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Abstract: New technologies for management, monitoring, and control of spatio-temporal crop
variability in precision viticulture scenarios are numerous. Remote sensing relies on sensors able to
provide useful data for the improvement of management efficiency and the optimization of inputs.
unmanned aerial systems (UASs) are the newest and most versatile tools, characterized by high
precision and accuracy, flexibility, and low operating costs. The work aims at providing a complete
overview of the application of UASs in precision viticulture, focusing on the different application
purposes, the applied equipment, the potential of technologies combined with UASs for identifying
vineyards’ variability. The review discusses the potential of UASs in viticulture by distinguishing five
areas of application: rows segmentation and crop features detection techniques; vineyard variability
monitoring; estimation of row area and volume; disease detection; vigor and prescription maps
creation. Technological innovation and low purchase costs make UASs the core tools for decision
support in the customary use by winegrowers. The ability of the systems to respond to the current
demands for the acquisition of digital technologies in agricultural fields makes UASs a candidate to
play an increasingly important role in future scenarios of viticulture application.

Keywords: UAS; vegetation index; 3D vineyard characterization; canopy height model; precision farming;
precision viticulture; remote sensing; sustainability of resources; vineyard detection and segmentation

1. Introduction

Precision agriculture concerns the use of multiple technologies to manage the spatial
and temporal variability associated with agricultural production, improving crop perfor-
mance, economic benefits, and environmental quality by limiting the use of pollutants [1–3].
In viticulture, precision agriculture techniques are used to improve the efficient use of in-
puts (e.g., fertilizers and chemicals), yield forecasting, selective harvesting of grape quality,
and agree with the real needs (e.g., nutrients and water) of each plot within the vineyard [4].
New technologies have been developed for vineyard management, monitoring, and control
of vine growth. Remote and proximal sensors become reliable instruments to disentangle
vineyard overall status, essential to describe vineyards’ spatial variability at high resolution
and give recommendations to improve management efficiency [5].

In the last decades, the development of aircraft and satellite platform technologies
for remote sensing increased the spatial resolution, temporal availability, and capability
to describe plants’ biophysical features [6,7]. Aircraft remote sensing campaigns can be
planned with greater flexibility, but they are difficult and expensive [8]. Satellite image
acquisition of large areas saves a considerable time, but has a low and inadequate resolution
for precision viticulture (PV) [9]. Possible cloud cover combined with fixed acquisition
times (referring to the time needed for the satellite to complete its orbit and return to the
field area) could limit the monitoring process, and not allow early detection during specific
phenological phases of the crop. Di Gennaro et al. [10] demonstrate the effectiveness of the
spatial resolution provided by satellite imagery, Sentinel-2, on a trellis-shaped viticulture,
as demonstrated for other permanent crops. However, due to the discontinuous nature of
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vine rows, their moderate coverage, soil influences between rows, background and shade,
vineyards pose a challenge for remote sensing analysis: remote sensing images should be
processed to separate the pixels of the canopy from the background [11].

Among all the remote sensing technologies for spatial and temporal heterogeneity
detection, unmanned aerial systems (UASs) are the newest tools and likely the most use-
ful in terms of high accuracy, flexibility, and low operational costs [12]. UASs can cover
large rural areas much faster than people scouting on the ground, making it easier and
more efficient to detect problems. UASs are often combined with imaging sensors, which
allow the acquisition of images at higher spatial resolutions than those offered by satellites.
Post-processing techniques combined with machine learning tools evolved to the point
that the visual indications contained in an image can be extracted and transformed into
useful information for farm management [13]. Poor weather conditions reduce the radio-
metric quality of the images resulting in less accurate and precise surface reconstruction.
Reduced light conditions influence the stability of images’ features and increase errors in
photo alignment and point cloud creation [14]. Calibration targets and post-processing
techniques help standardize photo light conditions, especially in cloudy sky, low light
conditions [15]. UAS remote sensing is a useful option for crop mapping even under cloudy
conditions when satellite or airborne remote sensing are inoperable. The remote sensing
task currently accounts for the majority of the operations performed with agricultural
UASs [16]. In addition to applications involving the use of sensors and the extrapolation of
useful information, UASs are applied and are under study for various types of operations,
such as crop spraying operations [17–22], or combined with wireless sensor network (WSN)
ground monitoring systems [23].

Compared to manual analysis processes characterized by high costs and operating
times, the photogrammetry technique is a promising approach in precision farming scenar-
ios, capable of creating more realistic models of crop structure, useful in decision-making
processes. Andújar et al. [24] described an economic comparison of operating costs of
different technologies for crop volume estimation. The results showed similarity in volume
values, although on-ground technology provided a greater level of detail. However, the
on-ground data acquisition costs were higher than that of aerial imagery. The obtained
maps were used to perform a site-specific fertilizer spraying application, which involves a
drastic reduction (80%) of product.

Viticulture has shown the greatest technological advances among all agricultural sec-
tors thanks to the higher profit margin resulting from the production of high-quality wine.
In this scenario, UASs have proven to be profitable, reducing inputs and the environmental
impact of agricultural activities.

Of the 395,000 European UASs expected to be deployed by 2035, SESAR [25] estimated
that 150,000 will be used exclusively in the agricultural sector. The use of UASs in agricul-
tural scenarios is well established [26,27], but currently there is no state of the art focused
solely on the specific UAS remote sensing application in viticulture. The present work
aims at providing a comprehensive overview of the application of UASs in PV, focusing on
analysis of the sensors used, data extraction, analysis methods, and discusses the potential
of UAS remote sensing as a management tool in viticulture scenarios.

2. Unmanned Aerial Systems (UASs) Application in Viticultural Scenarios

The review is organized according to the research objectives stated above. The follow-
ing sections explore the adoption of UAS remote sensing technology for different purposes
in viticulture.

2.1. Rows Segmentation and Crop Features Detection Techniques

The detection of intra-vineyard variability for site-specific interventions has always
been a priority for PV, allowing grape growers to manage vineyards more efficiently and
pursue a better grape production and quality. Satellite technology is not always able
to guarantee a proper resolution to detect and differentiate the vine rows’ vegetation
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contours due to its coarse ground resolution. UASs, rather, show a high potential thanks to
the sensor’s high resolution, with a ground sampling distance (GSD) often close to 1 cm.
Vegetation indices are taken as useful tools for vegetation characterization, usually obtained
by arithmetic spectral band combination [28]. Spectral information usually derives by
visible red–green–blue (RGB), multispectral, hyperspectral, and thermal sensors mounted
on board UASs [29–31]. Many vegetation indices have been used and compared for canopy
biophysical estimation, including leaf area index (LAI), productivity, and biomass [32,33].
Matese et al. [34] proved the effectiveness of developed open source/low-cost UAS in real
field conditions for vigor areas mapping within vineyards. The RGB images are useful
tools for vineyard spatial variability monitoring, which requires an accurate segmentation
to extract relevant information. Manual segmentation (e.g., by geographic information
system—GIS) of RGB images is laborious, time-consuming, and needs to be improved
to consider accuracies of the canopy, the shadow effect, and different soil conditions
in inter-rows. Starting from ultra-high-resolution RGB imagery obtained from UAS, C.
Poblete-Echeverría et al. [35] presented a vine canopy detection and segmentation approach
using four different classifications methods (K-means, artificial neural networks, random
forest, and spectral indices). The results showed how the 2G_RBi spectral index (derived
by the difference in the divergence of the red and blue bands from the green in the absolute
brightness of the channel), complemented with the Otsu method for thresholding [36],
was the best option in terms of performance for vine canopy detection. This method
was automatic and easy to apply since it does not need specific software to perform the
calculations of the indices.

