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Abstract: The stability of power systems is very sensitive to voltage or current variations caused by
the discontinuous supply of renewable power feeders. Moreover, the impact of these anomalies varies
depending on the sensitivity/resilience of customer and transmission system equipment to those
deviations. From any of these points of view, an instantaneous characterization of power quality (PQ)
aspects becomes an important task. For this purpose, a wavelet-based power quality indices (PQIs)
are introduced in this paper. An instantaneous disturbance index (ITD(t)) and a Global Disturbance
Ratio index (GDR) are defined to integrally reflect the PQ level in Power Distribution Networks
(PDN) under steady-state and/or transient conditions. With only these two indices it is possible to
quantify the effects of non-stationary disturbances with high resolution and precision. These PQIs
offer an advantage over other similar because of the suitable choice of mother wavelet function that
permits to minimize leakage errors between wavelet levels. The wavelet-based algorithms which
give rise to these PQIs can be implemented in smart sensors and used for monitoring purposes
in PDN. The applicability of the proposed indices is validated by using a real-time experimental
platform. In this emulated power system, signals are generated and real-time data are analyzed by a
specifically designed software. The effectiveness of this method of detection and identification of
disturbances has been proven by comparing the proposed PQIs with classical indices. The results
confirm that the proposed method efficiently extracts the characteristics of each component from the
multi-event test signals and thus clearly indicates the combined effect of these events through an
accurate estimation of the PQIs.

Keywords: power quality indices; signal processing; multi-resolution analysis; renewable
energy applications

1. Introduction

The extensive use of power-switching devices for source conditioning, renewable
energy supply and motion control in modern industrial applications has detrimental side-
effects on power quality, such as increase potential for unacceptable harmonic levels, poor
power factor, or unbalanced currents and voltages in power distribution networks. In
addition, transients caused by faults and switching events in power systems significantly
affect the power-transfer quality of a supply [1,2]. All these undesirable effects cause
huge economic losses [3] and require an effective power quality analysis in the grid and
affected facilities. Smart sensors proposals are rapidly increasing in response to these
new requirements [4–9]. Although the first applications were almost exclusively limited
to billing, they now include new features related to power quality detection and have a
common denominator: they require high processing speed to handle large computer data
in a shorter time. In this context it is crucial to provide a small number of parameters and
indicators that can effectively characterize all these events and derive from a very fast and
efficient analysis tool. This task is the main objective of this work.

The power quality index (PQI) is the summary of waveform distortions in voltage
and current from the perfect sinusoids. The PQIs are used to characterize the degree of
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quality degradation in a quantitative manner. They represent the impacts of non-ideal
waveforms on electrical power systems in a compact but expressive manner. Existing
indices such as Total Harmonic Distortion (THD), Power factor, Flicker factor, etc. reflect
the degree of power disturbance in each of these categories individually, but fail to assess
most of the phenomena mentioned together in an exhaustive and concise manner by a
single value [10].

Several methods have been applied to research the real-time behavior of controllers,
test and protection equipment [11] and fault diagnosis devices [12,13]. All of these applica-
tions, together with those mentioned above, have a positive and economic impact on the
industry. A measuring device integrated into the system offers the additional characteristic
of quantifying the various characteristics that affect power quality and thus identifies any
specific aspect that needs attention.

Power quality measurement and analysis has typically been divided between steady-
state concerns, such as harmonic distortion, and transient concerns, such as those resulting
from faults or switching transients. Fourier analysis has been applied to the first class of
problems while Joint Time-Frequency Analysis (JTFA), including wavelets, has traditionally
been used for the second class [14].

When using the discrete Fourier transform (DFT) in nonstationary situations, the
estimation of a time-varying signal during a specific time interval results in a serious
deterioration of measurement accuracy. The effect is equivalent to the frequency deviation
of the power system from its nominal value when measuring electrical signals [15,16]. To
avoid this problem, the Fourier Transform applied in time segments as the Short-Time
Fourier Transform (STFT) determines the frequency contents of a signal in each time
window. Nevertheless, the size of the window affects the capacity of multi-resolution
capability and the cost of the calculations is high. These deficiencies can be solved by using
the Discrete Wavelet Transform (DWT) that also avoids the problems of interference of
time and frequency distributions [17]. Besides, the DWT method offers a better time and
frequency resolutions for high and low-frequency components, respectively. This method
is best for locating disturbances in non-stationary conditions. However, the limitation of
the DWT uncertain can be a shortcoming that can be minimized by an appropriate choice
of the analyzing wavelet basic function. In this article, the Daubechies40 wavelet offers the
best results for the analyzed electrical signals present in power distribution networks.

