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Abstract: The prediction of health disorders is the goal of many sensor systems in dairy farming.
Although mastitis and lameness are the most common health disorders in dairy cows, these diseases
or treatments are a rare event related to a single day and cow. A number of studies already developed
and evaluated models for classifying cows in need of treatment for mastitis and lameness with
machine learning methods, but few have illustrated the effects of the positive predictive value
(PPV) on practical application. The objective of this study was to investigate the importance of
low-frequency treatments of mastitis or lameness for the applicability of these classification models
in practice. Data from three German dairy farms contained animal individual sensor data (milkings,
activity, feed intake) and were classified using machine learning models developed in a previous
study. Subsequently, different risk criteria (previous treatments, information from milk recording,
early lactation) were designed to isolate high-risk groups. Restricting selection to cows with previous
mastitis or hoof treatment achieved the highest increase in PPV from 0.07 to 0.20 and 0.15, respectively.
However, the known low daily risk of a treatment per cow remains the critical factor that prevents
the reduction of daily false-positive alarms to a satisfactory level. Sensor systems should be seen as
additional decision-support aid to the farmers’ expert knowledge.

Keywords: mastitis; lameness; machine learning; animal welfare

1. Introduction

For dairy farms, various sensor systems offer predictions of health data or diseases.
These systems offer support for the farmers in their task to identify the animals in need,
in the form of veterinary control or treatment. For legal, moral, and ethical reasons, these
checks must be carried out daily. In relation to all diseases in dairy cows, most treatments
are done for mastitis or lameness [1]. Already a number of studies have examined the
classification of cows for mastitis or hoof treatments using single sensors, or combinations
of sensors. In many of these studies, the focus is on the first stage of biological validation:
the identification of the subjects known to be affected by a given health issue or not,
i.e., the Receiver Operator Characteristic (ROC) curve and the indicators sensitivity and
specificity [2,3]. Within the framework of these studies, models are often developed
using data sets consisting of defined test populations that show a higher proportion of
animals with the condition to be predicted (e.g., cows requiring treatment and limited time
windows) [4,5].

Fewer studies complete the second stage of validating the developed algorithms on
data sets that correspond to a practical situation. In the second stage, the indicators for
assessing the predictive quality (called “diagnostic value” in medical test procedures) are
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determined and used for evaluation. For most procedures, this involves the use of the
positive predictive value (PPV), which describes the proportion of false-positives in all
positive tests, with the negative predictive value (NPV) used less frequently. The direct
relationship between the PPV and the frequency of occurrence of the event to be predicted
or classified is seldom highlighted in the studies; the lower the risk of an event being
predicted, the lower the PPV or the higher the false-positive rate. In the studies that
investigate the possibility of predicting the need for treatment, it is clear that the probability
of occurrence of treatments per day per animal is low. Miekley et al. [6] explicitly reported
the value related to the practical data was approximately a 0.5% risk for mastitis treatment
per animal per day and approximately 7% for lameness treatments, and the authors of
Steeneveld et al. [7] found a frequency of 0.04% for mastitis treatments in data from
automatic milking systems. The low risk per animal and day for this predictable treatment
event leads directly to a low PPV of an alarm list, i.e., a high number of false-positive
classifications. In the study of Miekley et al. [6], the values of the PPV for mastitis and
lameness treatments were approximately 0.01 and 0.10, and in Steeneveld et al.’s study [7],
the resulting PPV was 0.01.

It can be assumed that, by applying the developed algorithms to subgroups in which
the event occurs more frequently (also known as risk groups [8]), the PPV is higher and
the false-positive rate lower. In human medicine, testing procedures are therefore carried
out in these groups or in people with corresponding symptoms in order to increase the
probability that the associated event could occur in this group of people. For example,
screening tests for chlamydia infections in humans with very high values for sensitivity
and specificity of 0.98 and 0.97 (“very high” compared to possible predictive models from
livestock farming) in a group of people with a prevalence of 3% could still only achieve a
PPV of 0.50, so that half of the tested persons received an incorrect initial diagnosis [9]. For
this reason, screening tests, e.g., for chlamydia or HIV, are primarily performed in groups
of people with a higher prevalence of the disease under investigation [8,10].

In the context of studies on predictive models of disease indicators in dairy farming,
the application of algorithms in risk groups and its effect on the PPV has not yet been
investigated. The following risk groups would be conceivable within a herd: cows with
a prior treatment in the previous or current lactation [11–13], cows with an increased cell
count during milk performance testing [14,15], or cows during certain periods of lactation.
Data from Koeck et al. [1] specified a higher incidence of clinical mastitis (35% of all cases)
in the first 30 days of lactation. In the same study, 22% of all lameness cases occurred
in the first 30 days in milk (DIM). For both treatments, the remaining cases were evenly
distributed over the rest of the lactation.

However, the application of predictive models to a risk group does not automatically
lead to a higher PPV. The authors of Zehner et al. [16] have developed predictive models
for calving, i.e., an event in a defined risk period (from seven days before the expected
calving date), using data from rumination sensors. Moreover, in these few days before the
expected calving, the exact time of calving within the hourly evaluated data (168 h or 24 h
before calving) represents a rare event per time unit (0.6% or 4%), so that a high number of
false alarms resulted in positive prediction values of only 0.01–0.03 for 168 h or 0.06–0.18
for 24 h [16]. The authors concluded that, despite satisfactory values for sensitivity and
specificity, their model was not suitable for practical use because of the low PPV.

The objective of this study was to investigate the importance of the frequency of
occurrence of treatments in risk groups and the resulting variation in the PPV for the
applicability of classification models in practice. For this, machine-learning models for
the classification of mastitis and lameness treatments (i.e., a form of health data available
in databases) developed in a previous study [17] were validated using data from other
dairy farms.
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2. Materials and Methods
2.1. Data Source

Raw data were collected from three German Holstein dairy farms. The criteria for
the selection of these farms were to be able to automatically record milking data (milk
yield, milk flow, and conductivity), activity data (pedometer impulse count), as well as
feed intake via weighing troughs. This data was transferred in a standardized form to a
shared database system, where it was processed and output as CSV files. Per farm, data
were used in periods of 3–3.4 years, with average herd sizes of 65–121 cows (see Table 1).

Table 1. Overview of the three farms and the amount of data used.

Farm Time Period Raw Data Size 1 Mean Herd size Mean Daily
Milk Yield (kg)

Mean Lactation
Number 2

A June 1, 2015–October 20, 2018 80,307 65 31.3 2.4 ± 1.7
B January 1, 2014–May 31, 2017 203,421 163 36.6 2.4 ± 1.4
C January 1, 2017–December 31, 2019 133,270 121 35.4 2.3 ± 1.6

1 records per cow and day, 2 ± standard deviation.

