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Abstract: Among various methods for frequency recognition of the steady-state visual evoked
potential (SSVEP)-based brain-computer interface (BCI) study, a task-related component analysis
(TRCA), which extracts discriminative spatial filters for classifying electroencephalogram (EEG)
signals, has gathered much interest. The TRCA-based SSVEP method yields lower computational
cost and higher classification performance compared to existing SSVEP methods. In spite of its
utility, the TRCA-based SSVEP method still suffers from the degradation of the frequency recognition
rate in cases where EEG signals with a short length window are used. To address this issue, here,
we propose an improved strategy for decoding SSVEPs, which is insensitive to a window length
by carrying out two-step TRCA. The proposed method reuses the spatial filters corresponding to
target frequencies generated by the TRCA. Followingly, the proposed method accentuates features
for target frequencies by correlating individual template and test data. For the evaluation of the
performance of the proposed method, we used a benchmark dataset with 35 subjects and confirmed
significantly improved performance comparing with other existing SSVEP methods. These results
imply the suitability as an efficient frequency recognition strategy for SSVEP-based BCI applications.

Keywords: brain-computer interface (BCI); electroencephalography (EEG); steady-state visual
evoked potential (SSVEP); canonical correlation analysis (CCA); task-related component analysis
(TRCA); two-step task-related component analysis (TSTRCA)

1. Introduction

The brain-computer interface (BCI) provides a bidirectional system between the hu-
man brain and external devices by decoding electrical brain waves measured in specific
environments. Among various measurements of brain activities, electroencephalography
(EEG) is the most common tool in BCI systems due to inexpensive cost, portability, us-
ability, and so forth [1]. EEG-based BCI may help severely disabled people, which is used
in rehabilitative applications and the internet of medical things (IoMT) [2,3]. Typically,
in years past, real-time BCI applications such as brain-controlled vehicles (BCVs) [4] and
brain-controlled wheelchairs (BCWs) [5] that can be facilitated in daily life have received
enormous attention. To control these applications, in the BCI study, EEG signals can be
divided into different forms depending on the purpose of use, its type, and so on. Among
those forms, steady-state visual evoked potential (SSVEP) has attracted much attention
due to the high communication rate, classification accuracy, and high signal-to-noise ra-
tio (SNR) [6,7]. Driven by these advantages, the number of SSVEP-based real-time BCI
applications have resulted in remarkable achievements [4,5,8,9].

In SSVEP-based BCIs, in terms of detection target frequency among visual stimuli
with specific frequencies and spatial filtering techniques have been widely developed
due to high SNR by removing the external noise of EEG signals caused by artifacts and
eye blinks. Recently, canonical correlation analysis (CCA) has been presented to identify
target frequency based on the use of sinusoidal signals as reference signals [10]. Due to its
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high efficiency and easy implementation, CCA has been widely utilized in SSVEP-based
BCI research. Moreover, according to other studies [11,12], CCA with a high information
transfer rate (ITR) has shown great potential in online BCI applications. However, due
to the interference in spontaneous EEG signals, CCA may suffer from its degradation of
detection performance. To address this issue, in much of the literature, a number of variants
of CCA have been proposed to achieve higher frequency recognition performance. For
example, individual CCA (IT-CCA) [12], L1-regularized multi-way CCA (L1-MCCA) [13],
multiset CCA (MsetCCA) [14], and latent common source extraction (LCSE) [15] have
gained interest among BCI communities. Among those, the combination of the standard
CCA and IT-CCA has led to the highest performance [16].

As another approach, several spatial filtering methods have shed light on frequency
recognition to extract task-specific source activities from EEG signals. Among them, the
task-related component analysis (TRCA) [17] has been developed to extract the spatial
filter closely related to task-specific by finding the maximum correlation of the internal
component between trials. Based on this approach, Nakanishi et al. introduced TRCA into
the SSVEP-based BCI, leading to the best performance among existing methods [18]. The
TRCA method achieved ITR of 325.33± 38.17 bits/min, implying practicality in real-life BCI
application. More recently, an ensemble approach for incorporating a generated spatial filter
has shown significant improvement to frequency recognition regardless of time window
length [16]. In this line of thought, fusing all the canonical correlation coefficient of CCA
yielded robust results and improved performance in terms of classification accuracy and
ITR compared to CCA [19]. However, in spite of several advantages of the aforementioned
methods, SSVEP-based BCI still suffers from the degradation of performance in cases
where a short time window (TW) of EEG signals is used. In order to be available in online
SSVEP-based BCI applications, robustness regarding the TW is an essential property of
frequency recognition in SSVEP.