Traditionally, DWT [18–24], the generalized S-transform (GST) [25–30], the Time-
Frequency distributions, and the Short-DFT (SDFT) [31] have been used for the analysis of
the transient and time-varying nature of disturbance signals in electric power systems. In
particular, power quality indices [32–38] have been defined using these transforms. Thus,
the estimation of standard time-varying PQIs is done based on a proper JTFA [32], adaptive
window-based fast generalized S-transform [33], empirical wavelet transform (EWT)-based
time-frequency technique [34], cluster analysis of long-term power quality (PQ) data [35],
wavelet packet transform [36], load composition rate and Euclidean norm of total harmonic
distortions [37], and global harmonic parameters for phasor measurement units [38]. Most
of these works use many PQIs in their proposals, for example, the global PQIs introduced
in [35] contain up to seven PQI factors. As will be shown later, only two PQIs are used
in the present work. Specific treatment of transient events is done in [39], whereas in [37]
only stationary distortion is considered. Thus, it is necessary to conceive a measure of
power quality in order to capture simultaneously both the “transient” characteristics of
disturbance signals in electrical power systems [39] and the stationary ones. Moreover, it
must be done with a minimum computational cost and using a single descriptive indicator.
Wavelet-based techniques are good candidates for this purpose. However, a method based
on empirical wavelet transform will work properly for off-line data processing but not for
real-time analysis due to its computational cost [34,40].

Due to their powerful characteristics, in this work, DWT and multiresolution analysis
(MRA) are chosen for the joint analysis of the stationary and transient parts of electrical
signals. These parts are extracted from a monitoring window to ensure the correct use of the
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DWT. In this way, the fundamental component of the electrical signal is extracted and the
window containing the transient disturbance is processed. Both aspects are subsequently
used to construct new DWT based power-quality indices that replace existing counterparts.
On the other hand, the main drawback of this method is based on its limitation in the
analysis of highly noisy signals. In these noisy conditions, the method has been proven to
work properly until the minimum value of 34 dB for the signal-to-noise ratio (SNR) [19],
which is more than enough for most of practical PQ events detections in low-voltage AC
power distribution networks.

Reference [41] presents an interesting overview of power quality in low-voltage DC
distribution networks. This study highlights the most relevant disturbances in DC networks
and how they can be accurately characterized by means of power quality indices, some of
which have been defined based on DFT. Due to the close relationship between the indices
defined in AC power system networks and DC networks, a characterization of PQ in
DC networks using the current DWT-based method seems to be interesting and deserves
future work. In this possible context, the implementation of the algorithms derived from
the present work in smart sensors may provide new functionalities for PQ improvement.
However, they could increase the power consumption requirements of such sensors. In
this way, reference [42] presents a useful study of the power requirement of functional
sensors in a traditional PV system. It is based on Neural Network maximum power point
tracking with cloud method and estimates the reduction percentage of power consumption
in functional sensors.

In this paper we propose two wavelet-based power quality indices, the Instantaneous
Disturbance Index (ITD) and the Global Disturbance Ratio (GDR), which comprehensively
assess the power transfer quality of a given supply in steady-state and/or transient situa-
tions. The proposed ITD instantly shows the evolution of the PQ. It has the advantage of
evaluating the PQ in real-time situations under any conditions and extracting the character-
istics of the disturbance for any load in the power distribution networks. In addition, GDR
has the advantage of assessing PQ by means of a single value and allows distinguishing
between different events, so the GDR can be used as an input in a disturbance classifier.
Therefore, the new PQ indices can identify properly practical waveform distortions in
power networks. They can also be used to evaluate both the effectiveness and dynamic
responses of PQ mitigation equipment in practical applications. In this work, a real-time
platform is being developed to experimentally validate the feasibility of the proposed PQI
measurement and analysis method.

The rest of this document is organized as follows: In Section 2, a simplified outline
of wavelet filter selection criteria is presented. Section 3 briefly describes the DWT-based
instantaneous indices used to evaluate PQ. Section 4 shows a detailed summary of the
proposed measurement process is shown. In Section 5, results are discussed. The last
section draws conclusions from the results.

2. Fundamentals of the Proposed Indices
2.1. Components Signal Estimation

The proposed estimation technique uses DWT and MRA for extracting the fundamen-
tal component of the input signal s(t), which can be described by wavelet coefficients [14,24]

s(t) =
2J

∑
k=1

aJ,k φJ,k(t) +
J

∑
j=1

2J

∑
k=1

dj,k ψj,k(t) (1)

where j and k are the wavelet frequency scale and wavelet time scale, respectively, J is the
highest j scale, i.e., the lowest frequency band; aJ,k and dJ,k are the wavelet coefficients; and
ψ(t) and ϕ(t) are the mother and scale wavelet functions, respectively. Equations (1)–(3)
present the basic concepts of MRA. The aim of MRA is to develop representations of a
complex signal f (t) in terms of scaling and wavelet functions.
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The digitized version of input signal s(t) is a sequence of n samples, s(n), which
can be processed in the same way as the DFT. In addition, the number of DWT levels
(decomposition) is limited by the number of the original signal samples, which in turn
must be a power of two.

Therefore, signal s(n) can be presented in terms of its frequency components, i.e.,
coefficient aJ,k, k = 1, . . . , 2J, is the smoothed version of signal s(n), and coefficients
dj,k, k = 1, . . . , 2J, j = 1, . . . , J are detailed versions of s(n). They contain the lower and
higher-frequency components, respectively [14].

s(n) = aJ(n) +
J

∑
j=1

dj(n) (2)

With
aj(k) = ∑

n
g(n− 2k)aj−1(k)

dj(k) = ∑
n

h(n− 2k)aj−1(k)
(3)

where aj and dj are the approximation and detail coefficients at level j, g(k) and h(k) are
the high pass and low pass filters corresponding to the scaling and wavelet filters. The
coefficients have half of the original input data due to the downsampling process.