The data collection and processing were carried out analogous to the study in Post
et al. [17]. The following types of sensor data were available per cow and day: Milking
data (milk yield as the sum of two milkings, milking time, milk flow, conductivity for
morning and evening milkings, respectively), feed data (total feed intake, number, average
duration of trough visits), pedometer activity (sum of impulses from a pedometer at a
2 h resolution), body weight (kg, averaged for two measurements per day), and animal
information (lactation number, days in milk (DIM). Cows with clinical signs were identified
during the daily routine and treated by a veterinarian. All treatment data were recorded by
farm staff and entered into the database. The milk performance data of the milk recording
(milk yield, fat, protein, and lactose content, as well as somatic cell count in 1,000 cells/mL)
were recorded monthly for farm A and weekly for farms B and C.

2.2. Data Preprocessing

Before further processing, the aggregation, plausibility checks, and adjustment of the
data were carried out according to the same scheme of the previous study [17]. Lactations
with completely missing values in at least one feature, as well as lactations with less than
28 days in the data, were removed. For farm C, records of treatments were missing for a
period of 6 months; data from this period were discarded. Furthermore, on farm C, feed
weighing troughs were not installed in all areas of the barn and therefore the records of
feed intake of a cow were not continuously available throughout the lactation. Hence only
periods with existing data were considered. As in Post et al. [17], additional features were
calculated for each variable (except for lactation number, DIM, and monthly milk recording
data), which reflected their change over time: Rolling mean (i.e., the moving average) of
the last seven days, rolling mean of the previous week, change of the current value to the
rolling mean, values of the three previous days, the slope of a linear regression through the
last seven days. This step resulted in a total of 182 available features.

Data on treatment records contained information not related to the disease of interest,
such as antibiotic treatments for dry-off (udder), hoof care without a diagnosis (claws),
estrus synchronization, and silent heat (fertility). These treatment events were ignored. For
cows with at least one treatment in a given lactation, the first treatment day was identified
for each treatment. A period of 14 days after one treatment, or after the last follow-up
treatment if treatment administration occurred over multiple days, was removed from the
data, as it was not clear from the data when a cow could be considered “healthy” again,
similar to the 14-day exclusion period for follow-up treatments used in the studies by
Kamphuis et al. [2] and Jensen et al. [3] (see Figure 1).
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Figure 1. Schematic representation of the extraction of data for cows/lactations with at least one treatment.

Afterward, the day of treatment was moved forward by one day, firstly to exclude
the influence of the treatment on the sensor data, and secondly, because, this way, a
classification about the cow’s condition tomorrow was already simulated at the end of the
previous day.

2.3. Training and Testing of the Classification Models

Based on the findings of the previous study [17] four statistical classification models
were selected: Random Forest, Logistic Regression, Gaussian Naive Bayes, and ExtraTrees
Classifier. These models were part of the Python package Scitkit-Learn [18] and are
described in detail in Post et al. [17]. The following steps were performed separately
for each of the two categories of mastitis and lameness treatments as the target variable.
First, for the training data, all blocks (treatment + previous days) where a treatment other
than the target variable was recorded were removed from the data, so that no days were
falsely marked as free of treatment. As described in detail in Post et al. [17], the data was
normalized (z-score normalization) and feature selection was performed using Sequential
Forward Selection (SFS) to identify the most important 20 features per treatment category
and facility based on Random Forest mean decrease in impurity.

To evaluate the classification models based on data from the same farm, a 5-fold
cross-validation was performed for each farm separately. For this purpose, the cows and
lactations were randomly divided into five data sets. For each of these data sets, four were
used as training data and the remaining one was used as validation data. The training
data set was further reduced to 28 days per lactation, as described in Post et al. [17].
For lactations with a treatment, this was the period before the treatment. For lactations
without a treatment, a random period was chosen instead. The models used in this study
provided an estimate of the probability that a cow was in need of treatment on a given
day. Based on the results from the cross-validation, thresholds for this probability estimate
were determined where sensitivity was at least 0.7. These thresholds were stored for later
application to the test data. The models were then re-trained on the entire data of one
farm and then applied to the data of the two remaining farms. This was done for all cows
and days, as well as for only those days on which a cow was classified as a “risk animal”
(according to the groups defined in Section 2.4). Alongside this approach, the models were
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also tested using the combined data from two farms as training data, and then using the
remaining farm as testing data, to identify possible differences between these procedures.

2.4. Definition of Risk Groups

To increase the frequency of days with treatments and thus improve the classification
for mastitis and lameness treatments, the cow-days (i.e., the data from one cow on a
particular day) were filtered based on various criteria, further referred to as risk groups
(RG). Three different RG limited the testing data to only cow-days with previous treatments:

• RGtreat-SC/PL: Cows with at least one treatment of the same category in the previous
lactation

• RGtreat-SC/SL: Cows with at least one previous treatment of the same category in the
same lactation

• RGtreat-OC/SL: Cows with at least one previous treatment of another category in the
same lactation

The classification into a risk group applies to a cow from the occurrence of the respec-
tive condition until the end of the current lactation. This scheme is shown in Figure 2. In
RGtreat-SC/PL the cow belongs to this group from the day of calving, (DIM 1 in the data).
Membership in RGtreat-SC/SL starts as soon as 14 days after the first treatment, and the
days from the treatment until that point have been removed from the data.
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Figure 2. Schematic representation of the assignment of the cow-days to one of the three risk groups:
(RGtreat-SC/PL (at least one treatment of the same category in the previous lactation), RGtreat-SC/SL
(at least one previous treatment of the same category in the same lactation) and RGtreat-OC/SL (at
least one previous treatment of another category in the same lactation).

RG-SCC contained only cow-days where a cow showed an increased somatic cell
count (SCC) during the last milk recording (MR). This includes four criteria, which were
derived from the udder health indicators of the German Association for Performance
and Quality Testing (“Deutscher Verband für Leistungs- und Qualitätsprüfungen e.V.”,
DLQ) [19]:

• Cows with a new infection of the udder (defined by SCC > 100,000 with previous SCC
of ≤ 100,000)

• Cows with an infection in the first MR after calving (SCC > 100,000), if last SCC in the
previous lactation ≤ 100,000

• Heifers with an infection in the first MR after calving (SCC > 100,000)
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• Cows with chronic mastitis (three consecutive MR with SCC > 700,000)

The SCC describes the proportion of somatic cells in one mL of milk and provides
information about the udder health status of a cow. The critical value for udder health is an
SCC of > 100,000 per mL, values above this threshold indicate an infection of the udder [20].
A cow was assigned to RG-SCC from the day of MR if at least one of the above-mentioned
criteria was detected. This membership was valid either until an SCC of ≤ 100,000 per mL
was detected in a subsequent MR or, if this did not occur, until the end of lactation. This is
illustrated in Figure 3.
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Figure 3. Schematic representation of the assignment of cow-days to the risk group RG-SCC (in-
creased somatic cell count after monthly/weekly milk recording).

Lastly, for the formation of the risk group RGtime-100, only cow-days with a value
for the DIM of ≤ 100 were included in the test data. In addition, a test data set was also
formed using the same procedure, but with the criterion “DIM ≤ 60”, in order to test the
effect of even greater limitation.