In this study, we present a novel frequency recognition method for SSVEP-based BCI
by expanding the concept of the standard TRCA. The proposed method consists of two
subsequent steps, which is referred to as a two-step TRCA (TSTRCA). First, we generate
the subject-specific spatial filter using the standard TRCA. Then, motivated by an ensemble
approach, the target frequency recognition is carried out by ensembling and emphasizing
discriminative information from the correlation between the individual templates and
test data. Thus, the proposed TSTRCA method can improve performance in a short TW
by reflecting the correlation of inter-subjects as well as inter-sessions and accentuating
features as ensemble classifiers. We validated the frequency recognition performance of
the proposed method using the SSVEP benchmark dataset, comprised of 35 subjects [20].
In addition, we compared the average accuracy and ITR of the proposed TSTRCA with
CCA, extended CCA (ExtCCA), and TRCA.

The rest of this paper is organized as follows: Section 2 presents an introduction of
the benchmark SSVEP dataset and describes existing methods and the proposed method.
In Section 3, the experimental results are exhibited. Section 4 provides the conclusion of
this study.

2. Materials and Algorithms
2.1. Benchmark SSVEP EEG Dataset and Preprocessing

In this study, the benchmark SSVEP dataset provided by Wang et al. [20] was utilized
to evaluate the proposed method. Thirty-five healthy subjects, consisting of seventeen
females and eighteen males, participated in an SSVEP experiment by staring at an offline
40-target BCI speller (5 × 8 character matrix), each with a different frequency. The 40-target
BCI speller has a range between 8 Hz and 15.8 Hz with an interval of 0.2 Hz. The SSVEP
EEG signals were recorded with 64 channels, sampled at 1000 Hz, and band-pass filtered
between 0.15 Hz and 200 Hz. A notch filter at 50 Hz was employed in order to remove
power-line interference. For each subject, the dataset was made up of a total of 6 s per trial,
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and one trial was repeated six times. In each trial, a visual cue indicating the beginning of
the experiment appeared for 0.5 s.

All 40 target frequencies were presented randomly to all subjects. After the end of
the visual stimulation, it was blanked for 0.5 s before the next experiment was presented.
During the experiment, the subject was asked to avoid blinking and a suitable rest was also
provided between two consecutive trials.

To facilitate the signal-processing analytics, the SSVEP datasets were further prepro-
cessed. Firstly, the band-pass filter with an IIR filter was applied to all data epochs. The
frequency range was considered from 7 Hz to 90 Hz. Then, as shown in [20], considering
a latency delay in the visual system, the SSVEP data were extracted between 0.64 s and
0.64 + ds from each epoch, where ds is the length of TW for frequency recognition. The
supplementary information for this dataset was elucidated in [20].

2.2. Conventional SSVEP Frequency Recognition Methods

In this section, we first provide a brief introduction of the conventional SSVEP fre-
quency recognition methods such as CCA, ExtCCA, and TRCA, which is followed by
the proposed method. Then, the frequency recognition using a filter bank approach,
which is known as its capability to improve the performance of standard SSVEP methods,
is provided.

2.2.1. Standard Canonical Correlation Analysis

CCA is a conventional statistical method to explore the underlying correlation between
two sets of multidimensional variables. Assume that multidimensional signals are given as
X ∈ RD1×T and Y ∈ RD2×T ; CCA aims at finding a pair of weight vectors, wx ∈ RD1×1 and
wy ∈ RD2×1, which maximize the correlation between their linear combinations x = wx

TX
and y = wy

TY. Formally, the correlation coefficient of CCA is given by

ρ =
E[xyT]√

E[xxT]E[yyT]

=
wx

TXYTwy√
wx TXXTwx

√
wyTYYTwy

(1)

where ρ is the Pearson correlation coefficient between x and y. Then, the weight vectors
wx and wy based on CCA is obtained by maximizing the correlation ρ in Equation (1).
Formally, this problem for finding the weight vectors wx and wy can be represented by

arg max
wx , wy

ρ = wx
TXYTwy

s.t. wx
TXXTwx = 1, wy

TYYTwy = 1
(2)

Then, the optimal weight vectors are obtained through a generalized eigenvalue
problem [21]. Here, the maximum of ρ regarding the weight vectors is referred to as the
maximum canonical correlation.

