
sensors

Article

Diamond Grinding Wheel Condition Monitoring Based on
Acoustic Emission Signals

Guo Bi * , Shan Liu, Shibo Su and Zhongxue Wang

����������
�������

Citation: Bi, G.; Liu, S.; Su, S.; Wang,

Z. Diamond Grinding Wheel

Condition Monitoring Based on

Acoustic Emission Signals. Sensors

2021, 21, 1054. https://doi.org/

10.3390/s21041054

Academic Editor: Iren E. Kuznetsova

Received: 27 December 2020

Accepted: 29 January 2021

Published: 4 February 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

College of Aerospace Engineering, Xiamen University, Xiamen 361005, China; liushan@stu.xmu.edu.cn (S.L.);
19920181152233@stu.xmu.edu.cn (S.S.); 19920201151467@stu.xmu.edu.cn (Z.W.)
* Correspondence: guobi@xmu.edu.cn

Abstract: Acoustic emission (AE) phenomenon has a direct relationship with the interaction of tool
and material which makes AE the most sensitive one among various process variables. However, its
prominent sensitivity also means the characteristics of random and board band. Feature represen-
tation is a difficult problem for AE-based monitoring and determines the accuracy of monitoring
system. It is knottier for the situation of using diamond wheel grinding optical components, not
only because of the complexity of grinding process but also the high requirement on surface and
subsurface quality. This paper is dedicated to AE-based condition monitoring of diamond wheel
during grinding brittle materials and feature representation is paid more attention. AE signal of
brittle-regime grinding is modeled as a superposition of a series of burst-type AE events. Theory
analysis manifested that original time waveform and frequency spectrum are all suitable for feature
representation. Considering the convolution form of b-AE in time domain, a convolutional neural
network with original time waveform of AE signals as the input is built for multi-class classification
of wheel state. Detailed state division in a wheel’s whole life cycle is realized and the accuracy is over
90%. Different from the overlapping in time domain, AE components of different crack mechanisms
are probably separated in frequency domain. From this point of view, AE spectrums are more suitable
for feature extraction than the original time waveform. In addition, the time sequence of AE samples
is essential for the evaluation of wheel’s life elapse and making use of sequential information is just
the idea behind recurrent neural network (RNN). Therefore, long short-term memory (LSTM), a
special kind of RNN, is used to build a regression prediction model of wheel state with AE spectrums
as the model input and satisfactory prediction accuracy is acquired on the test set.

Keywords: acoustic emission; condition monitoring; grinding process; diamond wheel; brittle materials

1. Introduction

Grinding wheel wear estimation is essential to ensure quality control of the ground
surface and reduce downtime and tool costs. There are two types of tool condition estima-
tion methods, i.e., directly and indirectly. Directly detecting wheel topography is reliable
and objective, but limits by environmental conditions and cannot be applied in real-time
monitoring system. On the other hand, indirect methods by measuring physical quantities
during machining process are real time and convenient. Wheel condition monitoring
techniques are attracting increasing amounts of research attention and monitoring systems
have been a necessary segment of modern machining equipment [1–4]. Various physical
quantities have been used for tool condition monitoring. The most common-used variables
on wheel condition monitoring include vibration, force, temperature and acoustic emission
(AE). AE is an elastic stress wave generated within a material when it undergoes deforma-
tion and fracture [5]. Different from other variables which are synthetic representation of
machining process, AE signals can be released from any tiny interaction behaviors between
tool and material [6]. The range of frequency is much higher than the environmental fre-
quencies. The sensitivity and immunity from interference make AE signals quite suitable
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for tool condition monitoring. AE signals are used to evaluate grinding wheel conditions
in many studies [7–9].