2.5. Evaluation

To assess the classification value of trained models on test data sets in which the event
to be classified is available as a reference, the frequency of occurrence of the event to be
classified in this test data set is determined. This is done by dividing the number of days
with treatments by the total number of all days and then displaying it as a percentage.
Secondly, the PPV is calculated to interpret the prediction quality. The level of the PPV
depends on the risk that the event, in this case, the treatment, will occur.

For each cow and day, the models yielded a probability of belonging to class label “1”,
i.e., in need of treatment. These probabilities in combination with the vector of true labels
were used to obtain the area under curve (AUC) from the Receiver Operator Characteristic
(ROC), as described in detail in Post et al. [17]. In addition to the actual day before a
treatment, another two days before treatment were also marked as “treated” in the data,
i.e., an alarm was considered true positive within three days before treatment (see Figure 4).
Subsequently, the probabilities were compared to the threshold obtained in the model
validation to create a vector of binary classifications. This vector was compared with the
vector of true labels. Any day with a treatment event could either have an associated alert
or not. If an alert was present on a treatment day, it was classified as a true positive (TP), if
not, a false-negative (FN); conversely, if an alert was present, that day was a false-positive
(FP), and if an alert was not present, the day was a true negative (TN). This is demonstrated
in Figure 4.
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All values of TP, FP, FN, and TP were summed up for all cows and used for the
following calculations:

Sensitivity = TP/(TP + FN)

Specificity = TN/(TN + FN)

Additionally, the block sensitivity was calculated. Here, a cow-day was considered TP
if a positive classification was given on at least one of the three days prior to treatment, and
FN if none of these three days were detected. This value is always expected to be higher
than the sensitivity.

In addition, the positive predictive value (PPV, also referred to as “precision”) was
calculated and describes the percentage of correctly classified cows of all cows classified
as “treated”.

PPV = TP/(TP + FP)

The results were averaged for all four classification models per treatment category
(mastitis or lameness) and per testing farm or per risk group. All results were presented
as mean ± 95% confidence interval of the mean, which was calculated with the Python
Statsmodels package [21]. Differences between farms and risk groups were performed
using Welch’s test due to the violated homogeneity of variance. For multiple comparisons
in the post-hoc test, Dunnett-T3 was used. These tests were implemented within SPSS
version 26.0 (IBM Corp, Armonk, NY, USA) with significant differences at p < 0.05.

3. Results
3.1. Validation Results

After the preprocessing steps described in Section 2.2, a total of 42,803 cow-days
and 48,041 cow-days from 794 individual cows for the mastitis and lameness treatments
classification, respectively, remained in the data (see Appendix A Table A3). The 5-fold
cross-validation of the classification models for farms A, B, and C on the data from the
same farm led to the results shown in Table 2. The Random Forest feature importance
obtained during this step is shown in Appendix A Tables A1 and A2.

The mean AUC was 0.73 for mastitis treatments and was lower for lameness treatments
at 0.67. This was consistent with the results from Post et al. [17]. The sensitivity of 0.71 in
both treatment categories resulted from the fixed probability threshold of the individual
classification models. As expected, the block sensitivities for mastitis were higher at 0.92
for mastitis and 0.85 for lameness.
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Table 2. Mean area under curve (AUC), sensitivity, block sensitivity, and specificity (± 95%-CI) for
5-fold-cross validation data. Training and testing were performed on the same farm.

Treatment Farm AUC 1 Sen. 2 Block Sen. 3 Spe. 4

Mastitis A 0.70 ± 0.08 b 0.72 ± < 0.01 a 0.93 ± 0.02 ab 0.59 ± 0.13 b

B 0.80 ± 0.02 a 0.71 ± < 0.01 b 0.89 ± 0.02 b 0.74 ± 0.04 a

C 0.70 ± 0.04 b 0.72 ± < 0.01 a 0.94 ± 0.03 a 0.59 ± 0.08 b

Mean 0.73 ± 0.04 0.71 ± < 0.01 0.92 ± 0.02 0.64 ± 0.06

Lameness A 0.72 ± 0.02 a 0.71 ± < 0.01 c 0.85 ± 0.03 0.59 ± 0.03 a

B 0.66 ± 0.02 b 0.70 ± < 0.01 b 0.83 ± 0.03 0.51 ± 0.04 ab

C 0.63 ± 0.07 b 0.72 ± < 0.01 a 0.86 ± 0.03 0.48 ± 0.09 b

Mean 0.67 ± 0.03 0.71 ± < 0.01 0.85 ± 0.01 0.53 ± 0.04
1 area under ROC-curve; 2 sensitivity; 3 block sensitivity; 4 specificity; a,b,c superscript letters indicate significant
differences at p ≤ 0.05 between farms within treatment categories.

Table 3 shows the results of the classification (AUC, sensitivity, block sensitivity,
and specificity for mastitis and lameness treatments) of all combinations of training and
testing farms. The mean AUC for mastitis treatments was higher at 0.72 than for lameness
treatments with 0.61. The sensitivities, the level of which was set at 0.7 during validation by
fixing the probability threshold values, could not reach this sensitivity value for all testing
data sets, but the block sensitivity was on average 0.86 for mastitis treatments and 0.83
for hoof treatments and thus achieved the minimum sensitivity requirement. The mean
AUC of 0.72 for mastitis treatments was similar compared to the results from the validation
(0.73), whereas for lameness treatments the mean AUC was lower (0.61 compared to 0.67).

Table 3. Mean area under curve (AUC), sensitivity, block sensitivity, and specificity (± 95%-CI) for the classification
of mastitis and lameness treatments of all cows. Models were trained on one farm and then tested on the two other
respective farms.

Farm
Treatment Training Test AUC 1 Sen. 2 Block Sen. 3 Spe. 4

Mastitis A B 0.78 ± 0.03 a 0.60 ± 0.19 ab 0.82 ± 0.13 ab 0.80 ± 0.23 a

C 0.70 ± 0.05 abc 0.47 ± 0.18 b 0.72 ± 0.17 ab 0.80 ± 0.23 a

B A 0.73 ± 0.01 b 0.62 ± 0.14 b 0.86 ± 0.12 ab 0.72 ± 0.11 ab

C 0.69 ± 0.02 c 0.55 ± 0.07 b 0.80 ± 0.08 b 0.71 ± 0.11 ab

C A 0.71 ± 0.06 abc 0.91 ± 0.07 a 1.00 ± < 0.01 a 0.27 ± 0.20 bc

B 0.74 ± 0.02 ab 0.89 ± 0.13 a 0.97 ± 0.04 a 0.30 ± 0.26 b

Mean 0.72 ± 0.02 0.67 ± 0.08 0.86 ± 0.05 0.60 ± 0.11

Lameness A B 0.62 ± 0.02 bc 0.81 ± 0.12 a 0.90 ± 0.08 ab 0.28 ± 0.16 bc

C 0.60 ± 0.02 c 0.84 ± 0.11 a 0.89 ± 0.08 ab 0.26 ± 0.13 bc

B A 0.66 ± 0.02 ab 0.74 ± 0.05 a 0.87 ± 0.05 a 0.45 ± 0.08 abc

C 0.56 ± 0.02 d 0.64 ± 0.02 ab 0.76 ± 0.03 b 0.43 ± 0.06 abc

C A 0.66 ± 0.02 a 0.66 ± 0.11 ab 0.83 ± 0.13 ab 0.56 ± 0.13 ab

B 0.57 ± 0.04 d 0.53 ± 0.09 b 0.73 ± 0.13 ab 0.58 ± 0.15 a

Mean 0.61 ± 0.02 0.71 ± 0.05 0.83 ± 0.04 0.42 ± 0.06
1 area under ROC-curve; 2 sensitivity; 3 block sensitivity, 4 specificity; a,b,c superscript letters indicate significant differences at p ≤ 0.05
between farm combinations within treatment categories.