In the SSVEP-based BCI, CCA has been widely used for frequency recognition by
obtaining the maximum canonical correlation between test signals of SSVEP EEGs and
reference signals [10]. In addition, the reference signals are composed of sinusoidal signals,
denoted as Zi ∈ R2Nh×Ns , i = 1, 2, · · · , N f , which is given by

Zi =


sin(2π fit)
cos(2π fit)

. . .
sin(2πNh fit)
cos(2πNh fit)

, t =
1
Fs

,
2
Fs

, . . . ,
Ns

Fs
(3)

where, Nh is the number of harmonics, Ns is the number of sample points, N f is the number
of target frequencies, and Fs is the sampling rate. However, for the reference signals, it is
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difficult to determine the appropriate number of harmonics. Therefore, in the current study,
we employed the individual template proposed by IT-CCA as the reference signals [12].
The test signal consists of a single trial of multichannel EEG signals, written as X ∈ RNc×Ns ,
where Nc denotes the number of channels.

Finally, the target frequency is identified in the cases where the correlation coefficient
ρi—calculated by CCA between a test signal and each reference signal—is at its maximum,
as follows:

ftarget = max
i

ρi, i = 1, 2, · · · , N f (4)

2.2.2. Extended Canonical Correlation Analysis

In [12,22], ExtCCA enhanced the signal to noise (SNR) of SSVEP by combining two
frequency recognition methods, i.e., the standard CCA and IT-CCA. IT-CCA is a variant
of the standard CCA in that the individual templates are used as the reference signals.
The individual template, denoted as Yi ∈ RNc×Ns , i = 1, 2, · · · , N f , is constructed
by averaging across multiple EEG trials acquired from the same subjects. Furthermore,
ExtCCA makes use of three weight vectors generated by three kinds of EEG signals, i.e.,
test signal and two reference signals, as the spatial filters. Specifically, three spatial filters
are as follows: (1) WX

(
XYi

)
between the test signal X and the individual template Yi,

(2) WX
(
XZi

)
between the test signal X and a set of sinusoidal signals Zi, (3) WX(YiZi)

between the individual template and a set of sinusoidal signals. A correlation vector
ri , i = 1, 2, · · · , N f , for the i-th template signal can be obtained using the designed spatial
filters as follows:

ri =


ri, 1
ri, 2
ri, 3
ri, 4

=


ρ
(

XTWX
(
XZi

)
, ZT

i WZ
(
XZi

))
ρ
(

XTWX
(
XYi

)
, YT

i WX
(
XYi

))
ρ
(

XTWX
(
XZi

)
, YT

i WX
(
XZi

))
ρ
(

XTWX(YiZi), YT
i WX(YiZi)

)

 (5)

where ρ(· , ·) is the Pearson correlation coefficient between two multidimensional SSVEP
EEG signals. For each target frequency, the four correlation values in Equation (5) are
combined as a weighted correlation coefficient ρi, which is given by

ρi =
4

∑
k=1

sign(ri,k)·(ri,k)
2 (6)

where sign(·) denotes the signum function and is used to reflect discriminative information
from the negative value of ri,k. Then, the target frequency of each test signal is identified by
the aforementioned Equation (4).