For extracting the fundamental component of a signal by using MRA, the sampling
rate and, so, the number of MRA steps must be specified. If it is assumed that H is the
frequency band order with central frequency, ω/(2π), equal to fundamental frequency and
fs is the sampling frequency, the number of MRA steps, J, satisfies the following expression:

f s
2J = 2× H (4)

In this work has been assumed that the most important transients occurring in actual
situations of Power Distribution Networks (PDN) are captured into a frequency band of
6400 Hz, for fs = 1/TS = 12.8 kHz. It assures accurate results with J = 6.

2.2. Decomposition Structures of MRA Method

MRA method uses a decomposition structure based on Quadrature Mirror Filter
(QMF). QMF consists of two complementary filters, one low pass and the other high pass,
which disjoin the frequency range into two equal parts. They decompose the input signal
into two frequency intervals, the low pass filter output is downsampled and is used as new
input of another identical filter pair corresponding to the next decomposition level. This
operation is repeated recursively, decomposing the signal into approximation (a) and detail
(d) coefficients for various scales.

The coefficients of the scale g and wavelet h filters, and the efficiency of wavelet
analysis, are related to the selected mother wavelet. The right selection of the mother
wavelet is the main task to obtain the desired results in signal analysis with WMRA. In
this work, the selection of the analyzer function is based on the efficiency of the scale and
wavelet filters used for this purpose.

The QMF filters frequency response of the first level DWT decomposition is shown
in Figure 1. It depicts a comparison of the scale and wavelet filters between the db4,
db10, db20, db40, and dmey mother wavelets used on the MRA method. The filters
have overlapping frequency bands and energy leakage occurs between the two adjacent
bands affecting the obtained coefficients. It is less pronounced with db40 and dmey
mother wavelet.
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2.3. Wavelet Filters Selection

Several mother wavelets have been evaluated in order to select the most suitable for
the specific application of event detection and classification methods. In this paper, the
selection of an explicit wavelet is based on the following principles:

- Minimum frequency leakage of QMF in the first levels of decomposition.
- Number of filter coefficients.
- Similarity between classical THD (Total Harmonic Distortion Ratio) with the TWD

(Total Wavelet Disturbance Ratio) defined with wavelets.

The main selection criterion is the frequency selectivity. It is based on the magnitude
transition zone slope of the frequency response of the wavelet filters. The selected mother
wavelet will have better characteristics if the slope of both filters has the highest value and
the information dispersion related to the frequency content of the signal will be less. In this
way, a greater concentration of energy is obtained in single frequency bands.

A comparison between Fourier and Wavelet analysis is made to select the most
appropriated. The STFT has good performance with signals disturbed by harmonics.
According to the Parseval theorem, the energy of a signal can be decomposed in terms
of the energy of a and d coefficients, the selected mother wavelet will be that allocate the
signal energy correctly.

Figure 2a shows a signal that contains three harmonics, the 3rd (7% Urms), the 5th
(10% Urms), and the 9th (10% Urms). This signal is chosen to support the selection of the
best mother wavelet available. Figure 2b shows the FFT spectrum where the fundamental
harmonic has 97.570% of the total signal energy, the 3rd has 0.478% and both the 5th and 9th
have 0.976%. Figure 2c also shows as a bar graph the energy percentage of this disturbed
signal obtained with various mother wavelets. Table 1 shows the percentage of signal
energy achieved with the mother wavelets depicted in the legend of Figure 2c.

Table 2 shows the THD and TWD results calculated, the results are similar excluding
bior6.8 and db10 ones.

According to Table 1, the mother wavelets with the best frequency response cor-
rectly distribute the energy of the signal according to the FFT spectrum (Figure 2). There-
fore, the db40 and dmey wavelets are the best mother wavelets. Since the db40 wavelet
has fewer coefficients than the dmey wavelet, the db40 is the mother wavelet with the
best performance.
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Table 1. Energies (%) of voltage signal decomposition shown in Figure 2.

f(Hz) a6
0–100

d6
100–200

d5
200–400

d4
400–800

d3
800–1600

d2
100–200

d1
3200–6400

db10 97.6142 0.4378 1.1561 0.7912 0.0007 0.0000 0.0000
db20 97.5719 0.4610 1.0966 0.8706 0.0000 0.0000 0.0000

sym20 97.5705 0.5844 0.9745 0.8706 0.0000 0.0000 0.0000
db30 97.5704 0.4616 1.0550 0.9130 0.0000 0.0000 0.0000

bior6.8 97.2315 0.7903 1.1931 0.7817 0.0035 0.0000 0.0000
db40 97.5699 0.4673 1.0257 0.9371 0.0000 0.0000 0.0000
dmey 97.5705 0.4905 1.0116 0.9274 0.0000 0.0000 0.0000

Table 2. Total Harmonic Distortion (THD) and Total Wavelet Disturbance Ratio (TWD) of voltage
signal decomposition shown in Figure 2.

