things (WF-IoT), Reston, VA, USA, 12-14 December 2016; pp. 585-590.
[CrossRef]

Camerra, A.; Palpanas, T.; Shieh, J.; Keogh, E. iSAX 2.0: Indexing and mining one billion time series. In Proceedings of the 2010
IEEE International Conference on Data Mining, Sydney, NSW, Australia, 13—-17 December 2010; pp. 58-67.

Zoumpatianos, K.; Idreos, S.; Palpanas, T. Indexing for Interactive Exploration of Big Data Series. In Proceedings of the 2014 ACM
SIGMOD International Conference on Management of Data; Association for Computing Machinery: New York, NY, USA, 2014; pp.
1555-1566. [CrossRef]

Ganz, F,; Barnaghi, P.; Carrez, F. Information Abstraction for Heterogeneous Real World Internet Data. IEEE Sens.]. 2013,
13, 3793-3805. [CrossRef]

Gonzalez-Vidal, A.; Barnaghi, P.; Skarmeta, A.F. Beats: Blocks of eigenvalues algorithm for time series segmentation. IEEE Trans.
Knowl. Data Eng. 2018, 30, 2051-2064. [CrossRef]

Brin, S.; Page, L. Reprint of: The Anatomy of a Large-Scale Hypertextual Web Search Engine. Comput. Netw. 2012, 56, 3825-3833.
[CrossRef]

Guinard, D.; Trifa, V.; Karnouskos, S.; Spiess, P.; Savio, D. Interacting with the SOA-Based Internet of Things: Discovery, Query,
Selection, and On-Demand Provisioning of Web Services. IEEE Trans. Serv. Comput. 2010, 3, 223-235. [CrossRef]

Yuen, KK.F; Wang, W. Towards a ranking approach for sensor services using primitive cognitive network process. In Proceedings
of the 4th Annual IEEE International Conference on Cyber Technology in Automation, Control and Intelligent, Hong Kong,
China, 4-7 June 2014; pp. 344-348. [CrossRef]

Niu, W,; Lei, J.; Tong, E.; Li, G.; Chang, L.; Shi, Z.; Ci, S. Context-Aware Service Ranking in Wireless Sensor Networks. J. Netw.
Syst. Manag. 2014, 22, 50-74. [CrossRef]

Xu, Z.; Martin, P; Powley, W.; Zulkernine, F. Reputation-Enhanced QoS-based Web Services Discovery. In Proceedings of the
IEEE International Conference on Web Services (ICWS 2007), Salt Lake City, UT, USA, 9-13 July 2007; pp. 249-256. [CrossRef]
Noy, N.E; McGuiness, D.L. Ontology Development 101: A Guide to Creating Your First Ontology; Stanford Knowledge Systems
Laboratory Technical Report KSL-01-05 and Stanford Medical Informatics Technical Report SMI-2001-0880; Standford University:
Standford, CA, USA, 2001.

http://dx.doi.org/10.1016/j.smhl.2017.06.001
http://dx.doi.org/10.1109/ACCESS.2016.2541999
http://purl.oclc.org/NET/UASO/qoi
http://dx.doi.org/10.1016/j.procs.2019.08.006
http://dx.doi.org/10.1109/JIOT.2020.2970467
http://dx.doi.org/10.1145/3154525
http://dx.doi.org/10.1109/GreenCom-iThings-CPSCom.2013.95
http://dx.doi.org/10.1109/WF-IoT.2016.7845472
http://dx.doi.org/10.1145/2588555.2610498
http://dx.doi.org/10.1109/JSEN.2013.2271562
http://dx.doi.org/10.1109/TKDE.2018.2817229
http://dx.doi.org/10.1016/j.comnet.2012.10.007
http://dx.doi.org/10.1109/TSC.2010.3
http://dx.doi.org/10.1109/CYBER.2014.6917487
http://dx.doi.org/10.1007/s10922-012-9259-8
http://dx.doi.org/10.1109/ICWS.2007.152

Sensors 2021, 21, 1559 32 of 32

53.

54.

55.
56.

57.

58.

59.

60.

61.

62.

63.

64.

65.

Iggena, T.; Kuemper, D. Quality Ontology for IoT Data Sources. Available online: https://w3id.org/iot/qoi (accessed on 8
January 2021).

Bees, D.; Frost, L.; Bauer, M.; Fisher, M.; Li, W. NGSI-LD API: For Context Information Management; ETSI White Paper No. 31; ETSI:
Valbonne, France, 2019.