AE signals dramatically change for the occurrence of a sudden damage on the tool dur-
ing machining process. Thresholding methods have been successfully employed to monitor
breakage or wear of tools with deterministic cutting edges [10,11]. However, for grinding
process, the characteristics of wheel wear are not as typical as milling or drilling. AE signals
are entirely random because abrasive grains protruding from wheel surface are random in
shape, orientation and location. Various signal processing methods were employed for AE
feature extraction. Sutowski [12] utilized an aloxite grinding wheel to grind tool steel; the
experimental results showed the close relationship between the root-mean-square (RMS)
value of AE and the cutting performance of grinding wheel. Stephenson [13] investigated
ELID grinding of optical materials and used AE to detect wheel loading. AE energy will
increase dramatically when wheel loading occurs. Aguiar [14] attempted to detect grinding
burn in grinding steel material by an aluminum oxide grinding wheel. Various statistical
parameters of AE were extracted for monitoring. Their studies showed that constant false
alarm rate and ration of power were more sensitive than RMS ratio. Mokbel [15] picked up
AE signals during grinding mild steel specimens by diamond grinding wheels with differ-
ent bond types and grain sizes. Fourier transform was applied to acquire AE spectrum. The
research showed that AE spectral amplitude was obvious increase for a dull wheel. Wheel
dressing conditions were also considered in their experiments. The comparison analysis
verified that dressing conditions had a prominent influence on AE features. Liao [16]
collected AE signals in creep feed grinding alumina specimens with a resinoid-bonded
diamond wheel. Discrete wavelet decomposition was employed for AE feature extraction.
Satisfactory classification accuracy can be acquired based on the extracted features for high
material removal rate condition. Yang [17] focused on grinding burn in up-grinding steel
with vitrified aluminum oxide wheel. Additionally, Hilbert-Huang transform was used
to decompose grinding AE signals into a series of intrinsic mode functions (IMFs). The
first five IMFs were used to extract features for grinding burn detection. In fact, although
many artificial features are effective for wheel state monitoring, feature extraction by using
try and error is not adequate for the high accuracy monitoring. In order to select the
appropriate features, Liao [18] investigated feature extraction and feature selection. AE
signals were collected during grinding ceramic materials with a resin bonded diamond
wheel. AE features were extracted both by discrete wavelet decomposition and autore-
gressive modeling. The three feature selection methods include the sequential forward
floating selection, and two ant colony optimization-based feature selection methods based
on different search strategies. Experimental results showed that lower classification error
was acquired by using the selected features.

Due to the complexity of grinding process and AE mechanism, data-driven modelling
is the predominant tendency for AE-based monitoring of wheel condition [19]. Lezan-
ski [20] applied a neural network to select 8 typical features from a feature set which was
composed of grinding operation parameters, vibration and AE features. The selected
features were put into fuzzy logic-based systems for grinding wheel state classification
during external cylindrical grinding process. Yang [21] constructed a binary classification
system of wheel condition by support vector machine (SVM) algorithm. The input of the
system was AE features extracted by discrete wavelet decomposition. Satisfactory classifi-
cation accuracy was acquired for different cutting depth. Nakai [22] employed four types
of neural networks for diamond wheel wear estimation during the grinding of advance
ceramics. They were multilayer perceptron neural networks, radial basis function neural
networks, generalized regression neural networks and adaptive neuro-fuzzy inference
system. Features derived from AE and cutting power signals were taken as their inputs.
The various types of networks complemented each other. Pandiyan [23] studies abrasive
belt wear in robotized abrasive belt grinding process. Genetic Algorithm was used to
select features derived from accelerometer, AE sensor and force sensor. Then, the selected
features were put into a model based on SVM to judge the tool worn or not. Guo [24]
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introduced deep learning into grinding burn classification. A two-stage feature selection
approach combining ReliefF and stacked sparse autoencoder network was proposed to
select the best subset of features and establish an accurate classification model of grinding
burn. Wavelet packet decomposition and ensemble empirical mode decomposition were
applied to process the original force, acceleration, and AE signals. The experimental results
suggested that the proposed approach outperforms other methods which were artificial
neural network, SVM and sparse autoencoder network.