THD TWD
db10

TWD
db20

TWD
sym20

TWD
db30

TWD
bior6.8

TWD
db40

TWD
dmey

15.7797 15.6335 15.7751 15.7798 15.7801 16.8741 15.7818 15.7796

3. Quantitative Formulations of Steady-State and Transient Power Quality Aspects

This formulation is based on the IEC 61000-4-7 standard [43], EN-50160 standard [44]
and the IEEE Std 1159™-2009 [45] guidelines, in order to fulfil the essential requirements
and to define the characteristics of the supplied voltage and the most common disturbances.

3.1. DWT-Based Disturbance Ratio

The Total Harmonic Distortion ratio (THD) for single-phase networks (or polyphase
balanced networks) has been defined traditionally as [43,46]

THD =

√
H
∑

h=2
S2

k

S1
· 100 H =

fm

2 · f0
(5)

THD =

√
S2 − S2

1

S1
· 100 (6)

where S denotes RMS value of signal s(n), S1 denotes fundamental component of s(n), and
Sk the k component of s(n). Using the MRA tool, S is given by
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S =
√

Sa2
J + ∑

j≤J
Sd2

j (7)

Here SaJ, is the RMS value of the N samples signal aJ(n) in the lowest frequency band
J, where the fundamental component S1 is included. {Sdj} is the set of RMS values of dj(n)
signal in the higher frequency band, or wavelet-level lower than or equal to the scaling
level J. Then, the Total Wavelet Disturbance ratio TWD [47] is defined as

TWD =

√
∑

j≤J
Sd2

j

SaJ
· 100 (8)

3.2. DWT-Based Instantaneous Disturbance Ratio

The Instantaneous Transient Disturbance ratio (ITD(n)), the transient version of TWD,
is defined (9) in terms of the time-scale distribution of the MRA components:

ITD(n ) =

√
∑

j≤J
d2

j (n)

AJ
· 100 (9)

where AJ is the fundamental energy component defined as:

A2
J =

1
N

N

∑
n=1

a2
J (n) (10)

It can be seen that SaJ is identical to AJ.
The definition of the ITD(n) can be interpreted as a “time-varying” power quality

evaluation determined by the time-frequency localized energy ratio of the disturbance
events to the fundamental frequency energy.

As an instantaneous quantity, the proposed ITD(n) index can reveal the time-varying
characteristics of the transient disturbance for assessment purposes.

The time-varying signature can be quantified as a single number, as in the case of
steady-state disturbances. Therefore, a “transient-interval average” of the ITD(n), <ITD>,
can be defined over a sample interval N as follows:

〈ITD〉 = 1
N

N

∑
n=1

ITD(n) (11)

Note that <ITD> is almost identical to THD when only steady-state disturbances are
presented in the signal.

The non-stationary events duration is a very relevant parameter to be considered. It
can be measured with high precision by the wavelet procedure used in this work. Then a
Global Disturbance Ratio, GDR, can be defined,

GDR =

(
1 +

T0

T

)
〈ITD〉 (12)

where T0 is the duration of the transient disturbance and T is the time interval window
used. The selection of the time interval (T0) can be determined by the time index of the
first maximum peak value of the ITD(n), t0, and the time index of the last maximum peak
value of the ITD(n), t0 + T0. Only if steady-state disturbances are present in the signal,
GDR = <ITD>, otherwise GDR is greater than <ITD>.

Consequently, the proposed index GDR is the transient-interval average, <ITD>, plus
its magnitude weighted by a term related to the event duration.
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A loaded power network with sinusoidal voltages yields an ideal null GDR. Con-
versely, a high value of GDR would indicate a high level of steady-state and/or transient
disturbances, with the contribution of each event aspect well defined and measured. Note
that the proposed index GDR presents the advantage over the THD of distinguishing
transients and stationary events. The duration of the disturbance plays a significant role in
the GDR index.

4. Measurement Process
4.1. Developed Platform

In this work, a developed platform is used to test the effectiveness of the proposed
indices under common real-time working conditions (Figure 3). This procedure permits
the emulation of actual power systems. In this context, the proposed instantaneous indices
are suitable.
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Figure 3. Developed system scheme: Voltage generator with preset disturbances, power amplifier,
and signal conditioner, load and Power Quality Analyzer.

The developed system consists of a signal generator that allows the design of any
kind of disturbance. This signal is amplified, conditioned and applied to a real load.
Finally, the voltage and current are measured on the load side and processed in a power
quality analyzer.

Matlab® software has been used to program a virtual signal generator, called Sigen,
which allows a complete configuration of the signals required for testing. Sigen mainly
generates a pattern based on the parameters defined by the user; thus, steady-state and/or
transient-state disturbances can be modelled. The Graphical user interface of single-phase
Sigen is shown in Figure 4.

The processes of Sigen are performed to complete the effective generation of electric
signals, as follows.

• First, electrical inputs signals are defined and the user sets their parameters.
• Second, signals according to these specifications are built.
• Finally, the designed signals are sent to a file or to the data acquisition board (DAQ).