The high-resolution UAS images represent a challenge for classification due to higher
intra-class spectral variability. In this spectral variability, object-based image analysis
(OBIA) emerged in remote sensing segmentation applications [37,38]. The research carried
out by Jimenez-Brenes et al. [39] aimed to develop a rapid mapping technique and obtain
management maps to fight against the Cynodon dactylon (a typical vineyard weed). Starting
from RGB and red–green-near-infrared (RGNIR) images, the team worked on the optimum
spectral vegetation index, which is useful to classify bermudagrass, grapevine, and bare
soil areas through an automatic algorithm, and the design of site-specific management
maps for weed control. The geometric characteristics of the canopy are used in agriculture
as a proxy of pruning, pest effects on crops, or fruit detection [40], but the collection
of these data at the field scale is time-consuming and offers uncertain results. Despite
the great variety of technologies used to characterize the 3D structures of plants (radar,
digital photogrammetric techniques, stereo images, ultrasonic sensors, and light detection
and ranging sensors), many of them have aspects that limit their use. Most of them are
expensive, and it is challenging to use them in large spatial extents. The novelty of the
work from Mesas-Carrascosa et al. [41] lies in the possibility to apply vegetation indices
to RGB point clouds for the automatic detection and classification of vegetation and to
determine grapevines’ height using the soil points as a reference. This automatic process,
without any selected parameter of training, guarantees the lack of errors due to manual
intervention in the separation process of the points’ classes.

As mentioned before, the extraction of pure vines pixels (i.e., the pixels that compose
the leaf wall of the vines) is indispensable to achieve effective and good quality vineyard
maps for site-specific management [42,43]. Comba et al. [44] designed a new methodology,
constituted by three main steps based on dynamic segmentation, to identify vine rows
from UAS aerial images even in the presence of low illumination, inter-row grassing, trees
shadows, or other disturbance elements. The process works without any user intervention,
and with a limited number of parameters for the calibration. The information obtained
from this approach can be used in PV scenarios to obtain vigor and prescription maps
for crop management or inter-row route tracking for unmanned ground vehicles (UGVs).
Nolan et al. [45] described an automated algorithm, applied to a high-resolution aerial
orthomosaic, for an unsupervised detection and delineation of vine rows. The algorithm
takes advantage of “skeletonization” techniques, based on an extraction of a simplified
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shape (skeleton) of an object, to reduce the complexity of agricultural scenes into a collection
of skeletal descriptors. Thanks to a series of geometric and spatial constraints applied to
each skeleton, the algorithm accurately identifies and segments each vine row.

Pádua et al. [46] showed a method to automatically estimate and extract Portuguese
vineyards’ canopies, combining vegetation indices and digital elevation models (DEM) de-
rived from UAS high-resolution images, to differentiate between vines’ canopies and inter-
row vegetation cover. It proved to be an effective method when applied with consumer-
grade sensors carried by UASs. Moreover, it also proved to be a fast and efficient way
to extract vineyard information, enabling vineyard plots mapping for PV management
tasks. In the paper from Cinat et al. [47], three algorithms based on HSV (hue, saturation,
value), DEM, and K-means were applied to RGB and RGNIR UAS imagery, to perform
unsupervised canopy segmentation without human support over three scenarios derived
from two vineyards. The first P18 scenario corresponds to the survey operations conducted
in 2018 on 1 ha of commercial Barbera cv. vineyard. The M17 and M18 scenarios refer to
flights performed in 2017 and 2018 on a 1.4 ha Sangiovese cv. vineyard. The two vine-
yards differ for different rows and slopes orientation and different intra-row and inter-row
spacing. The research team tested the ability of the algorithms to identify grapevines
without human supervision introducing estimation indexes. The estimation indices were
useful to define the algorithm’s ability to over or under-estimate vine canopies. The three
algorithms showed a different ability to estimate vines but, in general, HSV-based and
DEM algorithms were comparable in terms of computation time. The K-means algorithm,
however, increased computational demand as the quality of the DEM increased.

While rows identification from UAS images saw relevant development in the last years,
a missing plant method was not developed until the study by Primicerio et al. [48] with a
new methodology for vine segmentation in virtual shapes, each representing a real plant.
They discussed, extracted, and coupled to a statistical classifier, an extensive set of features
to evaluate its performance in missing plant detection within the parcels. Baofeng et al. [49]
discovered instead the possibility to obtain accurate information about the affected or
missing grapevines from a digital surface model (DSM). The analysis process started with
a three-dimensional (3D) reconstruction from the RGB images, collected using the UAS,
and the structure from motion (SfM) technique to obtain the DSM. A different approach
followed by Pichon et al. [50], which did not involve the use of computer image analysis
techniques, aimed at identifying relevant information that growers and advisers can extract
from UAS images of the vineyard. The proposed methodology demonstrated that most of
the information on grapevines status could be extracted from UAS-based visible images by
the experts, assuming this information of great interest throughout the growing cycle of
the vine, particularly for advisers, as support to drive management strategies.