Almost all types of machine learning models have been employed for wheel condi-
tion monitoring. Various manual features extracted by conventional or advanced signal
processing methods were attempted for good performance of models. Whether or not
features are appropriate determines monitoring accuracy of grinding wheel condition. The
majority of existing research attempts to select the most proper features from a feature set.
To make sure to gain the optimal combination, there is a tendency of providing a huge
amount of selected features. For instance, the reference [24] employed a total of 16,208
artificial features for feature selection. Feature engineering is a necessary preprocess for
traditional machine learning models. Nevertheless, deep learning, as a prospective subfield
of machine learning, can integrate feature extraction and selection in the model itself [25].
Recent advances in deep learning methods have achieved revolutionary success in tool
condition monitoring [26]. In this paper, surface grinding brittle materials by diamond
grinding wheel was focused and two types of deep learning models, convolutional neural
network (CNN) and long-short-term memory (LSTM), were attempted to monitor the
degradation of wheel condition. Based on the analysis of AE mechanism of grinding brittle
material, original AE time waveform or AE frequency spectrum was taken as input of the
models. Experiments were carried out through a whole life cycle of a diamond wheel and
verified the performance of CNN and LSTM.

2. Characteristics of AE Signals during Grinding Brittle Materials

AE signals can be classified into two different types: continuous-type AE (c-AE) and
burst-type AE (b-AE). C-AE is characterized by a long duration signal with variations
in amplitude and frequency. B-AE is characterized by a short duration signal with high
amplitude [27]. There are abundant AE sources during machining process. The formation
of cracks and chips on materials, the removal and breakage of grains, and collision between
them always induce b-AE. Elastic and plastic deformation, friction and flow noise is always
associated with c-AE [28,29]. When using diamond wheel grinding brittle materials, the
majority of materials are removed under brittle regime. Therefore, the predominant AE
sources during the process are the initiation and prorogation of cracks. Lateral crack may
extend to the surface of the ground material and cause material removal. Additionally,
median crack may penetrate in the ground material and become subsurface damages [30].
Lateral crack and median crack are all associated with material properties, grain geometry
and applied load [31,32].

The waveform of a b-AE is characterized by rapid damping of a super-high oscillation.
Additionally, duration and frequency content depend on the motion of the crack tip and
therefore, carry information about the mode of the crack [33–35]. It is reasonable to
believe that several crack modes are predominant during grinding process because of the
similar size of abrasive grains on wheel surface. A b-AE event can be simply simulated
as Ae−αt cos ωt, where α determines attenuation speed and the sign ω is the oscillation
frequency. AE signal of grinding brittle material can be represented as a superposition of a
series b-AE events inspired on different time occasion. From the point view of statistics,
some b-AE events may be induced by the same mode of crack and some of them probably
share parameters. Therefore, AE signal can be represented as follows:

x(t) =
M

∑
m=1

{[
e−αmtu(t) cos ωmt

]
∗

Q

∑
q=1

Aqmδ
(
t − tqm

)}
(1)
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where the sign t represents time and u(t) is the unit step signal. The sign δ is the delta
function. The operational symbol ∗ is the convolution operation. The subscript m represents
a certain kind of b-AE, and αm and ωm are the damping factor and oscillation frequency,
respectively. The subscript q represents time occasions of b-AE events. tqm where q
from 1 to Q, is the concrete time of the a specific kind of b-AE and Aqm ≥ 0 is the
corresponding amplitude.

As shown in Equation (1), there are two types of information in AE time waveform.
The one is b-AE mechanism represented by the parameters αm and ωm. The other is the
occurrence time points. The degradation of wheel’s grinding performance results from the
statistical change of grain state. The statistical change of grain state alters the proportion of
various b-AE components in AE signals. In consideration of the convolution form of AE
time waveform, convolution neural network (CNN) is tried to identify wheel state classes
based on original AE time waveform in the next section.

Using convolution definition and the properties of delta function [36], the Equation (1)
can be rewritten as follows:

x(t) =
M
∑

m=1

{∫ +∞
−∞ e−αmτu(τ) cos ωmτ

Q
∑

q=1
Aqmδ

(
t − τ + tqm

)
dτ

}

=
M
∑

m=1

{
Q
∑

q=1
Aqm

∫ +∞
∞ e−αmτu(τ) cos ωmτδ

(
t − τ + tqm

)
dτ

}
=

M
∑

m=1

Q
∑

q=1
Aqie−αm(t−tqm)u

(
t − tqm

)
cos ωm

(
t − tqm

)
(2)

and the Fourier transform is:

Xhal f (ω) =
M

∑
m=1

1
αm + j(ω − ωm)