Sigen is designed to program disturbances as described in IEEE standard 1159-09 for
monitoring electric power quality [45].

The design is based on generating single or three-phase voltages and line currents.
Generated data sets are obtained from a host PC in data files with the American Stan-
dard Code for Information Interchange format compatible with the most popular data
analysis tools.

The host PC is equipped with the NI USB-6259; it is a 16-Bit High-Speed M Series Mul-
tifunction DAQ for USB. It acquires eight differential inputs. Analog inputs are converted
with 16 bits of resolution sampled at 1.25 MS/s. Voltage and current sensors are built
with Hall Effect voltage and current transducers, type LV25-P and LA25-NP, respectively.
Low-level voltage signals proportional to the phase-neutral voltages are available.



Sensors 2021, 21, 1348 9 of 17

Sensors 2021, 21, x FOR PEER REVIEW 9 of 18 
 

 

 
Figure 4. Graphical user interface of the Sigen system. 

At the final stage, an amplifier section increases the voltage signals up to the grid 
voltage level. A decisive request remains on the amplifier section since it must ensure 
accurate and constant gain and phase shift overall bandwidth required. A Pacific Power 
Source Model 320 is used as a power amplifier to fulfill all the proposed requirements 
(output voltage up to ±600 peak volts; maximum output power: 1.2 kVA; bandwidth (30–
5 kHz) at full power; THD < 0.2%). 

Disturbed voltage signals at the grid level are generated for studying Power Quality 
Events in several types of loads. 

The generated voltage signals are used to simulate a power system with actual volt-
age sources and arbitrary loads. It can process polyphase sinusoidal voltages added with 
simple or multiple disturbances. 

The power-quality analyzer is a virtual device that processes the signal data file from 
an A/D converted connected to the signal conditioner (Figure 5). A control program de-
veloped in MATLAB® diagnoses quality aspects of the input signals, such as frequency 
stability, distortion level, symmetry of three-phase signals (balance between phases R, S 
and T), and others that can be inferred from the graphical user interface of Figure 4. 

In order to carry out this diagnosis, the system can measure and present/display the 
graphs (with its time evolution): 
• Instantaneous network frequency, following its changes at intervals of measurement 

of one cycle, considering deformed signals and with adding noise. 
• Harmonics, represented in phasor form using two bar charts, one for magnitudes and 

another for phases. 
• Instantaneous PQI and coefficients of power quality indices (percent), and a presen-

tation of the data corresponding to the signals. 
• DWT coefficients with a representation of the wavelet level selected by the user. 
• Three-phase signals of voltage and current, or in its place, their respective fundamen-

tal symmetrical components, i.e., the fundamental components of positive, negative 
and zero sequences. 
Furthermore, the PQ System analyzer computes power quantities in Wavelet and 

Fourier domain specified by IEEE standard 1459–2010 [46]. 
The developed platform and the proposed indices can be further used in real-time 

for both monitoring and detecting faults in power networks [20] and electrical machinery 
[48]. By means of a signal-based fault diagnosis method, the proposed novel indices can 
be applied to loads such as induction motors, power converters, and mechanical compo-
nents. 

Figure 4. Graphical user interface of the Sigen system.

At the final stage, an amplifier section increases the voltage signals up to the grid
voltage level. A decisive request remains on the amplifier section since it must ensure
accurate and constant gain and phase shift overall bandwidth required. A Pacific Power
Source Model 320 is used as a power amplifier to fulfill all the proposed requirements
(output voltage up to ±600 peak volts; maximum output power: 1.2 kVA; bandwidth
(30–5 kHz) at full power; THD < 0.2%).

Disturbed voltage signals at the grid level are generated for studying Power Quality
Events in several types of loads.

The generated voltage signals are used to simulate a power system with actual voltage
sources and arbitrary loads. It can process polyphase sinusoidal voltages added with
simple or multiple disturbances.

The power-quality analyzer is a virtual device that processes the signal data file from
an A/D converted connected to the signal conditioner (Figure 5). A control program
developed in MATLAB® diagnoses quality aspects of the input signals, such as frequency
stability, distortion level, symmetry of three-phase signals (balance between phases R, S
and T), and others that can be inferred from the graphical user interface of Figure 4.

In order to carry out this diagnosis, the system can measure and present/display the
graphs (with its time evolution):

• Instantaneous network frequency, following its changes at intervals of measurement
of one cycle, considering deformed signals and with adding noise.

• Harmonics, represented in phasor form using two bar charts, one for magnitudes and
another for phases.

• Instantaneous PQI and coefficients of power quality indices (percent), and a presenta-
tion of the data corresponding to the signals.

• DWT coefficients with a representation of the wavelet level selected by the user.
• Three-phase signals of voltage and current, or in its place, their respective fundamental

symmetrical components, i.e., the fundamental components of positive, negative and
zero sequences.

Furthermore, the PQ System analyzer computes power quantities in Wavelet and
Fourier domain specified by IEEE standard 1459–2010 [46].