Taylor, S.; Letham, B. Prophet: Forecasting at Scale; Facebook Research: Menlo Park, CA, USA, 2018.

Gonzélez-Vidal, A.; Rathore, P; Rao, A.S.; Mendoza-Bernal, J.; Palaniswami, M.; Skarmeta-Gémez, A.F. Missing Data Imputation
with Bayesian Maximum Entropy for Internet of Things Applications. IEEE Internet Things . 2020. [CrossRef]

Christakos, G.; Li, X. Bayesian maximum entropy analysis and mapping: A farewell to kriging estimators? Math. Geol. 1998,
30, 435-462. [CrossRef]

Ilyas, E.B.; Fischer, M.; Iggena, T.; Tonjes, R. Virtual Sensor Creation to Replace Faulty Sensors Using Automated Machine
Learning Techniques. In Proceedings of the 2020 Global Internet of Things Summit (GIoTS), Dublin, Ireland, 3 June 2020; pp. 1-6.
Kuemper, D.; Iggena, T.; Toenjes, R.; Pulvermueller, E. Valid.IoT: A framework for sensor data quality analysis and interpolation.
In Proceedings of the 9th ACM Multimedia Systems Conference, Amsterdam, The Netherlands, 12-15 June 2018; Association for
Computing Machinery: New York, NY, USA, 2018; pp. 294-303.

Iggena, T,; Bin Ilyas, E.; Tonjes, R. Quality of Information for IoT-Frameworks. In Proceedings of the 2020 IEEE International
Smart Cities Conference (ISC2), Piscataway, NJ, USA, 28 September—1 October 2020; pp. 1-8.

Gonzélez-Vidal, A.; Alcaniz, T.; Iggena, T.; Ilyas, E.B.; Skarmeta, A.F. Domain Agnostic Quality of Information Metrics in
IoT-Based Smart Environments. In Intelligent Environments 2020: Workshop Proceedings of the 16th International Conference on
Intelligent Environments, Madrid, Spain; 10S Press: Amsterdam, The Netherlands, 2020; Volume 28, p. 343.

Rezvani, R.; Enshaeifar, S.; Barnaghi, P. Lagrangian-based Pattern Extraction for Edge Computing in the Internet of Things. In
Proceedings of the 5th IEEE International Conference on Edge Computing and Scalable Cloud, Paris, France, 21-23 June 2019.
Rezvani, R.; Barnaghi, P; Enshaeifar, S. A New Pattern Representation Method for Time-series Data. IEEE Trans. Knowl. Data Eng.
2019. [CrossRef]

Chen, Y.; Keogh, E.; Hu, B.; Begum, N.; Bagnall, A.; Mueen, A.; Batista, G. The UCR Time Series Classification Archive. 2015.
Available online: www.cs.ucr.edu/~eamonn/time_series_data/ (accessed on 2 January 2021).

Janeiko, V.; Rezvani, R.; Pourshahrokhi, N.; Enshaeifar, S.; Krogbaek, M.; Christophersen, S.; Elsaleh, T.; Barnaghi, P. Enabling
Context-Aware Search using Extracted Insights from IoT Data Streams. In 2020 Global Internet of Things Summit (GIoTS), Dublin,
Ireland; IEEE: New York, NY, USA, 2020; pp. 1-6.

https://w3id.org/iot/qoi
http://dx.doi.org/10.1109/JIOT.2020.2987979
http://dx.doi.org/10.1023/A:1021748324917
http://dx.doi.org/10.1109/TKDE.2019.2961097
www.cs.ucr.edu/~eamonn/time_series_data/

	Introduction
	Related Work
	Search over Discovered Metadata
	Semantics, Ontologies and Information Models for Interoperability
	Security and Privacy in IoT
	Reliability in IoT
	Indexing of Discovered Resources
	Ranking of Search Results

	Search Framework for IoT
	Enablers for Discovery and Processing Layer
	Information Model
	Federation of Metadata Repositories
	Monitoring
	Fault Detection and Fault Recovery
	Virtual Sensor

	Semantic Enrichment
	QoI Analyser
	Pattern Extractor

	Indexing

	Enablers for Search and Orchestration Layer
	Privacy and Security
	Identity Management and Authentication Evaluation
	Authorisation Evaluation

	Ranking
	Search Enabler
	Orchestrator

	Application Domain Instantiation
	Smart Home—Semantic Integration Focus
	Smart Parking—Security and Privacy Focus

	Conclusions and Future Work
	References