2.2. Vineyard Remote Analysis for Variability Monitoring

PV could be defined as the set of monitoring and managing for spatial variability
in physical, chemical, biological variables related to the productivity of vineyards [51].
A primary work, about the UAS platform and implemented sensors for data collecting,
was carried out by Turner et al. [52] showing the perspective of the UAS technology to
provide “on-demand” data. They analyzed the algorithms used in data processing, in the
orthorectification process, and the vegetation indices to evaluate the differences within the
vineyard images. The results highlighted the potential of UAS multi-sensor systems in PV,
and their versatility enhanced by the possibility to collect data sets “on-demand” with a
temporal resolution that spans the critical times in the crop growing season. The UASs
spatial resolution permits to collect imagery at a much higher resolution and investigate
a bigger spatial variability inside the vineyard compared to satellites and aircraft [53].
Differently from satellite technology, limited due to unfavorable re-visit times and orbit
coverage patterns [54], UAS close-range photogrammetry represents an efficient method
for continuously collecting information [55]
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Matese et al. [56] introduced a new technique to evaluate the spatial distribution
of vine vigor and phenolic maturity. A normalized difference vegetation index (NDVI)
map was obtained by a high-resolution multispectral camera mounted on a UAS. Spatial
variability of grape anthocyanin content was detected in situ evaluating ANTH_R and
ANTH_RG indices by using a fluorescence-based sensor (MultiplexTM). The two techniques
appeared suitable to compare vine related information on a relatively large scale. The
research by Zarco-Tejada et al. [57] showed the feasibility of mapping leaf carotenoid
concentration from high-resolution hyperspectral imagery. The R515/R570 index was
explored for vineyards in this study. The PROSPECT-5 leaf radiative transfer model was
linked to the SAILH and FLIGHT canopy-level radiative transfer models to simulate
the pure vine reflectance without soil and shadow effects due to the UAS hyperspectral
imagery, which enabled targeting pure vines. Primicerio et al. [58] used a UAS as a tool to
combine high spatial resolution images, quick turnaround times, and low operational costs
for vegetation monitoring, providing low-cost approaches to meet the critical requirements
of spatial, spectral, and temporal resolutions needed. A low cost and open-source agro-
meteorological monitoring system was designed and developed, and its placement and
topology were optimized using a set of UAS-taken multispectral images. Mathews [59]
captured aerial images of a Texas vineyard at post-flowering, veraison, and harvest stages
using digital cameras mounted on board a UAS. The images were processed to generate
reflectance orthophotos and then segmented to extract canopy area and NDVI-based
canopy density. Derived canopy area and density values were compared to the number of
clusters, cluster size, and yield to explore correlations. Differently from the derived canopy
area, the NDVI-based canopy density exhibited no significant relationships because of the
radiometric inaccuracy of the sensors. A vine performance index (VPI) was calculated to
map spatial variation in canopy vigor for the entire growing season. C. Rey-Caraméset
al. [60] used multispectral and spectral indices to assess vegetative, productive, and berry
composition spatial variability (obtained by SFR_RAD and NBI_GAD MultiplexTM indices)
within a vineyard. The correlations were significant but moderate among the spectral
indices and the field variables, the pattern of the spectral indices agreed with that of
the vegetative variables and mean cluster weight. The results proved the utility of the
multi-spectral imagery acquired from a UAS to delineate homogeneous zones within the
vineyard, allowing the grape-grower to carry out a specific management of each subarea.
The aim of the work by Matese et al. [61] was to evaluate different sources of images and
processing methodologies to describe spatial variability of spectral-based and canopy-
based vegetation indices within a vineyard, and their relationship with productive and
qualitative vine parameters. Comparison between image-derived indices from Sentinel
2 NDVI, unfiltered and filtered UAS NDVI, and agronomic features were performed.
UAS images allow calculating new non-spectral indices based on canopy architecture that
provide additional and useful information to the growers with regards to within-vineyard
management zone delineation. Caruso et al. [62] identified three sites of different vines
vigor in a mature vineyard to test the potential of the visible-near infrared (VIS-NIR)
spectral information acquired from an UAS in estimating the LAI, leaf chlorophyll, pruning
weight, canopy height, and canopy volume of grapevines. They showed that the combined
use of VIS-NIR cameras and UAS is a rapid and reliable technique to determine canopy
structure and LAI of grapevine. Romboli et al. [63] focused on the impact of vine vigor on
Sangiovese grapes and wines, applying a high-resolution remote sensing technique by a
UAS platform to identify vigor at the single vine level. The test confirms the ability of UAS
technology to assess the evaluation of vigor variability inside the vineyard and confirm
the influence of vigor on the flavonoid compounds as a function of bunch position in the
canopy. Matese and Di Gennaro [64] described the implementation of a multisensory UAS
system capable of flying with three sensors simultaneously to perform different monitoring
options. The vineyard variability was assessed in terms of characterization of the state of
vines vigor using a multispectral camera, leaf temperature with a thermal camera, and an
innovative approach of missing plants analysis with a high spatial resolution RGB camera.
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Pádua et al. [65] developed an analysis methodology useful to assist the decision-
making processes in viticulture. They employed UASs to acquire RGB, multispectral,
and thermal aerial imagery in a vineyard, enabling the multi-temporal characterization of
the vineyard development throughout a season, thanks to the computation of the NDVI,
crop surface models (CSM), and the crop water stress index (CWSI). Vigor maps were
computed first considering the whole vineyard, second considering only automatically
detected grapevine vegetation, and third considering grapevine vegetation by applying
a normalization process before creating the vigor maps. Results showed that vigor maps
considering only grapevine vegetation provided an accurate and better representation of
the vineyard variability, gathering significant spatial associations through a multi-temporal
analysis of vigor maps, and by comparing vigor maps with both height and water stress
estimation. The objective of the work by Matese et al. [66] was to evaluate the performance
of statistical methods to compare different maps of a vineyard, derived from UAS acquired
imagery, and some from in situ ground characterization. The team proved how these
methods, which consider data spatial structure to compare ground autocorrelated data
and spectral and geometric information derived from UAS-acquired imagery, are highly
appropriate, and would lead winegrowers to implement PV as a management tool. Pádua
et al. [67] developed a multi-temporal vineyard plots analysis method at a grapevine scale
using RGB, multispectral, and thermal infrared (TIR) sensors, enabling the estimation
of the biophysical and geometrical parameters and missing grapevine plants detection.
A high overall agreement was obtained concerning the number of grapevines present in
each row and the individual grapevine identification. Moreover, the extracted individual
grapevine parameters enabled the assessment of vineyard variability in each epoch and to
monitor its multi-temporal evolution.