The developed platform and the proposed indices can be further used in real-time for
both monitoring and detecting faults in power networks [20] and electrical machinery [48].
By means of a signal-based fault diagnosis method, the proposed novel indices can be
applied to loads such as induction motors, power converters, and mechanical components.
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4.2. PQI Measurements

Different kinds of power quality disturbances are applied through the power voltage
amplifier to linear and nonlinear loads. In these loads, voltages and currents are taken by
the PQ System Analyzer.

For the voltage quality assessment, instantaneous frequency measurement is per-
formed which enables synchronization between the signal period and the sampling se-
quence.

For the considered voltage and current windows specified by IEC standard 61000-
4-30 [49], time-frequency-based quality aspects are calculated by the DWT. For the case
of 12.8-kHz sampling rate in the Sigen system, Table 3 summarizes the frequency band
information for different wavelet analysis levels. The db40 mother wavelet is applied in
MRA of the voltage and current signals.

Table 3. Frequency bands and harmonics of six levels of the Discrete Wavelet Transform (DWT).

Level Freq. Band (Hz) Odd Band Harmonics

7 (d1) 3200–6400 63rd–127rd (odd num.)
6 (d2) 1600–3200 33rd–63rd (odd num.)
5 (d3) 800–1600 17th–31st (odd num.)
4 (d4) 400–800 9th, 11th, 13th, 15th
3 (d5) 200–400 5th, 7th
2 (d6) 100–200 3rd
1 (a6) DC-100 1st

According to Equations (5), (6), (8), (9), (11) and (12) the PQIs are computed. The PQ
indices have been tested on a variety of stationary, non-stationary single-phase signals as
well as balanced or unbalanced three-phase signals.

To measure properly disturbances with a higher duration than the considered window,
the PQ system analyzer provides a GDR history tool to save stored data of the GDR index.

The fundamental component of the grid voltage presented in all the used test signals
is distorted by harmonics and/or non-stationary events, in accordance with both, the IEEE
standard 1159-2009 [45] and the European standard EN-50160 [44].
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5. Illustrative Results

To show the effectiveness of GDR and <ITD>, TWD, and THD indices are also calcu-
lated and the result obtained has been compared in two examples sets. In all of them, the
grid voltage waveform contains a fundamental component of 230 Vrms, 50 Hz of nominal
frequency, and stationary and/or transient disturbances. In the first set, a group of signals
with single disturbances and almost identical THD index are considered. In the second set,
complex signals with more significant and combined disturbances are studied.

5.1. Voltages Waveform with Similar THD

Several disturbed voltage waveforms extracted from the developed platform are an-
alyzed. In particular, the considered signals are three voltage sags and two swells with
different duration and amplitude, three oscillatory transients with distinct frequency and
duration, a steady-state distorted voltage with three harmonics (5th, 7th, and 9th with rela-
tive amplitudes depicted in the FFT spectrum of Figure 6) and a flicker disturbance. Some
of them are depicted in Figure 7 and they all only have in common a similar THD value.Sensors 2021, 21, x FOR PEER REVIEW 12 of 18 
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These voltage signals are applied to linear and nonlinear loads, and the resulting load
currents are analyzed in our PQ System Analyzer too. The corresponding voltage FFT
spectra are shown in Figure 7. The ITD(t) of the signals shown in Figure 6 are respectively
depicted in Figure 8. The first ITD(t) at the left top of Figure 8 shows two peak values:
3.1% at 31.1 ms and 2.7% at 146.2 ms. The second ITD(t) at the right top shows two peak
values: 3.3% at 21.2 ms and 2.5% at 136 ms. The peak values in both signals are associated
with the depth/crest of the corresponding sag/swell. The ITD(t) attaching to oscillatory
transient of Figure 8 shows a peak value of 44.27% at 53 ms. In this context, the peak values
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indicate that the oscillatory transient is a more severe event than the harmonic distortion.
However, it presents the shortest time duration and the highest frequency content of the
five disturbances (FFT spectra of Figure 7). The ITD(t) for steady-state conditions do not
offer any new relevant information over the THD, nevertheless <ITD> is almost identical
to THD (Table 4). In this case, the error between both quantities is less than 0.5%.
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Table 4 provides the quantities obtained for all the examples discussed in terms of their
respective duration (T0), Vrms value and time-frequency based transient power quality
indices. It can be seen that THD is almost the same for all disturbed signals even if they
correspond to different classes of disturbances. TWD is similar to THD in those signals
in which the frequency bands are far from the fundamental energy component. On the
contrary, in those with the frequency components near to the fundamental, the values are
very different and the duration of the disturbance does not make any substantial difference.
Instead, GDR and <ITD> assessments are more consistent with the energy content of these
disturbance signals.

Table 4. Summary of Power Quality Indices for the case A.