2.2.3. Standard Task-Related Component Analysis

In TRCA, maximizing reproducibility between time-locked task trials leads to the
spatial filters, which are capable of reflecting task-specific components. Assume SSVEP
EEG signals of l-th trial X(t) ∈ RNc×Ns , t = 1, 2, · · · , Nt, where Nt is the number of trials.
Then, a linear combination of X(t) is written as Y(t) = wTX(t).
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The TRCA method aims at designing the weight vector w which is obtained by
maximizing the sum of covariance between available combinations of all trials. The
covariance between t1-th and t2-th trials are computed as

Nt
∑

t1 , t2 = 1
t1 6= t2

Cov
(

Y(t1) , Y(t2)
)

=
Nt
∑

t1 , t2 = 1
t1 6= t2

Nc
∑

c1 ,c2=1
wc1wc2Cov

(
X(t1)

C1
, X(t2)

C2

)

= wTSw

(7)

where Cov(· ,·) denotes the covariance between two variables, X(t1)
C1

and X(t2)
C2

denote C1-th

and C2-th channels of EEG signals of X(t1) and X(t2), respectively.
Denote a concatenated matrix of all trials X(t) as X̂ =

[
X(1) X(2) . . . X(Nt)

]
. Constrain-

ing the variance of Y(t) by normalizing to one leads to

Var
(

Y(t)
)
=

Nc
∑

c1 , c2=1
wc1wc2Cov

(
X̂C1 , X̂C2

)
= wTQw
= 1

(8)

where Var(·) denotes the variance of a variable, X̂C1 and X̂C2 denote the C1-th and C2-th
channels of X̂, respectively.

Finally, the optimal weight vector ŵ can be obtained through a constrained optimiza-
tion problem as follows:

ŵ = arg max
w

wTSw
wTQw

(9)

In Equation (9), the optimal weight vector ŵ is the eigenvector of Q−1S, which
corresponds to the largest eigenvalue. In the SSVEP-based BCI, a spatial filter approach
such as TRCA has the effect of eliminating background activities by filtering out the
principal components inherent in EEG signals [17,18]. In TRCA, for each target frequency,
the correlation coefficient between the test signal and the individual template is determined
from the training signal with the given optimal spatial filters as follows:

ρ̂i = ρ
(

wT
i X , wT

i Yi

)
, i = 1, 2, · · · , N f (10)

Subsequently, target identification is performed as follows:

ftarget = max
i

ρ̂i, i = 1, 2, · · · , N f (11)

2.3. The Proposed Two-Step TRCA

As mentioned earlier, advanced versions based on the spatial filter accomplished
improved performance of frequency identification of SSVEP. In [16,18], using an ensemble
approach yielded better robustness and superior performance than standard TRCA by
integrating the spatial filters of all target frequency.

With this regard, we propose a novel SSVEP frequency recognition method by utilizing
the relationship between all spatial filters and individual templates, which is referred to
as two-step TRCA (TSTRCA). Figure 1 shows the flowchart of the proposed method.
The proposed TSTRCA method consists of two steps: (1) First-step: construction of the
spatial filters using standard TRCA and individual templates by averaging SSVEP EEG
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signals except test data corresponding to the target frequencies; (2) Second-step: target
identification based on an ensemble approach.

Figure 1. Flowchart of the proposed TSTRCA method. In the first step, the standard TRCA is employed to compute the
spatial filters for each target frequency in the training data Xi ∈ RNc×Ns×Nt , i = 1, 2, · · · , N f and obtain the individual
templates, i.e., Yi, i = 1, 2, · · · , N f , by group averaging across multiple training blocks. Here, the remaining blocks are
stored as test data. Followingly, in the second step, the obtained spatial filter wi for each target frequency is used in yielding
the correlation coefficients between the test data X and the individual template Yi. We repeat this procedure for test data
and all individual templates to compute the parameters βi, k, k = 1, 2, · · · , N f . βi, 0 denotes the correlation coefficient
without the spatial filter.

The first step aims to obtain spatial filters and individual templates from training data
for each target frequency as done in standard TRCA. In the second step, we emphasize
the relationships between the test data and individual template to yield the informative
features for frequency recognition.

We newly formulate the parameter βi, k to further intensify the correlation coefficient
with the feature corresponding to target frequency by redefining the relationship between
test data and individual template. Specifically, the parameter βi, k, k = 1, 2, · · · , N f is
defined as the correlation coefficient between the i-th individual template and the spatial
filter for the k-th target frequency with the test data, which is given by

βi =


βi,0
βi, 1
βi, 2

...
βi, N f

 =



ρ
(
Yi, X

)
ρ
(
w1Yi, w1X

)
ρ
(
w2Yi, w2X

)
...