The AUCs obtained when using combined training data of two farms, as described at
the end of Section 2.3, did not differ significantly from the results of the other approach
(mean AUC over all test farms of 0.73 for udder treatments and 0.63 for hoof treatments),
so they were not presented separately here.
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3.2. Positive Predictive Values Depending on the Risk of Occurrence of the Treatments

The mean frequency of cow-days with mastitis and lameness treatments in the data
sets was 3.6% and 5.6%, per cow per day, respectively, for all three farms combined (see
Table 4). This relationship applied to the present approach resulted in the identification of
animals at a higher risk in the following step (for definitions see Section 2.4). Table 4 shows
the comparison of the frequency of occurrence for mastitis and lameness treatments in the
entire farm data set to the partial data sets of the respective risk groups and risk time.

Table 4. Frequency (%) of cow-days with a mastitis treatment and lameness treatment in the testing
data for all cows (no specific risk group).

Treatment Farm All
Cows

RGtreat-
SC/PL

RGtreat-
SC/SL

RGtreat-
OC/SL RG-SCC RGtime-

100

Mastitis A 2.5 5.4 12.0 3.0 5.4 2.9
B 4.8 8.1 13.6 6.5 9.6 4.9
C 3.8 8.3 14.0 5.1 5.1 5.0

All 3.6 7.8 13.5 5.7 8.2 4.5

Lameness A 4.3 7.0 12.9 6.0 6.8 3.1
B 5.5 8.5 13.2 6.6 6.4 5.2
C 6.8 9.9 13.3 7.9 7.4 6.1

All 5.6 8.5 13.2 6.6 6.7 5.0
RGtreat-SC/PL: at least one treatment of the same category in the previous lactation, RGtreat-SC/SL: at least one
previous treatment of the same category in the same lactation, RGtreat-OC/SL: at least one previous treatment of
another category in the same lactation, RG-SCC: high SCC in previous milk recording, RGtime-100: DIM ≤ 100.

It is noticeable that the highest increase in the frequency of occurrence or risk for both
mastitis and lameness treatments was caused by restricting our analysis to animals that had
already undergone a treatment of the same category in the same lactation (RGtreat-SC/SL).
Here, the average increase compared to all cows was +9.5 percentage points to 13.5%
risk for another mastitis treatment and +7.8 percentage points to 13.2% risk for another
lameness treatment. Limitation to cows that had the same category of treatment (mastitis
or lameness treatment) in the previous lactation (RGtreat-SC/PL) increased the mean risk
for another treatment by 3.6 percentage points and 2.9 percentage points, respectively.

Likewise, a limitation to MR risk factors based on SCC increased the risk for corre-
sponding mastitis treatments on average by 4.6 percentage points (RG-SCC). The grouping
RGtreat-OC/SL produced only small increases of 1.6 percentage points and lower. Limiting
the risk period to the first 100 DIM (early lactation, RGtime-100) led to inconsistent results.
For the mastitis treatments, the risk for corresponding treatment was comparable to that
in the total data set (+0.9 percentage points to 4.5%), whereas the risk for lameness treat-
ments was lower in the early lactation of the three experimental farms than over the whole
lactation (−0.6 percentage points to 5%). When only the first 60 DIM were considered as
the risk period, it did not lead to a change in the frequency of occurrence compared to the
limitation of the DIM to ≤ 100 (4.8% frequency of mastitis and 5.2% of claw treatments).
The model data for this risk period were, therefore, not listed additionally hereafter.

Table 5 shows the validity criteria AUC, block sensitivity, and specificity per RG in
comparison to all cows, while the comparison of the PPV is shown in Figure 5.

It was noticeable that the value of the PPVs reflected the respective frequency of
occurrence, i.e., the known low risk for treatment. The highest PPVs were achieved on
average in the RGtreat-SC/SL with previous treatments of the same category in the same
lactation; for mastitis treatments on average a PPV of 0.20 and for lameness treatments
of 0.15. All other PPVs were significantly lower. However, it was noticeable that for
AUC both in the classification of mastitis treatments (0.65) and lameness treatments (0.55),
significantly lower values were obtained only in RGtreat-SC/SL compared to the test data
of all cows. The sensitivity, block sensitivity, and specificity did not differ between the risk
groups within the treatment categories; therefore the sensitivity is not shown in Table 5.
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In the following paragraphs, the respective risk groups whose AUCs and PPVs showed
statistically significant differences are described individually.

Table 5. Comparison of classification results for mastitis and lameness treatments (mean area under
the curve (AUC), block sensitivity, and specificity ± 95%-CI), as well as the total number of cow-days
in the data and the treatment frequency in % in the testing data for all cows, as well as the risk groups.

Risk Group Cow-days
Total

Frequency
of Treatment

Days (%)
AUC 1 Block Sen. 2 Spe. 3

Mastitis

All cows 42,803 4.1 0.72 ± 0.02 a 0.86 ± 0.05 0.60 ± 0.11
RGtreat-
SC/PL 6,633 7.8 0.69 ± 0.02 a 0.83 ± 0.06 0.57 ± 0.11

RGtreat-
SC/SL 4,251 13.5 0.65 ± 0.02 b 0.81 ± 0.06 0.57 ± 0.11

RGtreat-
OC/SL 17,802 5.7 0.69 ± 0.02 ab 0.87 ± 0.03 0.63 ± 0.06

RG-SCC 10,414 8.2 0.71 ± 0.02 a 0.86 ± 0.05 0.58 ± 0.11
RGtime-100 18,289 4.5 0.73 ± 0.02 a 0.88 ± 0.06 0.60 ± 0.11

Lameness

All cows 48,041 5.6 0.61 ± 0.02 a 0.83 ± 0.04 0.42 ± 0.06
RGtreat-
SC/PL 9,587 8.5 0.59 ± 0.02 a 0.83 ± 0.04 0.43 ± 0.06

RGtreat-
SC/SL 8,417 13.2 0.55 ± 0.02 b 0.79 ± 0.04 0.40 ± 0.06

RGtreat-
OC/SL 18,137 6.6 0.59 ± 0.02 a 0.72 ± 0.05 0.55 ± 0.04

RGtime-100 20,044 5.0 0.58 ± 0.01 ab 0.80 ± 0.04 0.42 ± 0.06
1 Area Under ROC-Curve; 2 Block Sensitivity; 3 Specificity; a,b superscript letters indicate significant differences at
p ≤ 0.05 between farm combinations within treatment categories. RGtreat-SC/PL: at least one treatment of the
same category in the previous lactation, RGtreat-SC/SL: at least one previous treatment of the same category in
the same lactation, RGtreat-OC/SL: at least one previous treatment of another category in the same lactation,
RG-SCC: high SCC in previous milk recording, RGtime-100: DIM ≤ 100.