Q

∑
q=1

Aqm

2
e−jωtqm (3)

where the subscript half means the positive half part of Fourier transform of x(t). For
a specific component of b-AE with parameters αm and ωm, the amplitude spectrum is

1/
√

α2
m + (ω − ωm)

2 which is naturally limited within a frequency span centered by ωm.
AE components of a specific crack mode occurring on different time occasion are totally
overlapped on the spectrum, whereas AE components of different crack mechanism are
separated in frequency domain. Therefore, AE signals of grinding process exist several
characteristic frequency bands with obvious energy distribution. The separation of differ-
ent modes of crack provides more obvious information for wheel condition monitoring.
Once the state of grains on wheel surface statistically changes, the transformation of the
predominant crack mechanism probably changes the structure of AE frequency spectrum
and its energy distribution.

3. Wheel’s Life Cycle Experiments
3.1. Experimental Instruments

Surface grinding experiments were carried out on a M1.7 CNC machine of Shenyang
Machine Tool Corporation of China as shown in Figure 1a. A customized diamond cup
wheel was employed to grind Fused silica glasses HPFS 7980 (Coring, New York, NY,
USA) The material is commonly used for large-scale optical lens. PE552 water-soluble
cooling fluid (Shanghai YUANCH Optical Material Corporation, Shanghai, China) was
used as grinding coolant. The workpiece size was 100 mm × 100 mm × 10 mm. Other
basic parameters of the wheel and the workpiece are listed in Table 1. Grating scanning
path was adopted during grinding, and the grinding path sketch is shown in Figure 1b.
The wheel underwent a whole life cycle from just after dressing to its life end. Machining
parameters and observation nodes are listed in Table 1. AE signals and wheel topography
were acquired when material removal volume reached these nodes. The interval of the
nodes was 0.1 cm3. The acquisition frequency of AE signal was 1 MHz and the time



Sensors 2021, 21, 1054 5 of 17

length of acquisition was about 10 s. The time interval of adjacent nodes was about 3 min.
Time consumption of AE signal acquisition on each node was negligible compared with
the interval. Therefore, it was reasonable to suppose unchangeable wheel state during
AE acquisition. R50A AE sensor and PCI-2 AE acquisition system of Physical Acoustics
Corporation were used to acquire AE signals. AE signal acquired on each node was divided
into 10 ms length data segments which were labelled in the same class. The sequence order
of all the 19 nodes were taken as data labels. Wheel topography images were also detected
by VHX-5000 microscope (KEYENCE Corporation, IL, USA) on odd number nodes. Some
of them are shown in Figure 2 and the magnification was 500 times. Wheel loading was
predominant wear pattern companied with slight grain flattening for the used wheel.
Sporadic blockages can be observed for the 13th node. Blockages were more obvious for
the 15th node. Additionally, the situation got worse and worse for the following nodes.
In the end, blockages existed in a continuous area on the wheel surface. During grinding
optical materials, in order to avoid unexpected catastrophic damages on or under the
ground surface, high stability of grinding performance of diamond wheel is necessary.
Obvious changes on the wheel topography manifests that truing and dressing should be
carried out.
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Figure 1. (a) experimental instruments; (b) grating scanning path.

Table 1. Parameters of the cup wheel, workpiece and the grinding process.

Cup wheel abrasive bond Diameter mesh grain size Concentration
diamond Resin bond 50 mm 400# 100%

workpiece Young’s modulus Shear modulus Modulus of rupture Knoop hardness
(100 g load) Density Softening point Specific heat Thermal

conductivity
73 GPa 31 GPa 52.4 MPa 522 kg/mm2 2.2 g/cm3 1585 °C 0.770 J/(g K) 1.38 W/(m K)

Grinding
processing

observation nodes volume of material
removal (cm3) spindle speed (n/s) cutting depth (µm) grinding grating

interval (mm)
workpiece speed

(mm/min)
1~19 0.1:0.1:1.9 50 5 15 600
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Figure 2. Wheel topography evolution during grinding. (a) the 1st node; (b) the 3rd node; (c) the 5th
node; (d) the 9th node; (e) the 13th node; (f) the 15th node; (g) the 17th node; (h) the 19th node.