ρ
(

wN f Yi, wN f X
)

 (12)

where βi is the correlation vector which consists of βi, k, k= 1, 2, · · · , N f , and βi,0 denotes
the correlation coefficient between Yi and X without a spatial filter. Then, the correlation
coefficient ρ̃i is obtained as a weighted sum of squares of βi, k as an ensemble.

ρ̃i =

N f

∑
k=0

sign(βi,k)·(βi,k)
2 (13)

where sign(·) is used to reflect discriminative information from the negative value of βi, k.
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Finally, the target identification of the proposed TSTRCA method is calculated as
follows:

ftarget = max
i

ρ̃i, i = 1, 2, · · · , N f (14)

2.4. Frequency Recognition Based on Filter Bank Approach

Recently, the filter bank approach, which extracts independent components by decom-
posing the frequency band of the input signal into multiple sub-bands using band-pass
filters, has considerably contributed to improving the classification performance of BCI
models [23,24]. For instance, the filter bank common spatial pattern (FBCSP) integrated
the filter bank and the standard CSP, thus yielding an improved classification accuracy
by correctly extracting the frequency bands that have prominently feature in the motor
imagery BCI [23]. Similarly, the filter bank CCA (FBCCA) provided an improved frequency
recognition performance compared to the conventional CCA [24]. Inspired by these results,
we further adopted the filter bank approach to the proposed TSTRCA and compared the
standard TRCA with the filter bank.

As introduced in [18], the filter bank approach in SSVEP-based BCI can effectively
separate sub-band components, including independent information embedded in the
harmonic frequency bands. In [24], depending on the type of sub-band components, the
filter bank approach consists of three categories. Here, we use the third one, which is
referred to as the M3 method. By using the M3 method, we can obtain multiple harmonic
frequency bands with a high cut-off frequency. In the M3 method, the cut-off frequency
range of sub-band is set between b× 8 Hz and 90 Hz, where b indicates the sub-band index.
The zero-phase Chebyshev Type I infinite impulse response (IIR) is used as a band-pass
filter. After that, the arranged bth sub-band is applied to SSVEP EEG signals and learned
spatial filters for each target frequency to generate a set of correlation vectors between test
data and individual template. Finally, in order to recognize the target frequency, a set of
correlation vectors are combined into a single metric using the linear combination method
presented by [25] and is given by

ρi = s(b)·
(

rb
i

)
, i = 1, 2, · · · , N f (15)

where rb
i is a set of correlation vectors according to bth sub-band and s(b) = b(−1.25) + 0.25.

Here, s(b) plays a role in compensating for the reduction in the SNR of SSVEP harmonic as
the response frequency increases [24]. Then, the target identification is carried out using a
given Equation (14).

3. Results
3.1. Performance Evaluation

This work was performed in the MATLAB environment on an Intel 3.60 GHz Core
i7 with 64GB of RAM. In addition, we used the MATLAB codes, such as TRCA and filter
bank method provided on the website (https://github.com/mnakanishi/TRCA-SSVEP
(accessed on 12 February 2021)).

To evaluate the proposed TSTRCA method compared to the existing SSVEP frequency
recognition methods such as CCA, ExtCCA, and TRCA, we used the classification ac-
curacy and the information transfer rate (ITR) as two metrics to measure the frequency
detection performance.

The ITR is described as the amount of information transmitted by a system’s output
and given by [26]

ITR =

(
log2 N f + P log2 P + (1− P) log2

[
1− P

N f − 1

])
×
(

60
T

)
(16)

where N f indicates the number of target frequency, P is the classification accuracy, and T
is the selected TW for visual stimulation including gaze shifting time. In this work, we

https://github.com/mnakanishi/TRCA-SSVEP
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predetermined the gaze shifting time of 0.5 s as presented in [20] and evaluated ITR for
TWs with an interval of 0.1 s from 0.2 to 1.0 s. In addition, we used one-way repeated
measure ANOVA as a statistical analysis to determine the significant difference.

A leave-one-out cross validation was applied to estimate the performance of various
SSVEP frequency recognition methods for test data. Among the six trials in SSVEP EEG
signals as described in Section 2.1, the five trials were comprised of the training data and
the remaining trial was used as the test data. This process was repeated six times and the
average values of all six accuracies and ITRs were represented as an average accuracy and
ITR corresponding to the target frequency.