3.2.1. Predictive Value of the Models for the Respective Treatment Risk Groups (RGtreat)

Due to the higher frequencies of occurrence in the narrowed data to the risk group of
animals already treated for mastitis or lameness in the past, the PPVs increased from 0.07
to 0.13 for mastitis treatments and from 0.07 to 0.10 for lameness treatments. The AUC of
the models for RGtreat-SC/PL were comparable to the results for all cows and were 0.69
for udder and 0.59 for lameness treatments.

When applying the trained models to RGtreat-SC/SL (cows with at least one previous
treatment of the same category in the same lactation), the higher PPVs of 0.20 for mastitis
treatments and 0.15 for lameness treatments, compared to all other risk groups, stood out
due to the highest frequency of days with treatment compared to the other risk groups.
The AUC for predicting mastitis treatments of RGtreat-SC/SL was 0.65 and for lameness
treatments 0.55, significantly lower than the results for the respective treatments in the data
of all cow-days. At the same time, RGtreat-SC/SL was the group with the lowest number
of cow-days in the test data (4251 days for the mastitis treatments and 8417 days for the
lameness treatments, see Table 5). The combinations of block-sensitivities and specificities
were in similar ranges as in RGtreat-SC/PL., i.e., animals with corresponding treatments in
past lactation.

For RGtreat-OC/SL, the trained models were applied to the risk group of cows that
had at least one treatment of another category (i.e., not also a treatment for mastitis,
lameness, or metabolic disorders) in the same lactation. For both mastitis and lameness
treatments, the AUC of 0.69 and 0.59 did not differ significantly from the AUC of the
classification for all cow-days. As already shown in Table 4, this restriction did not lead to a
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significant increase in the frequency of days with treatment (+0.8% for mastitis treatments
and +1.1% for lameness treatments), so the PPVs were in the range of 0.09 for mastitis
treatments and 0.09 for lameness treatments.
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the same lactation, RG-SCC: high SCC in previous milk recording, RGtime-100: DIM ≤ 100.

3.2.2. Predictive Value of the Models for the Risk Group According to the Information on
SCC from Milk Recording (RG-SCC)

The SCC categories explained in Section 2.4 allowed the classification of the animals
into the risk group RG-SCC. The mean values for AUC (0.71), block sensitivity, and
specificity were comparable to those of the validation results. However, the mean PPV of
0.11 did not differ significantly from the PPV for all cows.

3.2.3. Predictive Value of Models in Early Lactation as Risk Time Period (RGtime)

However, as shown in Table 4, the frequency of mastitis treatments in the risk period
of early lactation (≤ 100 DIM) in all three farms was comparable to the treatment frequency
over the entire lactations. In terms of treatments for lameness, the risk of treatment was
lower in the early lactation period than over the entire lactation period. Accordingly,
the AUC values (0.73 for mastitis treatments and 0.58 for lameness treatments) and the
PPV (0.08 for mastitis treatments and 0.06 for lameness treatments) showed no significant
changes compared to the evaluation without time limitation. Reducing the risk period to
only 60 DIM resulted in AUC values of 0.74 ± 0.03 for mastitis treatments and 0.60 ± 0.02
for lameness treatments, and a PPV of 0.07 ± 0.01 for mastitis treatments and 0.08 ± 0.01
for lameness treatments. Again, these values did not differ significantly.
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4. Discussion
4.1. Validation Results

The aim of the validation was to test the applicability of the models developed in
Post et al. [17] for the classification of mastitis and hoof treatments on data from two other
experimental farms to simulate the usage of trained models on other unknown datasets of
additional farms.

The AUCs of 0.73 for mastitis treatments and 0.67 for lameness treatments obtained
by cross-validation are comparable to values obtained in studies that have performed
classifications with comparable sensors. For the detection of mastitis, a study with auto-
matic milking system (AMS) data and additional cow information (parity, DIM, season,
SCC history, and clinical mastitis history) over two years achieved a range of AUC values
between 0.62 and 0.78 [7]. For the detection of lameness treatments, AUC values between
0.66 and 0.75 were achieved in a study by Kamphuis et al. [2] using data from a total of
4904 cows (from five farms) and the features live weight, activity and milk yield, and
milking duration. In a further study on the detection of lameness treatments, an AUC
of only 0.60 was obtained from a data set of 315 cows for a comparable time window
of three days prior to each treatment [22]. It should be noted that an AUC of 0.70 and
above describes a “strong model”, while a value of 0.60 and below describes only a “weak
model” [23].

On average, higher AUC values are obtained for the classification of mastitis diseases
or treatments than for the prediction of lameness treatments. This can be explained by the
high importance of the feature “SCC of the last milk recording (MR)”. As already discussed
in [19], the feature “SCC” is directly related to the event “mastitis”. This could be confirmed
on all three test farms. When comparing the individual models, it was noticeable that farms
B and C showed a higher relative importance of the cell count with 0.22 compared to farm
A with 0.13. This can be explained by the higher frequency of MR (B and C: weekly vs. A:
monthly). The periods between the measured cell count and the mastitis treatments were
shorter due to the weekly MR and the correlation was, therefore, more direct, whereas the
monthly MR increases the probability of an intermediate healing or new infection, which is
then not found in the data. For the same reason, the AUC values of the mastitis models
were not significantly lower when the trained models were tested from one farm to the
other farms (from 0.73 on the training farm to an average of 0.72 on the test farms). As
shown in Table 3, the lower frequency of MR on farm A had no negative influence on the
AUC when used for training the models, compared to farms B and C. In comparison, the
trained models for classifying lameness treatments with AUC values averaging 0.67 are
considered “weak models” and, therefore, their practical usefulness is questionable. This is
further reinforced by the application of the trained models to other farms or their data, as
the AUC values are significantly reduced to an average of 0.61. Since no available features
in the detection of lameness treatments are directly or specifically related to the event, the
operational differences are much more relevant for the model quality.