3.2. Basic Analysis of AE Signals

Time waveform and spectrum of some AE samples on different nodes are shown in
Figure 3. The time waveform was stochastic and the amplitude did not change regularly
with the grinding time elapse. In the frequency domain, the majority of the energy was
concentrated in a characteristic frequency band centered by 180 KHz for all nodes. How-
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ever, the energy distribution pattern was quite different from each other. As analyzed in
Section 2, AE signal of grinding process is a superposition of a series of b-AE. Irregular
abrasive grains rub, plough or cut the workpiece surface simultaneously in the grinding
process. The waveform of different kinds of b-AE overlaps in time domain. Therefore,
damping oscillation pattern of a specific b-AE cannot be identified and AE signals are
stochastic in time domain. However, different kinds of b-AE possess a different charac-
teristic frequency band. Predominant crack modes of the ground brittle material may be
various with the deterioration of wheel condition. It results in the changes of superposition
relationship of b-AE components with different mechanisms. Therefore, AE spectrums
were various for different grinding time phases as shown in Figure 3. For AE samples
belonging to a specific node, spectrums were quite similar. It manifested that statistical
characteristics of AE signals were stable for a specific state of wheel condition.
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Linear discriminant analysis (LDA) [37] was used to further reveal the variety of
AE spectrums with grinding time elapse. LDA is a supervised dimensionality reduction
method. The basic idea is to project all samples on a low-dimensional feature space on
the premise that samples in the same class are as close as possible and at the same time
different classes are far away from each other as much as possible. A linearly separable
dataset including N classes can be totally separated in a N − 1 dimensional feature space.

The generation mechanism determines the superposition and linear separability of AE
signals of grinding brittle material. Therefore, LDA can be used to evaluate the variety of
AE spectrums for all the observation nodes. Taking the order number of observation nodes
as labels, spectrums of all AE samples were projected on a two-dimensional feature space
by LDA as shown in Figure 4. AE samples belonging to a certain node are drawn with the
same color and the same mark in the figure. Color and mark used for the nineteen nodes
are listed in the figure legends. AE samples were chronologically acquired on the nineteen
nodes during experiments and they were assigned into nineteen classes corresponding to
various states of wheel condition. Samples from the same node are concentrated in a small
local area because of their quite similar spectrum pattern. The distances between various
classes manifested their differences. Classes corresponding similar wheel states are close or
overlapped in the two-dimensional feature space. As shown in Figure 4, sample sets before
the 12th node were tangled with each other in the projection. It manifested that the wheel
state was relative stable before the time point of the 12th node. The subsequent nodes were
all far away from the stable range, and moreover, there were distinct distances between
them. Wheel state dramatically changed with the time elapse. The results coincide with
the evolution of wheel topography discussed in the above section.

Sensors 2021, 21, x FOR PEER REVIEW 9 of 18 
 

 

 
Figure 4. The projection of AE spectrums on a two-dimensional feature space. 

4. Wheel State Classification Based on Original AE Time Waveform 
4.1. CNN Model of Wheel State Classification 

CNN is a kind of feedforward neural networks which contains convolution compu-
tation and has deep structure. It is one of the representative algorithms of deep learning. 
CNN is originally applied in image classification [38]. The existing literatures presented 
the successful application of CNN in residual life prediction and tool condition monitor-
ing [39,40]. In order to directly transplant the model structure used in image tasks, the 
majority of them took time-frequency images or other two-dimensional data as the model 
input. CNN has the ability of representation learning and can shift invariant classification 
of input information according to its hierarchical structure, so it is also known as shift 
invariant artificial neural networks [41]. The advantage of CNN is coincided with the con-
volution form of AE signals during grinding brittle materials as mentioned in Section 2. 
Therefore, one-dimensional AE time waveform is taken as the input of CNN model in the 
paper. CNN integrates feature extraction and classification, and its deep network struc-
ture endows CNN with the capability of deconvolution of AE features mixed in time do-
main. 

4.2. Multi-Class Classification of Wheel State Based on CNN 
The original time-domain data was used as the input data and the node number was 

used as the label for training. Therefore, there were 19 sets of samples, and each set of 
samples has 2000 pieces of data. In total, 30% of the data is randomly selected as a test set, 
and the rest is the train set. 