Sag1 Sag2 Sag3 Harmonics Transient1 Transient2 Transient3 Flicker Swell1 Swell2

T0 (ms) 120.62 80.31 60.22 0 82.89 57.42 28.12 0 120.62 80.62

Vrms (V) 212.67 218.35 220.65 230.54 230.53 230.56 230.42 230.54 251.63 244.18

THD 6.8826 6.8857 6.8821 6.8608 6.8410 6.8852 6.8469 6.8589 6.8784 6.8742

TWD 0.6491 0.6515 0.7078 6.8607 6.8407 6.8848 6.8425 4.6067 0.6564 0.6610

<ITD> 0.3279 0.3329 0.3552 6.4397 3.8688 3.3018 2.2395 4.0494 0.3284 0.3409

GDR 0.5257 0.4765 0.4628 6.4397 5.4723 4.2498 2.5544 4.0494 0.5265 0.4783
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The ITD(t) (Figure 8) shows the instantaneous character of the disturbance noting
the relevance of any suddenly introduced change. Instead, its averaged energy over
the observation window is considered by the GDR. Furthermore, the GDR permits to
distinguish between different disturbances and can be used for classification purposes. In
particular, the GDR differentiates the proposed disturbances, with almost the same THD,
by giving importance to both, the amplitude and the duration of the disturbance. This
index offers the advantage to indicate clearly the most relevant of them, as can be seen in
Table 4 for any kind of the disturbances numbered as “1”. So transient events are perfectly
characterized by this procedure. Nevertheless, the studied sag and swell signals have the
same frequency contents and are undistinguished by all the indices, so the RMS value has
to be considered as an assisting index.

5.2. Disturbances Combination in Voltage Waveforms

In practical situations, a PQ event usually consists of a combination of singular
disturbances, most of them treated in case A. Therefore, a set of complex disturbed signals
with more severe and combined effect are studied.

Figure 9a depicts the ITD(t) corresponding to a pronounced sag. It shows two peak
value: 5.5% at 56.25 ms and 3.3% at 147.25 ms. Figure 9b shows this index for a combination
of the mentioned sag and a steady-state distorted voltage with five harmonics (3rd, 5th,
7th, 9th, and 11th and Vrms equal to 10 V, 17 V, 7 V 13 V, and 3 V, respectively). The ITD(t)
resulting from a steady-state distorted voltage only with the five harmonics is provided in
Figure 9c. In addition, Figure 9d shows this index for a combination of the same steady-
state voltage and an important transient oscillation. The ITD(t) of a voltage disturbed only
with this single transient is shown in Figure 9e. It has a peak value of 30% at 127 ms.



Sensors 2021, 21, 1348 14 of 17

In this case, the waveform offers more relevant changes than the previous set of
examples because more substantial disturbances are present. When the signal is disturbed
with two events, both are evinced in ITD(t) graph.

The PQ indices obtained are presented in Table 5. By comparing the values obtained,
the GDR index remarks the effect of the disturbances combination. As it can be observed
from Table 5, the proposed index is the only one capable to indicate clearly the accumulative
effect of the combined events in complex signals. Although the GDR index has not the
additivity property, it performs the indication by significantly increasing its relative value
when distinct disturbances are present.Sensors 2021, 21, x FOR PEER REVIEW 15 of 18 
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Table 5. Summary of Power Quality Indices for case B.

Sag Sag + Harmonics Harmonics Harmonics + Transients Transients

T0 (ms) 100.62 100.62 0 62.81 62.81

Vrms 200.30 201.51 231.36 232.14 230.79

THD 16.8966 20.2710 10.8804 13.6716 8.2782

TWD 1.2597 11.0999 10.8804 13.6705 8.2766

<ITD> 0.7170 10.0536 10.1025 12.2901 4.1376

GDR 1.0778 15.1118 10.1025 16.1499 5.4370

6. Conclusions

The motivation for this work stemmed from the growing need for a more effective
analysis of power quality in electrical systems and equipment. In this way, the main
contribution of this research is the introduction of a novel wavelet-based single indicator,
designated global disturbance ratio (GDR) that has been tested on real signals to address an
integral assessment of the electrical network PQ. The objective of these test is to guarantee
the applicability of such index to smart network sensors in particular, and to PQ monitoring
in general. To this end, a PQ System Analyzer based on wavelet techniques is developed,
turning out to be an effective device to verify the behavior of the proposed indices.

The GDR is based on an instantaneous index ITD(t), which is also introduced, and
considers two quality aspects of the electrical signal: steady-state power quality relative to
harmonic level, and the non-stationary index relative to oscillatory transients or sudden
amplitude changes in the signal.

In the initial theoretical stage of signal analysis it is remarkable the mother wavelet
selection procedure used to guarantee the most accurate frequency decomposition of the
voltage signal under steady-state and non-stationary events.

The applicability of the GDR and ITD(t) is illustrated for typical source-load configu-
rations. The proposed PQIs have been tested on single-phase stationary and non-stationary
complex signals, as well as three-phase balanced and unbalanced signals.