4.2. Positive Predictive Values Depending on the Probability of Occurrence of the Treatments

A common feature of the mentioned studies [6,7,22] is the high proportion of false-
positive alarms (also referred to as error rate). This value was 0.99 for mastitis and 0.89
for lameness treatments in the results from Miekley et al. [22]. The study of Steeneveld
et al. [7] included 52 true positive and 3636 false-positive alarms, which led to an error
rate of approximately 0.99. The PPV in our own study of 0.07, which corresponds to
a 0.93 error rate, is due to the low frequency of days with treatment in the test data,
which was 3.5% and 5.4% for mastitis and lameness treatments, respectively. In other
studies, the ratio of treated to non-treated cows was artificially increased, i.e., the data were
sampled, e.g., by pairing cows [5], by excluding unclear cases of lameness [24,25], or by
considering shorter periods before treatment [2,4]. From the perspective of the developers
of these models, these measures are justified because sensitivity and specificity are hardly
influenced by the frequency of occurrence of the target trait. However, these results do
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not reflect the situation of the application on a practical farm. Furthermore, Post et al. [17]
could show that even different up- and downsampling methods for balancing training
data during application to unknown, realistic data had no influence. Thus, it becomes
clear that, despite sufficient model quality, the frequency of occurrence of the event to be
predicted substantially influences the magnitude of the predictive values and thus the
share of animals reported as positive. As known from medicine and other fields [8,9], the
application of test procedures and, accordingly, algorithms in groups where the risk for the
event to be predicted is higher, allows the ratio between correct and false-positive reports
to improve, i.e., the PPV becomes higher. In the risk groups analyzed, the question arises
whether this improves the ratio in such a way that an implementation of this approach can
be recommended.

4.2.1. Classification of Cows with a Previous Treatment (RGtreat)

Our own results have shown that cows with mastitis or lameness treatment have
a higher chance of needing to be treated again in the next lactation (RGtreat-SC/PL)
or at a later stage of lactation (RGtreat-SC/SL). In other studies, an increased risk of
further mastitis was found in cows that had already been infected with the cow-associated
pathogen Staphylococcus aureus [26], as well as in cows with a past infection with the
environmentally associated pathogens Streptococcus uberis [26] and Escherichia coli [27], in
whose study approx. 13% of all E. coli infections already had an infection in the same
udder quarter. In [11], the odds ratio of mastitis was found to be up to 5.9 if at least one
previous treatment was given in the current lactation. By narrowing the data to cows with
a previous treatment in the same lactation, the frequency of occurrence in our own study
was increased to 13.2% from 3.5% of days with treatment. This means a 3.7-fold higher risk
of mastitis for this group. Another study found an odds ratio of 4.15 for mastitis incidence
in the first 120 days of lactation for previous clinical mastitis [12]. These results suggest
that cows or udder quarters are more likely to develop mastitis again [26,27]. However, in
another study by Hammer et al. [28], no statistical correlation between the risk of mastitis
and previous treatments that were more than 30 days old was found in 245 cases of mastitis.

An increased risk for subsequent treatments in the following lactation was also found
by other authors. In a study of 402 cows, cows treated in the previous lactation were
found to be 1.7 times more likely to develop subclinical mastitis in the first 60 days in the
next lactation [29]. When restricted to animals treated in the last 60 days of the previous
lactation, the risk there increased 4.9-fold. Another study with data from 350 Norwegian
dairy herds and a total of 6046 cows in their second lactation [14] showed an increased
risk (1.5-fold) when mastitis treatment was given in the first lactation. Limiting the risk to
animals with mastitis treatment in the previous lactation (RGtreat-SC/PL) achieved a 2-fold
increase in risk to 7.1% in our own study. This shows that cows with mastitis treatment
also carry a higher risk into the next lactation due to individual susceptibility to pathogens
or the persistence of a subclinical infection over the dry period [11]. However, this risk
is reduced to some extent by the possibility of udder healing in the dry period through
appropriate therapies [30], compared to the follow-up treatments within one lactation.

The risk that a cow will need to be treated again was also elevated for lameness
treatments for both RGtreat-SC/PL and RGtreat-SC/SL. In another study with 600 cows
over 44 months, a high range of positive odds ratios between 2.5 and 23 for all types of
lameness diagnoses was found for the probability of a cow needing re-treatment [13]. A
different study of over 7600 cows from 23 dairy farms found significant positive effects
of prior lameness treatment on both at dry-off (2.5 times higher risk) and next lactation
(twice the risk) for claw horn disruption lesions [31]. In other studies, this association
has also been established for treatments for sole ulcers, white line defects, and digital
dermatitis [13,32]. This is the case when treatment of the clinical symptoms does not
address the underlying cause sufficiently, e.g., a thinned digital cushion [13].

The AUCs of RGtreat-SC/PL and RGtreat-OC/SL did not differ significantly from
those models applied to all cows. Only the AUCs after application in RGtreat-SC/SL
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showed significantly lower values in both treatment categories. This was due to the
combination of low numbers of cow-days in the corresponding test data (see Appendix A
Table A3) and the restriction of the test data to a subgroup with a different distribution of
features for days with and without treatment than in the whole test data. This introduces
a sampling bias into the classification, which has a negative effect on AUC, especially
in small data sets [33,34]. At the same time, in this RGtreat-SC/SL, the risk of repeated
treatment for mastitis or lameness was highest. Accordingly, PPVs in this RGtreat-SC/SL
had the significantly highest values compared to the other groups. This means that they
have the greatest potential for reducing false-positives compared to the other RGs, yet the
PPVs were not in a range satisfactory for practical use, with 0.20 for mastitis and 0.15 for
lameness treatments.

RGtreat-OC/SL narrowed the data down to cows that had already undergone a differ-
ent treatment in the same lactation. A study on genetic correlations found a comparatively
low correlation of 0.32 ± 0.07 between the occurrence of mastitis between lactation days
−10 to 50 and other treatments (fertility disorders, metabolic diseases, and lameness) in
the period up to 100 DIM [35]. Another study by Hossein-Zadeh and Ardalan [12] found
odds ratios for clinical mastitis in the first 120 DIM of 57,300 Holstein cows, 9.45 with
previous retained placenta and 12.36 with previous milk fever. The association between
the retained placenta and later clinical mastitis has before been quantified by [36] with
a 1.5-fold higher risk for mild and 5.4-fold higher risk for severe mastitis, respectively.
Acidosis can act as a trigger for laminitis, which then develops into lameness [37]. A study
by Berge and Vertenten [38] with 131 Dutch farms found odds ratios at previous ketosis of
1.9 for mastitis treatments and 1.7 for lameness treatments in the rest of the lactation. The
authors of [39] found a significant doubling of the frequency of interdigital dermatitis in
cows with previous endometritis in the same lactation based on data with 2109 lactations,
but the data showed no correlation between other previous diseases and mastitis. Our own
results for RGtreat-OC/SL could only cause a small increase in the frequency of occurrence
of mastitis and lameness treatments, and consequently no higher PPVs by limiting the
animals to those treated against diseases from other disease categories (with otherwise
comparable AUC values). Since the cows remained in this risk group for the remainder of
the lactation, the effects of these pre-treatments are too small in relation to the total data at
the daily level.