3.2. Target Identification Performance

Figure 2a,b show the average accuracies and simulated ITR of CCA, ExtCCA, TRCA,
and the proposed TSTRCA across all subjects for different TWs, respectively. Among 64
channels of EEG signals, we used 9 channels (Pz, PO5, PO3, POz, PO4, PO6, O1, Oz, O2)
as in [11]. As can be seen in these figures, the standard TRCA was superior to CCA and
ExtCCA and the proposed TSTRCA showed the best performance compared with other
methods in terms of both average accuracy and ITR. Note that, for the short TWs from
0.2 to 0.5 s, the superiority of the proposed TSTRCA was clearer than the cases of TWs
above 0.6 s. For example, the differences of average accuracy between TRCA and TSTRCA
for the time window of 0.2 and 1.0 s are approximately 17% and 3%, respectively. In the
figures, one-way repeated measures ANOVA analysis indicated that there were significant
difference between four methods across all TWs in terms of average accuracy (TW = 0.2:
F(3, 102) = 35.46, p < 0.001; TW = 0.3: F(3, 102) = 30.55, p < 0.001; TW = 0.4: F(3, 102) = 26.34,
p < 0.001; TW = 0.5: F(3, 102) = 23.79, p < 0.001; TW = 0.6: F(3, 102) = 23.42, p < 0.001;
TW = 0.7: F(3, 102) = 21.28, p < 0.001; TW = 0.8: F(3, 102) = 18.6, p < 0.001; TW = 0.9:
F(3, 102) = 16.44, p < 0.001; and TW = 1.0: F(3, 102) = 16.13, p < 0.001). In addition, for simu-
lated ITR, significant difference between four methods were similarly observed (TW = 0.2:
F(3, 102) = 25.56, p < 0.001; TW = 0.3: F(3, 102) = 25.42, p < 0.001; TW = 0.4: F(3, 102) = 22.98,
p < 0.001; TW = 0.5: F(3, 102) = 21.25, p < 0.001; TW = 0.6: F(3, 102) = 21.3, p < 0.001;
TW = 0.7: F(3, 102) = 19.92, p < 0.001; TW = 0.8: F(3, 102) = 18.68, p < 0.001; TW = 0.9:
F(3, 102) = 16.59, p < 0.001; and TW = 1.0: F(3, 102) = 16.65, p < 0.001).

Figure 2. Average results of four methods without filter bank. (a) Average accuracy and (b) simulated ITR across 35 subjects
for different time windows (TWs). Error bars represent standard errors. The asterisks indicate significant difference between
four methods obtained by one-way repeated measures ANOVA (p < 0.001).

Table 1 summarizes the statistical analysis results of the performance of each method
between the different number of channels. ExtCCA, TRCA, and TSTRCA showed statistical
difference as the number of channels increased. In addition, Table 2 exhibits the statistical
analysis results of the performance between four methods when a different number of
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channels was used. It can be observed that except for the channels of 3, there was a
statistically significant difference between the four methods.

Table 1. Statistical analysis results of average accuracy and ITR between the different number of
channels for each method.

Method

CCA ExtCCA TRCA TSTRCA

Accuracy
F(6, 204) 1.39 5.59 4.22 7.43

p 0.22 <0.001 <0.001 <0.001

ITR
F(6, 204) 1.29 5.57 4.1 7.74

p 0.26 <0.001 <0.001 <0.001

Table 2. Statistical analysis results of average accuracy and ITR between four methods for the
different number of channels.

Channels

3 4 5 6 7 8 9

Accuracy
F(3, 102) 3.26 5.73 10.6 13.63 15.07 17.2 18.6

p 0.002 0.001 <0.001 <0.001 <0.001 <0.001 <0.001

ITR
F(3, 102) 3.66 6.21 10.55 12.8 14.53 16.83 18.68

p 0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001

To further verify the performance comparison of the four methods, we examined the
average performance for the number of channels. Here, the TW was set to 0.8 s. Figure 3
illustrates the average accuracy of the four methods in cases where a different number of
channels was used. In Figure 3a, we can observe that the average accuracy increased as
more channels were used for all methods. The average accuracy comparison results for all
methods in terms of the number of channels are shown in Figure 3b. As can be seen in the
figure, across all cases of the number of channels, the proposed TSTRCA achieved the best
average accuracy among the four methods. Note that the average accuracy of TSTRCA
with a lower number of channels was comparable to ExCCA and TRCA or outperformed
CCA, ExCCA, and TRCA.