TIR sensors mounted onboard of UASs allow the obtainment of important information
about soil and crop status derived by the analysis of temperature spatial variability and the
crop water stress detection inside the field [68]. More precise monitoring of water status
based on thermal data is required, since this kind of information can be implemented in
water management irrigation strategies, especially when dealing with different genotypes
in the same vineyard [69]. Thermal and multispectral imagery could assess and map the
spatial variability of water status inside the vineyard. The goal of the article by Baluja
et al. [70] was the water status variability assessment of a commercial vineyard using
thermal and multispectral imagery derived from sensors mounted on a UAS and comparing
them with leaf stomatal conductance and stem water potential. The authors stated that the
relationship between thermal imagery and water status parameters could be considered
as a short-term response. NDVI and TCARI/OSAVI indices were probably reflecting
the result of cumulative water deficits in a long-term response. Bellvert et al. [71], used
the CWSI to map the spatial variability in water deficits across a Pinot noir cv. vineyard
using a thermal UAS sensor in different hours of the day. CWSI was correlated with leaf
water potential (LWP) determined by canopy temperature measurement with infrared
temperature sensors. The biggest correlation between CWSI and LWP at 12:30 hours of the
day suggests that the latter was the more favorable time for obtaining thermal images due
to the correlation with LWP values. The sensitivity analysis of pixel sizes confirmed that a
0.3 m pixel was required for precise CWSI mapping. Sepúlveda-Reyes et al. [72] showed
that it is necessary to consider grapevine architecture and image thresholding approaches
for proper use of aerial and terrestrial thermography techniques. An experimental study
under different water stress conditions was run in a commercial Carménère cv. vineyard
trained with vertical shoot position (VSP). In this study, thermal images were obtained from
different canopy zones by using both aerial and ground-based thermography. The standard
deviation technique (SDT), the energy balance technique (EBT), and the field reference
temperature (FRT) technique were used as different thresholding approaches to each
image. Results obtained showed that the EBT had the best performance, discriminating
over 95% of the leaf material. Ground-based nadir images presented the best correlations
with stomatal conductance and stem water potential in the case of canopy zone analysis.
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The best relationships between thermal indices and plant-based variables were registered
during the period of maximum atmospheric demand (near veraison), with significant
correlations for all methods. The aim of the work from Santestebana et al. [73] was to
evaluate how high-resolution thermal imaging can provide instantaneous and seasonal
variability data of water status within a vineyard. A spatial modeling approach was used
to test the potential of the CWSI acquired in a single day to estimate patterns of variation
in water status within-vineyard. CWSI correlated well with stem water potential and
stomatal conductance showing a great potential to monitor instantaneous variations in
water status within a vineyard. Thermal images information proved to be relevant at
a seasonal scale. A single day measurement using the CWSI did not provide a good
estimation of variations of plant water status but simulated other physiological processes
occurring during ripening. The aim of the study by Poblete et al. [74] was to develop
artificial neural network (ANN) models derived from multispectral images to predict
the stem water potential spatial variability of a drip irrigated Carménère cv. vineyard
in Talca (Chile), useful for the assessment of vine water status variability. The obtained
coefficient of determination between ANN outputs and ground-truth measurements of
stem water potential was between 0.56–0.87, with the best performance observed for the
model that included the bands 550, 570, 670, 700, and 800 nm. Poblete et al. [75] used
the midday stem water potential (SWP), and TIR imaging for CWSI to assess grapevines’
water stress. An automatic co-registration of thermal and multispectral images, obtained
from a UAS, was employed to remove shadow canopy pixels by a modified scale-invariant
feature transformation (SIFT) computer vision algorithm, and K-means++ clustering. The
proposed methodology improved the analysis of the relationship between CWSI and SWP
by shadow canopy pixels removing from a drip-irrigated vineyard. The study showed
a higher negative effect of shadow canopy pixels in grapevines affected by water stress,
compared with well-watered vines. Tucci et al. [76] performed a thermal characterization
of a dry-stone wall terraced vineyard using a visible and thermal infra-red sensor, to detect
possible microclimate influence derived by dry-stone terracing. The results revealed the
different behavior of the rows during the morning and the afternoon.

2.3. Rows Area and Volume Estimation

Plant architecture and variation of the surface area and volume occupied by the foliage
are useful characteristics for the characterization, monitoring, and protection of the vine-
yard production. The precise knowledge of area and volume occupied by the rows would
help farmers to detect the vegetative development of the crop, identify deficiencies, and
optimize canopy treatments by implementing a site-specific crop management system. This
approach can optimize and limit the inputs and diminish potential environmental damages
caused by an inappropriate application of products, as well as reduce the management
cost. Direct methods for canopy structure analysis are extremely time-consuming and
hardly applicable at a large-scale. The advances of using UAS for remote sensing and
photogrammetry application opened a new way to obtain rapidly, and on a large scale, this
information, and to combine 3D measurements with spectral information.

The study from Mathews and Jensen [77] is a preliminary study of how structure
from motion algorithm (SfM) can help to predict quickly, practically, and inexpensively
the LAI of a vineyard using extracted points from a point cloud. This work represented
one of the first reasonable successes of this method showing the practical and inexpensive
nature of the SfM method of 3D. Kalisperakisa et al. [78] compare and evaluate LAI
estimation in vineyards from different UAS imaging datasets (hyperspectral data, 2D RGB
orthomosaics, and 3D CSM. The overall evaluation indicated that the estimated canopy
levels were correlated with the in-situ, ground truth LAI measurements. The highest
correlation rates were established with the hyperspectral canopy greenness and the 3D CSM.
The lowest correlations, instead, derived from the calculated greenness levels of the 2D RGB
orthomosaics. The study by Pádua et al. [79] aimed to characterize vineyard vegetation
through multi-temporal monitoring using a commercial low-cost UAS equipped with an
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RGB sensor. The used image-processing techniques enabled the extraction of different
vineyard characteristics and the estimation of its area and canopy volume, providing a quick
and transparent way to assist winegrowers in managing grapevine canopy. Ballesteros et al.
(2015) [80] used images obtained from UAS to characterize the growth attributes of LAI,
green canopy cover (GCC), and canopy volume (CV) of irrigated and rain-fed vineyards in
semi-arid conditions. The results showed that the behavior of the foliage is determined
by the characteristics of the cultivar, the training system, pruning practices, and cultural
practices. The relationships between LAI and growing degree days (GDD), CV and GDD
were used to determine a reliable canopy structure model during the growing season and
contribute to the optimization of site-specific management within the vineyard. Biomass is
an important variable, useful to choose suitable canopy management within the field, and
it can be estimated using plant canopy height. Crop surface models can be used to obtain
plant height, in combination with a non-vegetation ground model. The traditional biomass
estimation method used by the farmer is often imprecise and time-consuming compared
to non-destructive and fast crop surface models (CSMs) estimation by UASs’ imagery.
L. Comba et al. [81] have tested the reliability of an estimation process of a dense 3D point
cloud as an economical alternative to traditional LAI assessments. The LAI was estimated
using a multivariate linear regression model that uses 3D crop crown descriptors (thickness,
height, and distribution of leaf density along the wall), showing a high correlation with
those obtained with the traditional manual method, even in hilly and difficult-to-access
regions. Matese et al. [82] constructed a 3D DSM for the creation of precise digital terrain
models (DTM), to be subtracted from the DSM to obtain a canopy height model (CHM) of
the vineyard. The results showed good separation between ground pixels and vine rows,
but their height was not quite following the actual height of the vines, due to a smoothing
effect attributable to low camera resolution. A further comparison between CHM and a
vigor map obtained from the NDVI values showed a good correlation. The average canopy
height and vine row width were used for a preliminary assessment of biomass volume.
The work by Pichon et al. [83] focused on the assessment of the quality of low-cost DSMs
obtained with UAS images (provided by three companies), and test whether the DSMs met
common requirements of the wine industry. The DSMs quality were analyzed through the
mean error and its dispersion in the XY plane and in elevation Z. The results showed good
quality DSMs, able to assess field characteristics of elevation, slope, and aspects, useful for
terroir characterization. The study proved the efficiency and the reliability of elevation data
derived from UASs, with an accuracy equivalent to the reference system used in the study.
De Castro et al. [84] developed an object-oriented algorithm using photos obtained from a
low-cost RGB camera mounted on board a UAS for 3D characterization of the vineyard. The
OBIA algorithm was able to measure the volume and height of grapevine canopy and detect
missing plants without previous training or human assistance, adapting itself to different
field conditions. Ronchetti et al. [85] focused on the production of high-resolution DTM in
agriculture by photogrammetric processing fisheye images, acquired with very light UAS.
Different flight strategies have been tested together with different GCPs and check point
(CP) configurations and software packages. The computed DTMs have been compared with
a reference model, obtained through geostatistical analysis (using Kriging interpolation)
of GNSS-RTK measurements. The photogrammetric DTMs showed a good agreement
with the reference one. Ghiani et al. [86] described the development of a methodology
for the computation of the canopy volumes through remotely sensed imagery acquired
with UAS RGB digital camera, analysis with MATLAB scripts and ArcGIS. Preliminary
results showed that the volumes obtained with this 3D reconstruction were 50% lower than
those directly measured in the field by the tree row volume (TRV) technique, therefore
promoting a limitation of the use of chemicals. The paper from Burgos et al. [87] presented
the acquisition methodology of high-resolution images using UAS and their processing to
construct a 3D DSM and a DTM. The subtraction of DTM from the DSM permitted to obtain
a differential digital model (DDM) of a vineyard, in which the pixels with an elevation
higher than 50 cm above ground level were detected as vine pixels. The results show that it
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was possible to separate pixels from the green cover and the vine rows, with DDM values
between −0.1 and +1.5 m. Starting from RGB color model imagery obtained by UAS, M.
Weiss and Baret [88] proposed a methodology to describe vineyard 3D macro-structure
using the dense point cloud to distinguish the background from the vineyard and applying
a threshold on the height to separate the rows from the row spacing. The quality of the
dense point cloud seems to affect the row width, cover fraction, and the percentage of
missing row segments. Comba et al. [89] proposed new and more reliable methods for
vineyard monitoring operations, using a data fusion approach for vigor characterization in
vineyards. It exploits the information provided by 2D multispectral aerial imagery, 3D point
cloud crop models, and aerial thermal imagery of 30 portions of vine rows. The data fusion
methodology showed how vigor could be automatically evaluated by a generic 3D point
cloud, without any user intervention or manual vineyard boundaries selection. Comba
et al. [90] also proposed an innovative unsupervised algorithm for vineyard detection and
vine-rows features evaluation, based on 3D point-cloud maps processing The main results
are the automatic detection of the grapevines (at different phenological phases and growth
stages), the local evaluation of vine rows orientation, the inter-rows spacing in the presence
of dense inter-row grassing, the detection of missing plants, and steep terrain slopes. The
effectiveness of the developed algorithm did not rely on the presence of rectilinear vine
rows, being also able to detect vineyards with curvilinear vine row layouts. One of the last
works by Comba et al. [91] involved the generation of low complexity 3D mesh models
of vine rows from 3D point clouds, reducing the number of georeferenced instances to
describe the spatial layout and shape, with a reduced amount of data (98%), without losing
relevant crop shape information. This process will facilitate the computational process
and allows a real-time interpretation of point clouds. The 3D process for VSP-training
systems can automatically process in hilly areas and non-uniform vineyards characterized
by non-linear vine rows and different intra-row distance.