The process of the CNN used for wheel state classification is shown in Figure 5. Com-
prehensively considering the accuracy of the model and the time required for training, a 
network with two convolutional layers and one pooling layer was selected. According to 
the time domain characteristics of the signal, in order to make each convolution kernel 
capture local features as much as possible but not ignore the relationship between time 
series, the convolution kernels of 100 and 300 lengths are selected by trying combinations 
of different parameters. The first convolutional layer has 8 kernels of length 100, and the 
second convolutional layer has 16 kernels of length 300, followed by the pooling layer, 
and the maximum pooling layer with the size of 20 is chosen. In this layer, the size of the 
output of the second convolutional layer is reduced to 1/20 of its original size. Then, the 
data are flattened, and, finally, there are two full connection layers that connect the output 
layer. 

Figure 4. The projection of AE spectrums on a two-dimensional feature space.

4. Wheel State Classification Based on Original AE Time Waveform
4.1. CNN Model of Wheel State Classification

CNN is a kind of feedforward neural networks which contains convolution compu-
tation and has deep structure. It is one of the representative algorithms of deep learning.
CNN is originally applied in image classification [38]. The existing literatures presented
the successful application of CNN in residual life prediction and tool condition monitor-
ing [39,40]. In order to directly transplant the model structure used in image tasks, the
majority of them took time-frequency images or other two-dimensional data as the model
input. CNN has the ability of representation learning and can shift invariant classification
of input information according to its hierarchical structure, so it is also known as shift
invariant artificial neural networks [41]. The advantage of CNN is coincided with the
convolution form of AE signals during grinding brittle materials as mentioned in Section 2.
Therefore, one-dimensional AE time waveform is taken as the input of CNN model in the



Sensors 2021, 21, 1054 9 of 17

paper. CNN integrates feature extraction and classification, and its deep network structure
endows CNN with the capability of deconvolution of AE features mixed in time domain.

4.2. Multi-Class Classification of Wheel State Based on CNN

The original time-domain data was used as the input data and the node number was
used as the label for training. Therefore, there were 19 sets of samples, and each set of
samples has 2000 pieces of data. In total, 30% of the data is randomly selected as a test set,
and the rest is the train set.

The process of the CNN used for wheel state classification is shown in Figure 5.
Comprehensively considering the accuracy of the model and the time required for training,
a network with two convolutional layers and one pooling layer was selected. According
to the time domain characteristics of the signal, in order to make each convolution kernel
capture local features as much as possible but not ignore the relationship between time
series, the convolution kernels of 100 and 300 lengths are selected by trying combinations
of different parameters. The first convolutional layer has 8 kernels of length 100, and the
second convolutional layer has 16 kernels of length 300, followed by the pooling layer, and
the maximum pooling layer with the size of 20 is chosen. In this layer, the size of the output
of the second convolutional layer is reduced to 1/20 of its original size. Then, the data are
flattened, and, finally, there are two full connection layers that connect the output layer.
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The accuracy of the trained model is represented by the confusion matrix, it is mainly
used to compare the predicted label with the true label. Each column of the confusion
matrix represents the predicted label; each row represents the true label to which the data
belongs. As shown in Figure 6, except for group four and five, the prediction accuracy
is over 0.90. Taking original AE time waveform as the input, CNN performed well on
multi-class classification of wheel state. For further understanding the performance of the
CNN model, the following will focus on visualization technique that gives insight into the
function of intermediate layers.
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4.3. Visualization and Analysis of Convolution Output

The visualization of intermediate layers clarified the performance of CNN. An AE
sample of the 5th node was put into the trained model, and the outputs of the first two
kernels of the first convolutional layer are shown in Figure 7a,b, respectively. They were
random as the original input. It is hard to recognize the difference on time domain.
Therefore, Fourier transform was used for further comparison. Spectrums of the two
output signals are also shown in Figure 7c,d, respectively. The obvious difference in energy
distribution manifests that the two kernels are focused on signal characteristics of different
frequency domain. That is to say, characteristics of different AE components originally
mixed in time domain were extracted and separated by diverse kernels. Therefore, more
distinct changes can be recognized without the disturbance of other components. It is
verified by comparing the outputs of some samples from different nodes as shown in
Figure 8. With the deterioration of wheel condition, characteristics in frequency span
150–250 kHz were dramatically changed.
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17th node.