Finally, the ITD(t) and GDR indices are a powerful tool for detecting and monitoring
non-stationary signal components and they can extract relevant characteristics. In particu-
lar, the GDR index may be applied as the input of a classifier. In this sense, the authors are
working on the physical implementation of an intelligent sensor based on a DSP, which
provides the proposed PQIs. This guideline deserves future research.
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35. Jasiński, M.; Sikorski, T.; Kostyła, P.; Leonowicz, Z.; Borkowski, K. Combined cluster analysis and global power quality indices

for the qualitative assessment of the time-varying condition of power quality in an electrical power network with distributed
generation. Energies 2020, 13, 2050. [CrossRef]

36. Morsi, W.G.; El-Hawary, M.E. Wavelet Packet Transform-Based Power Quality Indices for Balanced and Unbalanced Three-Phase
Systems Under Stationary or Nonstationary Operating Conditions. IEEE Trans. Power Deliv. 2009, 24, 2300–2310. [CrossRef]

37. Jo, S.; Son, S.; Park, J. On Improving Distortion Power Quality Index in Distributed Power Grids. IEEE Trans. Smart Grid 2013, 4,
586–595. [CrossRef]

38. Granados-Lieberman, D. Global harmonic parameters for estimation of power quality indices: An approach for PMUs. Energies
2020, 13, 2337. [CrossRef]

39. Shin, Y.; Powers, E.J.; Grady, M.; Arapostathis, A. Power quality indices for transient disturbances. IEEE Trans. Power Deliv. 2006,
21, 253–261. [CrossRef]

40. Sahani, M.; Dash, P.K.; Samal, D. A real-time power quality events recognition using variational mode decomposition and
online-sequential extreme learning machine. Meas. J. Int. Meas. Confed. 2020, 157, 107597. [CrossRef]

41. Barros, J.; de Apráiz, M.; Diego, R.I. Power quality in DC distribution networks. Energies 2019, 12, 848. [CrossRef]
42. Chang, S.; Wang, Q.; Hu, H.; Ding, Z.; Guo, H. An NNwC MPPT-Based energy supply solution for sensor nodes in buildings and

its feasibility study. Energies 2019, 12, 101. [CrossRef]
43. IEC 61000-4-7. Electromagnetic Compatibility (EMC)—Part 4-7: Testing and Measurement Techniques—General Guide on Harmonics

and Interharmonics Measurements and Instrumentation, for Power Supply Systems and Equipment Connected Thereto; International
Electrotechnical Commission: Geneva, Switzerland, 2008.

44. EN 50160: Voltage Characteristics of Electricity Supplied by Public Distribution Network; British Standards: London, UK, 2010.
45. IEEE Recommended Practice for Monitoring Electric Power Quality; IEEE Std 1159-2019 (Revision of IEEE Std 1159-2009); Institute of

Electrical and Electronics Engineers: Piscataway, NJ, USA, 2019; pp. 1–98.
46. IEEE Standard Definitions for the Measurement of Electric Power Quantities under Sinusoidal, Nonsinusoidal, Balanced, or Unbalanced

Conditions; IEEE Std 1459-2010 (Revision of IEEE Std 1459-2000); Institute of Electrical and Electronics Engineers: Piscataway, NJ,
USA, 2010; pp. 1–50.

47. Morsi, W.G.; El-Hawary, M.E. Reformulating Power Components Definitions Contained in the IEEE Standard 1459–2000 Using
Discrete Wavelet Transform. IEEE Trans. Power Deliv. 2007, 22, 1910–1916. [CrossRef]

48. Gritli, Y.; Zarri, L.; Rossi, C.; Filippetti, F.; Capolino, G.; Casadei, D. Advanced Diagnosis of Electrical Faults in Wound-Rotor
Induction Machines. IEEE Trans. Ind. Electron. 2013, 60, 4012–4024. [CrossRef]

49. IEC 61000-4-30:2015. Electromagnetic Compatibility (EMC)—Part 4-30: Testing and Measurement Techniques—Power Quality Measure-
ment Methods; International Electrotechnical Commission: Geneva, Switzerland, 2015.

http://doi.org/10.1109/TIA.2014.2356639
http://doi.org/10.3390/en11092328
http://doi.org/10.3390/en10010107
http://doi.org/10.1109/TIM.2017.2761239
http://doi.org/10.1109/TIE.2019.2952823
http://doi.org/10.1109/61.796235
http://doi.org/10.1109/TPWRD.2005.852333
http://doi.org/10.1049/iet-smt.2011.0202
http://doi.org/10.1109/TPWRD.2014.2355296
http://doi.org/10.3390/en13082050
http://doi.org/10.1109/TPWRD.2009.2027496
http://doi.org/10.1109/TSG.2012.2222943
http://doi.org/10.3390/en13092337
http://doi.org/10.1109/TPWRD.2005.855444
http://doi.org/10.1016/j.measurement.2020.107597
http://doi.org/10.3390/en12050848
http://doi.org/10.3390/en12010101
http://doi.org/10.1109/TPWRD.2007.899777
http://doi.org/10.1109/TIE.2012.2236992

	Introduction 
	Fundamentals of the Proposed Indices 
	Components Signal Estimation 
	Decomposition Structures of MRA Method 
	Wavelet Filters Selection 

	Quantitative Formulations of Steady-State and Transient Power Quality Aspects 
	DWT-Based Disturbance Ratio 
	DWT-Based Instantaneous Disturbance Ratio 

	Measurement Process 
	Developed Platform 
	PQI Measurements 

	Illustrative Results 
	Voltages Waveform with Similar THD 
	Disturbances Combination in Voltage Waveforms 

	Conclusions 
	References