2.4. Crop Disease Detection

There are multiple grapevine diseases responsible for yield quality and quantity
decrease and economic losses to the wine industry worldwide. Symptoms can be evident,
and in some cases completely absent. For this reason, a continuous monitoring of the
plants and the detection of symptoms becomes fundamental to preserve the health of the
vineyard and protect the harvest.

Di Gennaro et al. [92] suggests a methodology to investigate the relationships between
high-resolution multispectral images (0.05 m/pixel) acquired using a UAS, and grapevine
leaf stripe disease (GLSD) foliar symptoms monitored by ground surveys. This approach
showed high correlation between NDVI index and GLSD symptoms, and discrimination
between symptomatic and asymptomatic plants was surveyed and mapped since 2003.
Each vine was located with remote sensing and ground observation data were analyzed
to promptly identify the early stages of the disease, even before visual detection. This
work suggests an innovative methodology for quantitative and qualitative analysis of the
spatial distribution of symptomatic plants. Albetis et al. [93] presented the potential of
spectral bands, vegetation index, and biophysical parameters to detect grapevines affected
by the Flavescence doree disease caused by the bacterial agent Candidatus Phytoplasma vitis
and transmitted by the insect Scaphoideus titanus (Ball). They used the receiver operator
characteristic (ROC) analysis to determine the ability of each variable and found that RGI
and GRVI vegetation indices based on the green and red spectral bands were the best to
detect Flavescence doree pixels in UAS multispectral imagery. In another study, del-Campo-
Sanchez et al. [94] quantified the impact of the pest Jacobiasca lybica on vineyards and
developed a representative cartography of the severity of the infestation. To accomplish
this work, computational vision algorithms based on an ANN combined with geometric
techniques were applied to geomatic products using consumer-grade cameras in the visible
spectra mounted on board a UAS. The results showed that the combination of geometric
and computational vision techniques with geomatic products generated from conventional
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RGB images improved image segmentation of the affected vegetation, healthy vegetation,
and ground. Thus, the proposed methodology is a more cost-effective application of UASs
compared with multispectral cameras and increases the accuracy of estimations for the
impact of pests by eliminating the soil effects. Vanegas et al. [95] implemented a UAS
remote sensing-based methodology for the development of a predictive model for Viteus
vitifoliae (Fitch, 1856) phylloxera detection. They explored the combination of airborne RGB,
multispectral, and hyperspectral imagery with ground-based data at two separate time
periods and under different levels of infestation. The investigated indexes could be used to
determine the extent of the disease, the severity of the plant pest, and its impact on grape
production. Besides, it could become a strategic decision support system (DSS) tool for
vineyard management and could improve the potential for early detection of the pest.

2.5. Prescription Maps for Spraying Management

The plant-protection products application is a key aspect associated with environ-
mental contamination, safety of operators, food safety, and the economical balance of crop
production [96]. Every crop is distinguished by a structure, dimensions, and even foliar
area and density. A crucial aspect directly related canopy characteristics regard the most
efficient amount of pesticide, and the optimal amount of water to be applied. Canopy
characterization becomes then a crucial aspect for what is defined site-specific management
strategies. UASs potentially rely on the capability to characterize large areas, with relatively
low cost, a great capability for recording large volumes of data, and potential to obtain a
real picture from above, giving complementary information about crop distribution over
the measured area.