4.2.2. Classification of Cows with Increased SCC After Milk Recording (RG-SCC)

Several studies have investigated the association between increased SCC in MR and
the subsequent occurrence of mastitis. In Whist and Østerås [14], a 1.9-fold higher risk of
clinical mastitis was found for SCC > 200,000 cells/mL in the first MR after calving. The
authors also found a 1.7-fold higher risk of developing mastitis in the second lactation
with a geometric mean between 400,000 and 800,000 of the last three MR cell counts before
the second calving [14]. In a study by Steeneveld et al. [15], the relationship between
the previous month’s SCC and the geometric mean of all MR test days of the previous
lactation with mastitis treatments was examined using data from almost 40,000 cows and
8500 mastitis cases. The significant odds ratios here were 1.33 and 1.15 for elevated SCC
(> 200,000) in the preceding MR and previous lactation on average, respectively, which
signaled a slightly increased risk of a subsequent mastitis treatment.

RG-SCC showed a comparable AUC as an indicator of model quality, but to a sig-
nificantly lower PPV compared to RGtreat-SC/SL. The reason for this is that, whereas
clinical symptoms were present at one time during pre-treatment, a SCC of > 100,000 and
thus a risk after MR is not necessarily associated with clinical symptoms, and therefore no
treatment is performed. Thus, the limitation to this risk group and the application of the
classification algorithms would not lead to any added value other than the animal listings
themselves, which are conspicuous in the context of MR with regard to udder health.
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4.2.3. Classification of Cows in Early Lactation (RGtime-100)

Only cow-days within the first 100 DIM were classified as this last risk group. It is
known that treatments for mastitis are more common in early lactation [12,40]. The study by
Hammer et al. [28] found in 245 cows that the odds ratio in cows over 100 DIM dropped to
only 0.3 compared to the reference group between 10 and 20 DIM. However, this odds ratio
was also only 0.4 between 30 and 100 DIM. The odds ratio for clinical mastitis decreased
after the first month of lactation [15], but after the first three months (after about 100 DIM)
the odds ratio was still 1.9 for primiparous and 3.6 for multiparous cows, compared to
lactation month 8 and higher as reference. In terms of lameness treatments, in a study of
2100 cows over three years, these were most common between 61 and 150 DIM and least
common between 16 and 60 DIM [41]. However, these data are from only one farm, so a
farm effect cannot be excluded.

In our own study, the restriction only to animals in the first 100 DIM did not lead
to an increase in the frequency of occurrence and thus no effect on the PPV. The effects
in the quoted studies often reported shorter time windows after calving with higher risk.
This was also investigated in our own study (60 DIM) but did not lead to any change
in the frequency of treatments. In line with the findings from the other risk groups, this
narrowing of the data set also did not lead to any improvement in predictive values or
false alarms.

4.3. General Discussion

The results of our own study have shown that a limitation to risk groups can improve
the PPVs of a daily detection of individual animals in need of treatment using sensor data
up to 0.20 PPV (i.e., 80% error rate). However, the suitability for satisfactory practical use
remains questionable. In contrast to the minimum requirements for the model quality
criteria of the models that can be used in practice (i.e., a sensitivity of 0.70–0.80 and a
specificity of 0.99 [42]), there are no recommendations for a minimum PPV to be achieved.
A recent survey of practicing farmers’ preferences for the performance of a lameness
detection system included options for the percentage of false alarms from 0% to 15%,
corresponding to a PPV of 0.85–1.00 [43]. Although not explicitly asked for tolerable, but
rather for preferred values, this shows the discrepancy between user expectations and the
actual percentage of false alarms. The study by Steeneveld et al. [7] on the reduction of
false-positive mastitis alarms of an AMS showed that despite a very good test characteristic
of their model of 0.70 sensitivity and 0.98 specificity and a reduction of false-positive alarms
by up to 35 percentage points, the PPV was still only 0.03 due to the low frequency of cow
days with mastitis in the data (227 out of 508,517). This shows that despite all optimization
attempts, the known low risk of one treatment (i.e., a form of health data available in
databases) per animal per day remains the main factor influencing the prediction. As
already discussed in Van De Gucht et al. [42] and Zehner et al. [16], it is not possible to
use classification models of sensor systems as the only tool to find the animals that need
treatment or need special care.

5. Conclusions

The objectives of this study were to demonstrate the importance of applying clas-
sification models for cows in need of treatment to practical data sets and to highlight
the importance of the low frequency of occurrence of the trait “treatment” in relation to
individual cows and days, based on the assignment of cows to risk groups.

Within those risk groups, the frequency of occurrence of the target variable “treatment”
and the respective PPV increased accordingly. This influence was the largest when applying
the algorithms to the risk group of cows with previous treatment in the same lactation,
but even the highest achieved PPV of 0.20 is not sufficient for the prediction of mastitis
and lameness treatments in practice. The critical factor influencing the prediction remains,
despite all optimization variations with respect to model validity, the known low risk of
a treatment per animal per day. It can be assumed that this also applies to other health
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or disease data. This requires rethinking and specific information about the fact that the
detection of cows in need of treatment within a herd is not possible through sensor data and
the corresponding algorithms only, but requires additional expert knowledge. However, if
the responsible person already has certain animals in focus during the day, the existing
animal-specific (sensor) data can be important decisional support.
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Appendix A

Table A1. Random Forest feature importance for mastitis treatments (Mean ± 95% CI), obtained during 5-fold cross validation.

Farm
A B C

Feature Importance Feature Importance Feature Importance

Last milk recording SCC 0.13 ± 0.07 Last milk recording SCC 0.22 ± 0.03 Last milk recording SCC 0.22 ± 0.04
Highest milk flow p.m.,

slope 0.11 ± 0.04 Milk yield, RMdiff 0.14 ± 0.02 Conductivity a.m.,
RMdiff 0.14 ± 0.03

Conductivity p.m., slope 0.10 ± 0.04 Milk yield p.m., RMdiff 0.09 ± 0.01 Conductivity p.m.,
RMdiff 0.07 ± 0.02

Milking duration a.m. 0.06 ± 0.02 Milk yield, slope 0.08 ± 0.02 Day/night ratio activity,
RM 0.05 ± 0.01

Conductivity p.m.,
RMdiff 0.06 ± 0.02 Milk yield p.m., slope 0.07 ± 0.01 Feed intake, RMdiff 0.05 ± 0.01

Milk yield, RMdiff 0.06 ± 0.03 Feeding time with intake 0.06 ± 0.01 Milk yield, RMdiff 0.05 ± 0.01

Feed intake, RMdiff 0.05 ± 0.01 Milk yield a.m., RMdiff 0.06 ± 0.01 Last milk recording
lactose 0.05 ± 0.01

Feed intake, RMprev 0.05 ± 0.02 Conductivity p.m.,
RMdiff 0.05 ± 0.01 Feed intake, slope 0.04 ± 0.01

DIM 0.04 ± 0.01 Conductivity p.m., slope 0.04 ± 0.01 Conductivity p.m., slope 0.04 ± 0.01