Figure 3. Average accuracy across 35 subjects for four methods in cases of the different number of channels with TW of 0.8 s.
(a) Methods; (b) The number of channels. Error bars represent standard errors.
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Figures 4 and 5 illustrate the average accuracy and ITR of two methods—TRCA and
TSTRCA—across all subjects for a TW of 0.3 s. As shown in the figures, the average accuracy
and ITR were improved for most subject. However, the amount of improvement of accuracy
can be biased by several subjects. Thus, to avoid the impact of a specific subject on average
performance in the comparison analysis, we further investigated median accuracy and ITR
analysis, as depicted in Figures 6 and 7, respectively.

Figure 4. Average accuracy across all subjects for TW of 0.3 s using TRCA and TSTRCA. The error
bars represent standard errors. Green and blue bars represent the average accuracies of TRCA and
TSTRCA, respectively.

Figure 5. Average ITR across all subjects for TW of 0.3 s using TRCA and TSTRCA. The error bars
represent standard errors. Green and blue bars represent the average ITRs of TRCA and TSTRCA,
respectively.

In Figures 6 and 7, we verified that the proposed TSTRCA outperformed other meth-
ods in terms of median accuracy and median ITR for TWs with an interval of 0.2 s from 0.3
to 0.9 s. It implies that the performance improvement of TSTRCA came from improvement
on most subjects, not due to specific subjects.

Finally, to validate the effect of the filter bank approach, we examined the performance
of TRCA and the proposed TSTRCA with filter banks at different TWs. Figure 8a,b indicate
the average accuracy and simulated ITR of TRCA and TSTRCA with a filter bank, which are
referred to as FBTRCA and FBTSTRCA, respectively. As in TRCA and TSTRCA without a
filter bank in Figure 2, we observed that the TSTRCA with a filter bank—FBTSTRCA—was
superior to the TRCA with a filter bank—FBTRCA—across all TWs. Through one-way
repeated measure ANONA analysis, we confirmed a significant difference between the
two methods.
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Figure 6. Median accuracy for TWs with an interval of 0.2 s from 0.3 s to 0.9 s. (a) 0.3 s time window.
(b) 0.5 s time window. (c) 0.7 s time window. (d) 0.9 s time window. Here, on each box, the central
red line indicates the median, and the bottom and top edges of the box refer to the 25th and 75th
percentiles, respectively. Whiskers extend to the maximum or minimum performance not considered
by outliers, and outliers are denoted by ‘+’.

Figure 7. Median ITR for TWs with an interval of 0.2 s from 0.3 s to 0.9 s. (a) 0.3 s time window.
(b) 0.5 s time window. (c) 0.7 s time window. (d) 0.9 s time window. Here, on each box, the central
red line indicates the median, and the bottom and top edges of the box refer to the 25th and 75th
percentiles, respectively. Whiskers extend to the maximum or minimum performance not considered
by outliers, and outliers are denoted by ‘+’.
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Figure 8. Average results of TRCA and TSTRCA with filter bank. (a) Averaged accuracy and (b) simulated ITR across
35 subjects for different TWs. Error bars represent standard errors. The asterisks indicate significant difference between four
methods obtained by one-way repeated measures ANOVA (p < 0.001).

4. Discussions

Due to simplicity and improved performance, the standard CCA and its variants,
such as L1-MCCA and MsetCCA, have contributed to enhanced SSVEP-BCI. Followingly,
the use of spatial filters in SSVEP-BCI research has enhanced the performance of target
frequency recognition significantly [18,25].

Recently, the TRCA approach, which extracts the spatial filers with task-specific
components, has yielded notable improvement compared to conventional SSVEP-BCI
methods [18,27]. However, the TRCA approach is beneficial especially for a sufficiently
long length of SSVEP EEG recordings. In this regard, the proposed TSTRCA has pro-
vided improved performance for the recognition of target frequencies for short and long
time windows.