Campos et al. [97] showed how canopy maps, obtained from a multispectral camera
embedded in a UAS and variable rate application over a vineyard parcel, can potentially
save wastes in pesticide application, water use, and time. Thanks to specific software,
the prescription map was uploaded into a modified sprayer for the variable application
process. Excellent accuracy was obtained with the system, saving water and pesticide
by over 40%. Khaliq et al. [98] compared the decametric satellite resolution of Sentinel 2
and 35 m altitude UAS multispectral imagery of a vineyard using three different NDVI
indices, considering the whole cropland surface, only the crop canopy pixels, and only the
pixels representing the inter-row terrain. The pixels contained in the photo obtained from
the UAS representing crop canopies inside the vigor maps resulted better related to the
in-field assessment, compared to the satellite imagery. This approach showed how satellite
imagery is unusable for crops grown in rows, for crop canopies which do not extend
to the whole surface, or where the presence of weeds is significant. Campos et al. [99]
designed a procedure for a variable rate application (VRA) sprayer. An unmanned aerial
vehicle, equipped with a multispectral camera, was used to generate a photo set for the
canopy characterization throughout the entire growing season in four vineyard plots. The
multispectral images were then merged with the information provided by a DSS to obtain
the prescription maps and apply the optimal volume rate. The prescription maps were then
uploaded to the VRA prototype, obtaining updated maps after the application processes
were complete. The prototype had an adequate spray distribution quality, with coverage
values in the range of 20–40%, and exhibited similar results in terms of biological efficacy on
Plasmopara viticola (Berk. & M. A. Curtis) Berl. & De Toni 1888 (powdery mildew) compared
to conventional (and constant) application volumes.

3. UAS Platforms, Sensors, and Targets

The research studies analyzed in this review showed increased use of multi-rotor
UASs instead of fixed-wing UASs. Fixed-wing and multirotor are the most common types
of UASs. Both systems show the advantages and disadvantages of their use. The multirotor
is easy to fly, take off, land, and operate thanks to a high number of dedicated software
and applications. The major multirotor limitation concerns the reduced flight range, which
leads to a reduction in the area that can be analyzed in a single flight. Fixed-wing UASs
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require a suitably large, obstacle-free landing area (often missing in vineyards) and good
piloting skills to land them smoothly and avoid damage to the UAS and the sensors
installed onboard. However, they differ in their excellent flight endurance and remarkable
range that allows them to cover large areas in a single flight. Factors such as maintenance
and flight time range favor the use of a fixed-wing, whereas the multi-rotor is preferred for
proximity inspections and if more detailed and accurate data are required [100]. Thanks
to the gimbal system, usually implemented onboard of the multirotor, the sensors can
give a different 45◦ perspective (with respect to the ground surface) of the rows, so it is
possible to obtain more reliable and useful data for 3D reconstruction of the rows, estimate
their volume, or detect the presence of phytopathology on the leaf wall [50]. As shown in
Table 1, most of the systems used were quadcopters, hexacopters, and octocopters. Their
use is likely due to the limited size of the areas studied that do not involve long flights.
Fixed-wing UASs appear in a limited number of papers. This choice stems from the need
to cover large areas in a single flight. Vineyard surfaces reported in Table 1 range from a
minimum of 0.3 ha to a maximum of 12 ha, with three exceptions of 14.0 ha, 17.7 ha, and
23.2 ha [44,87,98]. Fixed-wing UASs flew over the largest areas [45,71,87,88]. Differently
from the satellite imagery, the investigation surface extension depends on the flight altitude,
UASs speed, sensor’s field of view, and from the limited battery autonomy of multirotor
UASs (on average 30 min) [101]. The vineyards showed heterogeneous characteristics in
terms of slope, sun exposure, and distance between and within rows.

Table 1. Unmanned aerial system (UAS) typology used for viticulture research purposes and sensors information.

Spectral Range Sensor Brand and
Model

UAS
Typology

UAS
Brand/Model

Surface
(ha)

Vineyard
Cultivar Objectives Year References

R-G-B-NIR-TIR Canon 550D Hexacopter Mikrokopter
He0xa-II 2 NA variability

monitoring 2011 [52]

R-G-B-NIR-TIR MCA-6 Tetracam A40
M FLIR Quadcopter NA 5 Tempranillo variability

monitoring 2012 [70]

R-G-B-NIR-RE
hyperspectral Hyperspec VNIR Fixed wings mX-SIGHT NA Tempranillo variability

monitoring 2013 [57]

R-G-B Canon PowerShot
A480 Quadcopter Hawkeye II 1.9 Tempranillo

rows
geometry

estimations
2013 [77]

R-G-B-NIR ADC-lite camera
Tetracam Hexacopter Mikrokopter

Hexa-II NA NA crop features
detection 2013 [34]

R-G-NIR ADC-lite camera
Tetracam Octocopter Mikrokopter

Okto 0.5 Nerello
Mascalese

variability
monitoring 2013 [56]

R-G-B-NIR ADC-lite camera
Tetracam Hexacopter Mikrokopter

Hexa-II 1.2 Cabernet
Sauvignon

variability
monitoring 2013 [58]

TIR Miricle 307 K Fixed wings Viewer 11 Pinot noir variability
monitoring 2014 [71]

R-G-B-NIR
Canon PowerShot

A480 (Canon U.S.A,
New York, NY, USA)

Hexacopter Hawkeye 1.9 Tempranillo variability
monitoring 2014 [59]

NIR NA Fixed wings Sensefly
eBee 14 NA crop features

detection 2015 [45]

R-G-B-NIR MCA 6 Tetracam Quadcopter RPAS
Md4-1000 5 Tempranillo variability

monitoring 2015 [60]

R-G-B-NIR

GP Hero 3 and
Micro-Hyperspec

A-Series
(Headwall Photonics,

MA, USA)

Octocopter OnyxStar
BAT-F8 NA Nemea-

Agiorgitiko

rows
geometry

estimations
2015 [78]

R-G-B-NIR ADC-lite camera
Tetracam Hexacopter Mikrokopter

Hexa-II NA NA crop features
detection 2015 [44]
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Table 1. Cont.

Spectral Range Sensor Brand and
Model

UAS
Typology

UAS
Brand/Model

Surface
(ha)

Vineyard
Cultivar Objectives Year References

R-G-B Pentax A40 NA NA 2.5 Cencibel-
Airén

rows
geometry

estimations
2015 [80]

R-G-B Canon IXUS 220 HS Fixed wings
senseFly
Swinglet

CAM
12 NA

rows
geometry

estimations
2015 [87]

TIR EasIR-9 Quadcopter HKPilotMega
2.7 NA Carménère variability

monitoring 2016 [72]

R-G-B-NIR ADC-Snap Tetracam Octocopter Mikrokopter
Okto 2.4 NA variability

monitoring 2016 [82]

R-G-B NA
Multirotor-

Fixed
wings

NA 4 Languedoc
rows

geometry
estimations

2016 [83]

R-G-B NA Quadcopter DJI Phantom
2 NA Cabernet

Sauvignon
crop features

detection 2016 [49]

R-G-NIR ADC-lite camera
Tetracam Octocopter Mikrokopter

Okto 1.2 Cabernet
Sauvignon

disease
detection 2016 [92]