Feed intake, slope 0.04 ± 0.01 Conductivity a.m.,
RMdiff 0.03 ± 0.00 Activity (Min), slope 0.04 ± 0.01

Milking duration a.m.,
diff 0.04 ± 0.02 Body weight, slope 0.02 ± 0.01 Feeding time with

intake, slope 0.03 ± 0.01

Milk yield 0.04 ± 0.01 Feeding time with
intake, slope 0.02 ± 0.01 Body weight, RMdiff 0.03 ± 0.00

Body weight 0.04 ± 0.01 Milking duration p.m.,
RMdiff 0.02 ± 0.00 Feed intake, d-1 0.03 ± 0.00

Conductivity a.m.,
RMdiff 0.04 ± 0.01 Highest milk flow a.m. 0.02 ± 0.00 Day/night ratio activity,

RMprev 0.03 ± 0.01

Day/night ratio activity,
RM 0.03 ± 0.01 Day/night ratio activity,

RMprev 0.02 ± 0.01 Milk flow p.m., RMdiff 0.03 ± 0.01

Highest milk flow a.m. 0.02 ± 0.01 Milk yield 0.02 ± 0.01 Milking duration a.m.,
slope 0.03 ± 0.01

Highest milk flow a.m.,
RMdiff 0.02 ± 0.01 Feeding visit duration,

RMprev 0.01 ± 0.01 Feeding visit duration,
RMprev 0.02 ± 0.01

Activity (max), RMprev 0.02 ± 0.01 Day/night ratio activity,
RM 0.01 ± 0.00 Activity Sum, RMprev 0.02 ± 0.01

Activity (Sum) 0.02 ± 0.01 Body weight, RMdiff 0.01 ± 0.00 Activity (Max), RM 0.02 ± 0.00
Activity (Sum) p.m.,

RMprev 0.02 ± 0.01 Feed intake, RMprev 0.01 ± 0.00 Activity (Sum) p.m., RM 0.01 ± 0.01

For variable descriptions, see [17].
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Table A2. Random Forest feature importance for lameness treatments (Mean ± 95% CI), obtained during 5-fold cross validation.

Farm
A B C

Feature Importance Feature Importance Feature Importance

Feeding time with intake 0.13 ± 0.02 Feeding time with intake 0.18 ± 0.01 Feeding time with intake 0.11 ± 0.02
Feeding time with

intake, slope 0.11 ± 0.03 Feed intake 0.12 ± 0.01 Feeding time with
intake, slope 0.09 ± 0.03

Feeding visits 0.08 ± 0.01 Feeding time with
intake, slope 0.11 ± 0.02 Feed intake, slope 0.07 ± 0.02

Body weight, slope 0.08 ± 0.02 Feeding visit duration,
RMprev 0.06 ± 0.01 Last milk recording SCC 0.07 ± 0.04

Body weight, RMdiff 0.08 ± 0.03 Feed intake, slope 0.06 ± 0.02 Milk yield 0.07 ± 0.01
Feeding visit duration,

RMdiff 0.07 ± 0.02 Last milk recording fat 0.06 ± 0.01 Feed intake, d-1 0.07 ± 0.02

Feed intake, slope 0.06 ± 0.00 Feed intake per visit,
RMprev 0.04 ± 0.01 Body weight, slope 0.06 ± 0.02

Activity (Min), RM 0.06 ± 0.03 Feed intake, RMprev 0.04 ± 0.01 Highest milk flow a.m.,
RMdiff 0.04 ± 0.02

Feeding visit duration,
slope 0.05 ± 0.02 Milk yield 0.04 ± 0.02 DIM 0.04 ± 0.01

Feeding visit duration,
d-1 0.04 ± 0.02 Activity, slope 0.04 ± 0.01 Body weight 0.04 ± 0.01

Last milk recording
lactose 0.04 ± 0.01 DIM 0.03 ± 0.01 Activity (Sum) p.m., RM 0.04 ± 0.01

Acitivity, 3 highest
(Sum), slope 0.03 ± 0.02 Feed intake per visit,

slope 0.03 ± 0.01 Conductivity a.m.,
RMdiff 0.04 ± 0.01

Feed intake, RMprev 0.03 ± 0.01 Last milk recording SCC 0.03 ± 0.01 Feeding visits, slope 0.04 ± 0.01
Activity (Max), RMprev 0.03 ± 0.01 Activity (Max), RMprev 0.03 ± 0.01 Activity (Min), RMprev 0.04 ± 0.01

DIM 0.02 ± 0.01 Day/night ratio activity,
RMprev 0.03 ± 0.01 Feeding visit duration,

RMprev 0.04 ± 0.01

Milk yield 0.02 ± 0.00 Day/night ratio activity,
RM 0.02 ± 0.01 Day/night ratio activity,

RMprev 0.03 ± 0.01

Milking duration a.m. 0.02 ± 0.01 Feeding visit duration,
RMprev 0.02 ± 0.01 Day/night ratio activity,

RM 0.03 ± 0.01

Conductivity p.m., slope 0.02 ± 0.01 Body weight, slope 0.02 ± 0.01 Last milk recording fat 0.03 ± 0.01
Day/night ratio activity,

RM 0.01 ± 0.01 Activity (Min), slope 0.02 ± 0.00 Activity (Max), slope 0.03 ± 0.01

Day/night ratio activity,
RMprev 0.01 ± 0.01 Feeding visit duration,

slope 0.02 ± 0.01 Milking duration a.m.,
slope 0.02 ± 0.00

For variable descriptions, see [17].
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Table A3. The number of cow-days in the test data for all cows, as well as in the respective risk groups.

Risk Group

Treatment Farm All Cows RGtreat-
SC/PL

RGtreat-
SC/SL

RGtreat-
OC/SL RG-SCC RGtime-100

Mastitis A 8.041 939 324 2.859 924 3.437
B 25.474 4.687 3.286 11.974 7.055 11.312
C 9.288 1.007 641 2.969 2.435 3.540

Total 42.803 6.633 4.251 17.802 10.414 18.289

Lameness A 9.155 1.596 1.049 3.385 1.037 3.853
B 27.643 5.995 4.556 12.214 7.276 12.124
C 11.243 1.996 2.812 2.538 2.865 4.067

Total 48.041 9.587 8.417 18.137 11.178 20.044

RGtreat-SC/PL: at least one treatment of the same category in previous lactation, RGtreat-SC/SL: at least one previous treatment of the
same category in the same lactation, RGtreat-OC/SL: at least one previous treatment of another category in the same lactation, RG-SCC:
high SCC in previous milk recording, RGtime-100: DIM ≤ 100.

Table A4. The number of other treatments occurring before the classified treatment for cows in RGtreat-OC/SL. Cows in the group
could have multiple previous treatments.

Other Previous Treatments

Treatment Farm Mastitis Lameness Metabolic Disorder Fertility Disorder

Mastitis A - 45 64 21
B - 299 668 473
C - 109 57 39

Lameness A 81 - 159 66
B 396 - 671 529
C 135 - 105 55
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