The proposed TSTRCA consists of two steps. First, it aims to develop the spatial filters
and individual templates using training data. Second, the target frequencies are identified
by applying an ensemble classifier. In the second step, all spatial filters are utilized to
accentuate the features corresponding to the target frequencies. The first and second
steps correspond to the training stage and test stage of TRCA, respectively. In Figure 2,
Figure 6, and Figure 7 of Section 4, the results demonstrate that the proposed TSTRCA
yields enhanced accuracy and ITR compared to conventional SSVEP methods. While
ExtCCA utilizes two reference signals, TSTRCA uses a single reference, thus implying
its simplicity.

Furthermore, we carried out a performance comparison of the proposed TSTRCA and
conventional SSVEP methods in terms of precision, recall, and F1-score, shown in Table 3.
These metrics are obtained by averaging each metric over all subjects and all trials with
a TW of 0.5 s. As can be seen, the TSTRCA shows more robust performance than other
methods in short time windows.

Table 3. Comparison of performance (Precision, Recall, and F1-score) of SSVEP frequency recognition
for TW of 0.5 s.

Method
(Average ± std. dev. in %)

CCA ExtCCA TRCA TSTRCA

Precision 22.19 ± 21.63 42.73 ± 19.86 48.57 ± 25.62 64.33 ± 22.81
Recall 28.94 ± 23.24 52.43 ± 19.84 56.32 ± 24.89 71.92 ± 20.59

F1-score 25.14 ± 22.45 46.94 ± 20.02 52 ± 25.46 67.78 ± 21.94
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Recently, several fusion-based SSVEP-BCI studies have shown the remarkable per-
formance of frequency recognition. Liu et al. [19] developed FoCCA, which fuses all
correlation coefficients of the standard CCA. While FoCCA represented approximately
80% accuracy with a TW of 2 s, the proposed TSTRCA shows an 83.71% accuracy with
a TW of 0.7 s. Besides, the average accuracy and simulated ITR of fusion of maximum
signal fraction analysis (FoMSFA) [28] were less than 31% and 100 bits/min for a TW of
0.2 s, respectively. Compared to these results, TSTRCA demonstrates 42.06% accuracy and
120.51 bits/min ITR using the same length of TW. This comparison suggests the superiority
of TSTRCA over fusion-based SSVEP-BCI methods.

For practical use, the improved performance of the proposed TSTRCA with a short
time window suggests its promising capability as a new communication tool for both
healthy and disabled people. Thus, SSVEP EEG signals would play a role in daily life, such
as the use of photoplethysmography (PPG) and electrocardiogram (ECG) [29–31].

The proposed TSTRCA was designed and evaluated on the offline experiment. Thus,
future works should be conducted to (1) establish the real-time SSVEP-BCI system using
TSTRCA, (2) explore how different spatial filtering mechanisms address the trade-off
between computational complexity and the performance for SSVEP frequency recognition,
and (3) construct the SSVEP-BCI EEG dataset extracted from the various subjects and
environments to pursue a general-purpose SSVEP-BCI framework by extending our work.

5. Conclusions

We presented a novel frequency recognition method for SSVEP-based BCI based on
the TRCA method. The proposed TSTRCA accentuates the features corresponding to target
frequencies by: (1) redefining a correlation vector based on the spatial filters of all target
frequencies, (2) emphasizing the relationship between test data and individual templates
using an ensemble classifier. Through validation using the SSVEP benchmark dataset, we
confirmed that the proposed TSTRCA outperforms the existing SSVEP frequency recogni-
tion methods including the standard TRCA in terms of average accuracy and simulated
ITR. Furthermore, we introduced the proposed TSTRCA with a filter bank, which is called
FBTSTRCA, and validated its superior performance over the standard TRCA with a filter
bank. The experimental results suggest that the proposed TSTRCA can play an important
role for SSVEP frequency recognition since it possesses efficacy in frequency recognition
in case of a short time window. These properties of TSTRCA imply the suitability as a
promising frequency recognition strategy for SSVEP-based BCI applications.
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