TIR FLIR TAU II 320 Octocopter Mikrokopter
Okto 7.5 NA variability

monitoring 2016 [73]

R-G-B-NIR ADC-Snap Tetracam Octocopter Mikrokopter
Okto 8.5 tempranillo variability

monitoring 2017 [61]

R-G-B Lumix DMC-FT4 Quadcopter NA NA Carménère crop features
detection 2017 [35]

R-G-B-NIR
Coolpix

P7700-ADC-lite
camera Tetracam

Octocopter DJI s1000 0.5 Sagiovese variability
monitoring 2017 [62]

R-G-B-NIR-RE RedEDGE Micasense Fixed wings long range
DT-18 3.1

Sauvignon–
Colombard

-Gamay-
Duras

disease
detection 2017 [93]

R-G-B Coolpix P7700 camera Octocopter DJI s1000 NA Sangiovese crop features
detection 2017 [48]

R-G-B DMC-GF3 Fixed wings NA 23.2 Nebbiolo
rows

geometry
estimations

2017 [88]

R-G-B-NIR-RE MCA-6 Tetracam Octocopter Mikrokopter
Okto NA Carmeneré variability

monitoring 2017 [74]

R-G-NIR ADC-lite camera
Tetracam Octocopter Mikrokopter

Okto 0.4

Sangiovese-
Petit Verdot–

Cabernet
Sauvignon

variability
monitoring 2017 [63]

R-G-B Olympus PEN E-PM1 Quadcopter MD4-1000 1.1
Merlot-

Albariño-
Chardonnay

rows
geometry

estimations
2018 [84]

R-G-B-NIR-RE Parrot Sequoia NA NA 2.5 NA
rows

geometry
estimations

2018 [90]

R-G-B-NIR-TIR

Canon
EOSM10-tetracam

ADC Snap
-FLIR TAU II 320

Hexacopter Mikrokopter 10.3 Sangiovese variability
monitoring 2018 [64]

R-G-B DJI FC6310 Quadcopter DJI Phantom
4 NA NA crop features

detection 2018 [46]
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Table 1. Cont.

Spectral Range Sensor Brand and
Model

UAS
Typology

UAS
Brand/Model

Surface
(ha)

Vineyard
Cultivar Objectives Year References

R-G-B-NIR-
Hyp.

Canon 5DsR-R0Edge
MicaSense

Nano-Hyperspec
Hexacopter S800 EVO

Hexacopter 11.7

Chardonnay-
Pinot Noir

Shiraz-
Merlot-

Cabernet
Sauvignon-
Roussanne

disease
detection 2018 [95]

R-G-B DJI FC6310 Quadcopter DJI Phantom
4 0.9 NA

rows
geometry

estimations
2018 [79]

R-G-B-NIR-TIR Micro MCA-6
Tetracam-FLIR TAU2 Octocopter Mikrokopter

Okto NA Cabernet
Sauvignon

variability
monitoring 2018 [75]

R-G-B-NIR-RE Parrot Sequoia NA NA 1.5 Nebbiolo
rows

geometry
estimations

2019 [89]

R-G-B SONY α ILCE-5100L Quadcopter microUAV
md4-1000 5 Syrah disease

detection 2019 [94]

R-G-B-NIR-RE Parrot Sequoia NA NA 2.5 Nebbiolo prescription
mapping 2019 [98]

R-G-B-NIR ADC-Snap Tetracam Octocopter Mikrokopter
Okto 7.5 tempranillo variability

monitoring 2019 [66]

R-G-B-NIR
Olympus PEN
E-PM1-SONY

ILCE-6000
Quadcopter MD4-1000 1 Pedro

Xime’nez
crop features

detection 2019 [39]

R-G-B-TIR DJI FC6310-Optris
PI450 Quadcopter DJI Phantom

4 pro 1.8

Sangiovese
–Petit Verdot –

Cabernet
Sauvignon

variability
monitoring 2019 [76]

R-G-B-NIR-RE RedEDGE Micasense Hexacopter UAVHEXA 5 Merlot prescription
mapping 2019 [97]

R-G-B-NIR-RE-
TIR

Parrot
Sequoia-thermoMAP

Quadcopter-
Fixed
wings

DJI Phantom
4-Sensefly

eBee
0.3 Malvasia

Fina
variability
monitoring 2019 [65]

R-G-B NA multirotor NA 11.3 Syrah-
Grenache

crop features
detection 2019 [50]

R-G-B-NIR
ADC-Snap Tetracam-

ThermalCapture
FUSION

Hexacopter Mikrokopter 2.4 Barbera-
Sangiovese

crop features
detection 2019 [47]

R-G-B Olympus PEN E-PM1 Quadcopter MD4-1000 0.9 Merlot and
Albariño

scrop
features

detection
2020 [41]

R-G-B NA Quadcopter Parrot Bebop
2 1 NA

rows
geometry

estimations
estimations

2020 [85]

R-G-B-NIR-RE RedEDGE Micasense Hexacopter UAVHEXA 17.7

Chardonnay-
Merlot-

Cabernet
Sauvignon

prescription
mapping 2020 [99]

R-G-NIR-RE Mapir survey 3 Quadcopter DJI Phantom
4 pro 1.3 Cagnulari

rows
geometry

estimations
estimations

2020 [86]

R-G-B-NIR-RE-
TIR

Parrot
Sequoia–thermoMAP

senseFly

Quadcopter-
Fixed
wings

DJI Phantom
4 2.1 Alvarinho-

Loureiro
variability
monitoring 2020 [67]
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Table 1. Cont.

Spectral Range Sensor Brand and
Model

UAS
Typology

UAS
Brand/Model

Surface
(ha)

Vineyard
Cultivar Objectives Year References

R-G-B-NIR-RE Parrot Sequoia NA NA 2.5 Nebbiolo
rows

geometry
estimations

2020 [91]

R-G-B-NIR-RE Parrot Sequoia NA NA 2.5 Nebbiolo
rows

geometry
estimations

2020 [81]

Legend: NA—Not available; R—Red; G—Green; B—Blue; NIR—Near infrared; TIR—Thermal infrared; Hyp—Hyperspectral.

All research groups used commercial UASs. The only customization made concerns
the type of sensor on board. This choice is probably dictated by the high performance of
commercial UASs, able to guarantee the necessary research functions at a lower purchase
cost than custom UASs.