5. LSTM for Wheel State Classification

For common classification problems, the order of training samples is inessential for
model training and classification accuracy. However, for tool condition classification
and regression, tool condition undoubtedly deteriorates with the time elapse. Wheel’s
previous state will impact its subsequent performance. Correspondingly, characteristics of
samples evolve gradually and there exists some kind of relationship between forward and
backward samples.

Considering the time-varying correlation of AE samples, long short-term memory
(LSTM) [42] network is quite suitable for wheel condition monitoring. LSTM is a special
kind of recurrent neural network (RNN) [43,44], and it has capable of learning long-time
dependencies. LSTM replaces the nodes in the hidden layers of RNN with a special memory
cell. By using this memory cell which selectively retains or discards the past time step
information, LSTM can model the long time-dependent sequence and is more suitable for
the modeling of grinding wheel wear process.
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5.1. Basic Principle of LSTM

The special composite memory cell is shown in Figure 9. This special node has two
state transmission connections between adjacent time steps. It calculates the output ht and
the internal state ct of the current time step according to the state ct−1 and ht−1 transmitted
from the previous time step and the input xt, then passed them to the next time step. There
are three Sigmoid activation function gates in LSTM cell, which are forgetting gate σf , input
gate σi and output gate σo. The state ct−1 transmitted from the previous time step and the
input of at the current time step consists of column vector

[
xt ht−1

]T , then this vector
is multiplied by the weight matrix W f . This process determines how much the information
ct−1 of the previous time step should be retained. With forget gates, the equation to
calculate output ft is shown in Equation (4), where is b f is the bias parameter [42].

ft = σ

(
W f

[
xt

ht−1

]
+ b f

)
(4)
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The calculation of state C in the current time step is shown in Equations (5)–(7), where
Wi is the input weight matrix, Wc is the state weight matrix, it is the output of the input gate.
Here c̃t is the output of the tanh function gate, the vectors bi and bc are bias parameters.

ct = ft ∗ ct−1 + it ∗ c̃t (5)

it = σ

(
Wi

[
xt

ht−1

]
+ bi

)
(6)

c̃t = tan h
(

Wc

[
xt

ht−1

]
+ bc

)
(7)

The output of current time step are calculated as shown in Equations (8) and (9), where
Wo is the output weight matrix, ot is the output of the output gate.

ht = ot· tan h(ct) (8)

ot = σ

(
Wo

[
xt

ht−1

]
+ bo

)
(9)

5.2. Regression Analysis of Wheel State Based on LSTM

The AE signal acquired on each node was divided into data frames with 10,000 sam-
pling points, which were converted to the corresponding spectrums by Fourier transform,
consisting of the data set. The sequence order of all the 19 nodes were taken as data
labels. The sample data set was divided into training set (75%) and test set (25%). The



Sensors 2021, 21, 1054 13 of 17

deterioration of wheel condition is a continuous process. Additionally, it is appropriate
to be modeled as a regression instead of classification. The LSTM network was trained
with the labelled samples of the training set. Considering continuous evolution of wheel
condition, regression instead of classification was tried in the paper. The loss function was
the mean square error (MSE), the optimizer was SGD and the learning rate was set to 0.001.
The selection of hyperparameters such as network structure parameters and time steps will
affect the recognition ability of the network. 25% samples of training set was randomly
selected as validation set. Different hyperparameters (hidden layers from 2 to 5 and nodes
of hidden lays from 20 to 80) were adopted to train the LSTM network and the best one
was fixed according to the model prediction error on the validation set. The final selected
model with the smallest error consisted of four layers: the input layer, two LSTM hidden
layers, and one output layer. Additionally, the hidden layer consisted of 40 LSTM units.

After 15 steps of training, the mean absolute error (MAE) of the training set converged
to 0.0322, and the MSE converged to 0.1328. The MAE and MSE of the test set were 0.1055
and 0.2361, respectively. Additionally, the results on the test set are shown in Figure 10.
The upper left picture is the integrated results for all the nineteen nodes. It was divided
into three parts drawn in the other three pictures just for the sake of clarity. The predicted
label was continuous value for regression. Except the 1st and the 8th nodes, the predicted
labels of samples on the other nodes were concentrated on the true label value. For further
comparison, the probability density function of predicted label of the 6th and 13th nodes
are also displayed on the blank of the pictures. As shown in Figure 10, the accuracy of the
models is relatively low at the 6th node and relatively high at the 13th node. The result
of the corresponding optimal traditional BPNN network in the test set after 1000 steps
of training are shown in Figure 11, and the corresponding MAE and MSE were 0.5345
and 0.4807, respectively. The probability density function of predicted label by the BPNN
network of the 6th and 13th nodes are also displayed in Figure 11. The MSE of the LSTM
network model was reduced by 78.1% and the MAE was reduced by 50.9% compared with
the BPNN model. The sub-node test errors of the two models are shown in Figure 12. The
performance of LSTM was better than BPNN on all nodes. Additionally, there were low
MAE except the 1st node and the 8th node.
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6. Conclusions

AE-based monitoring is a promising technique for tool condition monitoring. This
paper is dedicated to AE-based condition monitoring of diamond wheel during grinding
brittle materials. Comparing with conventional grinding process, a consistent grinding
process is required to avoid unpredicted catastrophic damages on or under the ground
surface of brittle material. AE Feature representation is the key to realize high monitoring
accuracy. In order to select appropriate features, various signal processing methods and
feature selection theories have been tried and studies. However, nowadays, the trial-and-
error method is still the mainstream for AE feature representation.

In this paper, a convolution form of AE signals under brittle grinding regime was
proposed for deep understanding characteristics of AE signals during grinding brittle
materials. The convolution form of AE signals in time domain exactly corresponds with
the principle of CNN. Therefore, original time waveform of AE can be directly put into
the deep network for wheel state classification. Visualization of intermediate output of
CNN model manifested that different convolutional kernels put emphasis on different AE
mechanisms. Experimental results verified that detailed state division in a wheel’s whole
life cycle can be realized.

Different from the overlapping in time domain, AE components with different mecha-
nisms were theoretically proved to be separated in frequency domain. Predominant AE
mechanisms will change with the deterioration of wheel state. Therefore, AE spectrum
pattern and the energy distribution will change correspondingly. It is easy to catch the
evolution from frequency domain. Considering the time sequence of AE signals dur-
ing grinding, a regression prediction model based on long short-term memory (LSTM)
was built with AE spectrums as the model input and satisfactory prediction accuracy
was acquired.

Taking original time waveform and frequency spectrum as model input, respectively,
CNN and LSTM performed well on multi-class classification and regression. Deep network
structures make it possible of learning feature representation automatically. Avoiding
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the blindness and arbitrary of artificial features, decision-making and evaluation will be
more objective and accurate. The future work will focus on the prediction of residual
useful life of grinding wheel. It will be helpful for practical quality control and efficiency
improvement of grinding process to be conducted.
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Abbreviations

AE acoustic emission
b-AE burst-type AE
c-AE continuous-type AE
CNN convolution neural network
LSTM long short-term memory
x(t) AE signal
ω frequency factor
Xhal f (ω) Fourier transform of x(t) (the positive-frequency part)
e the base of natural logarithms
δ the delta function
u(t) the unit step signal
α the damping factor
A the amplitude of b-AE
ht the output of LSTM cells
ct the internal state of LSTM cells
xt the input of LSTM cells
ft the output of the Sigmoid gate of forgetting
it the output of the Sigmoid gate of input
ot the output of the Sigmoid gate of output
c̃t the output of the tanh gate
b f the bias parameter of the Sigmoid gate of forgetting
bi the bias parameter of the Sigmoid gate of input
bc the bias parameter of the tanh gate of the LSTM cell
bo the bias parameter of the Sigmoid gate of output
W f the forgetting weight matrix
Wi the input weight matrix
Wo the output weight matrix
Wc the state weight matrix of the LSTM cell
σ the Sigmoid function
σf the Sigmoid gate of forgetting
σi the Sigmoid gate of input
σo the Sigmoid gate of output
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