Most of the monitoring operations were carried out using RGB and multispectral
sensors; only a small number of them involved thermal sensors and even less hyperspectral
technologies. Because of the used sensors, most of the investigated spectral bands regarded
the visible light (red, green, and blue) and the near infrared (NIR) band; only in a few
cases the red edge (RE) and thermal infrared (TIR) bands were investigated. Hyperspectral
sensors are not commonly used in remote sensing viticulture, their purchase cost is particu-
larly high, and the data obtained are difficult to interpret. Different types of sensors capable
of picking up different spectral bands were used during the field tests. As can be seen in
Table 1, there are many manufacturers that currently produce sensors specifically designed
to perform remote measurements via UAS. However, in several works, we can notice the
use of reflex and mirrorless cameras, normally used in amateur and professional photo
shoots. Increasing investments are expected in the development of parallel technologies
and specific sensors for remote sensing in agriculture [102]. From this literature review,
it emerged that most of the studies had the analysis of space–time variability within the
vineyards as their main objective. As shown in Table 1, this type of approach is prevalent
with respect to techniques for detecting canopy characteristics and calculating the structural
characteristics of the canopy. The detection of plant diseases and the creation of vigor
and prescription maps have been investigated in less depth. These results show the real
interest of researchers in finding effective and fast methodologies to monitor vineyard
development, understand the causes of this variability, and ensure precise, calibrated, and
targeted crop management. The origin of intra-vineyard variability may derive from an
inaccurate arrangement of the soil and water control plans, an imprecise setting of the
grapevines during the training pruning phase, the non-application of some green and
winter pruning techniques [103].

4. Perspective and Future Challenges

The vineyard ecosystem represents a major environment to investigate since grape
and wine production is a proficuous economic activity. As pointed out in the introduction,
the aim of PV regards the correct management of variability in the vineyard production
system, the increase of economic benefits, and the reduction of environmental impact.
The most relevant aspects concern the efficient use of inputs, the differentiation of grape
qualities at harvest time, the prediction of yields, and greater accuracy and efficiency of
sampling conducted at the plot level. Climate and meteorology are among the factors
that influence vine productivity [104]. It is essential to understand how and how strongly
climate and meteorology influence grape productivity and quality. Micrometeorology
of vineyards can be implemented by examining thermodynamic variables, studying the
exchange processes between soil, canopy, and atmosphere. Understanding how vineyard
structure, composition, and farming practices can alter microclimate could help wine-
makers in their decision making process and management choices [105]. The availability
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of multiple data at the vineyard could allow the implementation of sophisticated algo-
rithms to create phenological models, useful to predict the impact of climate change on
the vine in the long term. The used tools allow monitoring of weather conditions above
and within the vine canopy and in the soil. The conventional meteorological data and
agrometeorological monitoring stations located far from the vineyard may not allow direct
characterization of microclimatic or micrometeorological conditions, as the measurements
are not representative of the actual physical conditions to which plants are subjected within
vineyards [106]. Such conditions emerge when hourly data are investigated with the appro-
priate indices [107], whereas daily or monthly data tend to mitigate such differences. UAS
technology could improve the acquirement of atmospheric data over extended surfaces
in viticulture scenarios. Atmospheric information about pressure, temperature, humidity,
and wind measurements can be easily and quickly obtained by UAS, as shown by [108].
The latest developments in automation could improve atmospheric monitoring operations
with the required speed and frequency. When UAS data are not available or compromised
by instrumental errors, ecosystem conditions should be provided by performing ground
sampling operations or extracting proximal sensor data [109–112]. Further studies on this
topic are needed to improve crop protection, highlight the damage to the ecosystem, and
help farmers reduce the number of treatments.

More recent and relevant studies on the application of UAS remote sensing for soil
moisture monitoring [113–116], water consumption and use efficiency [117–121], and
surface energy budget [122,123] should be investigated to enrich future research directions
in PV. These works demonstrate how the application of high-resolution remote sensing
technology would improve knowledge of soil characteristics as a key element in site-specific
vineyard management.

From the bibliographic research on the use of UAS in viticulture, a limited amount of
works focusses on the theme of in-flight product distribution operations. This shortcoming
is justified by the innovativeness of these operations, as well as the evident limits to perform
homogeneous distributions over the entire volume of the rows, and the limited autonomy
of the UASs [21].

The high capacity of UASs to scan large areas and more fields during a crop season
in a short period of time reduces operational cost. Due to still immature fully automated
analysis procedures, the main cost associated with mapping is related to human labor
for post-processing data elaboration. The use and diffusion of UAS technology depend
unequivocally on the economic advantages derived by their application as decision support
tools. UAS crop monitoring and mapping imply several logistic and business adjustments
that result in site-specific management. More efforts are requested to evaluate the effective
cost of UASs application, and to quantify the real economic benefits derived by the usage
as DSS in viticultural fields.

5. Conclusions and Remarks

Our review provides a state of the art of UAS remote sensing in PV, focusing on
the description of the applied methodologies and the obtained results. The cited studies
differ for the different application purposes and the employed equipment, showing the
potential of different technologies combined with UASs in the identification of variability
of the vineyard through the characterization of structural characteristics, the presence
of disease, and plant physiology. Therefore, UASs prove to be a technology that is well
suited to different viticultural scenarios, sensors, and analysis techniques. As a result
of the analysis of the cited works, there is a lack of studies related to the application of
UAS remote sensing for plant disease detection and the creation of prescription maps for
vineyard-specific treatment. The development of these topics is of great importance. They
could lead to improvements in terms of the decision-making process. Improved disease
detection and prevention, combined with prescription maps and variable rate application,
will reduce product waste and more sustainable viticulture.
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As a result of innovations in UAS technology, lower purchase costs, and an increasing
use of such systems, UASs are a key tool for decision support in the customary use by
winegrowers. This support can be enhanced thanks to a correct interpretation of data and
their transformation into useful information to be integrated with proper agronomic man-
agement. Most of the work focused on the methodology of analysis and data acquisition.
It would be useful to provide a series of works in which the described methodologies are
applied in viticulture scenarios, comparing and partnering UASs with existing technologies
to verify their actual effectiveness. Given the high level of training and expertise required,
there is a clear need to develop simplified and more automated analysis methodologies for
greater dissemination in real operational fields. The skills required for the interpretation
of UAS images represent one of the key points for the development of the sector and go
beyond flight planning and its implementation. The development of user-friendly software
could be a turning point for the complete dissemination of these methodologies, still too
difficult to be performed by those who do not have specific training.

The greater use of RGB and multispectral sensors compared to thermal, hyperspectral,
and LIDAR chambers, shows a greater interest of research groups towards this type of
sensor, probably due to a greater facility of data interpretation and a lower purchase price.
The more accessible the technology, the more research teams can use it and the greater the
growth of knowledge. The ability of the systems to respond to current demands for the
acquisition of digital technologies in the agricultural field, candidates’ UASs, between all
information and communication technologies, to play an increasing role in future scenarios
of viticulture application. The multiple national regulations that govern and regulate
the flight represent a system of safety and control of UAS operations. The increasing
use of UASs in agricultural scenarios will benefit from regulatory simplification and
unification among the various countries. UASs could be adopted in crop monitoring
and management, improvement of crop productivity, optimization of crop resources, and
reduction of operation time. They could be also employed through platforms for the
management of swarms of UASs and put in communication with ground robots and
tractors for specific operations.
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