
sensors

Article

Detection of Motion on a Trampoline with a Smartwatch

Satoshi Kobayashi * and Tatsuhito Hasegawa

����������
�������

Citation: Kobayashi, S.; Hasegawa, T.

Detection of Motion on a Trampoline

with a Smartwatch. Sensors 2021, 21,

8413. https://doi.org/10.3390/

s21248413

Academic Editor: Marco Iosa

Received: 22 October 2021

Accepted: 15 December 2021

Published: 16 December 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Graduate School of Engineering, University of Fukui, Fukui 910-8507, Japan; t-hase@u-fukui.ac.jp
* Correspondence: mf200471@u-fukui.ac.jp

Abstract: In this study, we develop a method for detecting the motions performed on a trampoline
using an accelerometer mounted on a smartwatch. This method will lead to a system that can be used
to promote trampoline exercise using a home trampoline by detecting motions on the trampoline
using a smartwatch. We proposed a method based on the convolutional neural network to detect
the motions on a trampoline. As a result of the performance evaluation by leave-one-subject-out
cross-validation on eight subjects, our method achieves 78.8% estimation accuracy, which is the best
estimation accuracy compared to the baseline methods. We also evaluate the inference time and the
battery consumption when the model is actually running on a smartwatch. Our method is effective
for on-device prediction.

Keywords: human activity recognition; trampoline exercise; smartwatch

1. Introduction

The demand for home exercise is increasing, as evidenced by the strong sales of Ring
Fit Adventure [1], which combines games and exercise to provide continuous exercise.
In addition, moderate exercise in daily life is said to be necessary for the prevention of
lifestyle diseases [2]. Therefore, it is important to have a means to continuously exercise in
a manner appropriate for one’s physical fitness.

Aerobics performed on a trampoline is called “trampobics”, and it is attracting atten-
tion as a form of training [3]. Aerobics on a hard floor may cause damage to the legs and
back due to strenuous movements, whereas that on a trampoline can reduce the burden
on the legs and back. In addition, trampoline exercise is perceived to be easier in subject
evaluation than its equivalent exercise on flat ground, albeit the amount of exercise being
the same [4]. However, exercise for the mere purpose of health maintenance tends to
lose the motivation to continue and does not become a habit [5]. Trampoline exercise is
considered to be monotonous and lacks continuity. Some systems can be used to make
trampoline exercise entertaining [6,7]. Some studies have developed systems to promote
trampoline exercise [8–10]. However, these systems are not easy to use because they require
visiting a facility or using a dedicated device, which takes cost for dedicated equipment.

In recent years, various sensors have become readily available due to the widespread
use of smartphones and smartwatches. Many studies have used the sensor data obtained
from smart devices, such as smartphones and smartwatches. In particular, there have been
studies on estimating human activity from sensor data [11–15].

We aim to develop herein a system to promote trampoline exercise using a smartwatch
and a home trampoline. This study verifies and reports whether it is possible to detect
the motions performed on the trampoline by a smartwatch, and whether it is possible
to run on a real smartwatch. Figure 1 shows the outline of the proposed system. The
motion sensor data obtained from the smartwatch worn on the arm were used to estimate a
motion on the trampoline. Compared to smartphones, smartwatches can be worn at a fixed
position and can easily be fixed; hence, they do not interfere with the trampoline exercise.
The estimation results obtained from a smartwatch can be used as the game interface,
and the exercise can be recorded with detailed information. Controlling a game by the

Sensors 2021, 21, 8413. https://doi.org/10.3390/s21248413 https://www.mdpi.com/journal/sensors

https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://doi.org/10.3390/s21248413
https://doi.org/10.3390/s21248413
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/s21248413
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s21248413?type=check_update&version=2


Sensors 2021, 21, 8413 2 of 14

motions performed on a trampoline can increase the motivation for trampoline exercise
and improve sustainability. We developed a method for estimating the motions performed
on a trampoline from a smartwatch accelerometer, which is the core of the proposed system,
and show its effectiveness through experiments.

64 samples

6-class classification

Sampling frequency = 100Hz

Slide 64 samples

!
stand 
walk 
march 
two-jump 
one-jump-left 
one-jump-right

CNN

Trampoline
Smartwatch

Excellent!
17 combos! 

Exercise
22/30MIN

Game input interface Exercise app

"
Accelerometer 

Figure 1. Outline of the proposed system.

2. Related Works
2.1. Systems for Promoting Trampoline Exercise

Fukuchi et al. [8] developed a system to promote trampoline exercise by adding a
selfie camera function. In this system, a distance sensor is placed under the trampoline
to automatically take a picture of the user jumping on the trampoline. The time to reach
the top is then estimated from the jumping interval. Meanwhile, Mori et al. [9] developed
a system that changes the image on the virtual reality by the motions on the trampoline.
This system detects the walking, balancing, and jumping motions on the trampoline using
the two-dimensional information of the trampoline surface, which is measured by a non-
contact infrared distance sensor. Mukai et al. [10] developed a motion detection method to
be used as an interface for trampoline games. They proposed a detection method using
a laser range scanner and a distance sensor, and verified its effectiveness in a treasure-
hunting game.

HOP AMP [6] is a system that makes a trampoline entertaining. It measures the user’s
jumping state from a mechanical sensor under the trampoline surface and changes the
image projected on the trampoline surface by the user’s jumping state. Space Hoppers [7]
is a trampoline attraction. In this game, players win a race by jumping on the trampoline.
Sensors at the bottom of the trampoline measure the landing position. The player can
accelerate in the game when he/she jumps high in the center of the trampoline.

2.2. Motion Sensor-Based Human Activity Recognition

Many studies focused on recognizing human activity from the motion sensor (e.g.,
accelerometers). Machine learning is often used for human activity recognition, and many
studies have applied deep learning [12–14]. Hasegawa et al. [15] evaluated whether or not
the model structure of the convolutional neural network (CNN), which is often used in
image recognition field, is also effective in human activity recognition. In addition, due
to the availability of public datasets, such as the OPPORTUNITY [16,17] and the HASC
dataset [18], many studies have discussed human activity recognition using sensor data.

2.3. On-Device Deep Learning

In general, increasing the number of layers in a deep learning model increases the
number of parameters and improves the model representation. However, increasing
the number of layers increases the computational cost and requires a large amount of



Sensors 2021, 21, 8413 3 of 14

computational resources. In the image classification field, the model structures that achieve
high accuracy while reducing the number of parameters, such as MobileNet [19] and
EfficientNet [20], have been proposed. MobileNet was particularly developed as a model
that can operate in environments with limited computing resources, such as smartphones.

Deep learning can be provided as an application in two ways: on a server (cloud)
and on a device, such as a smartphone (on-device). In the case of cloud computing, a
model is usually implemented on a server because it can use the large amount of com-
puting resources on the server for prediction. In the case of on-device systems, the user’s
privacy is protected; there is no need to connect to the Internet; and the server cost is not
required [21]. However, smartphones have limited computational resources compared to
servers; therefore, a model with a small computational cost is needed.

The frameworks for implementing deep learning models on smartphones, such as
TensorFlow Lite [22], PyTorch Mobile [23], and Core ML [24], have been released since
2017. These frameworks enable the development of applications that use deep learning
models without a server for prediction.

Deep learning models that work on smartphones or edge devices have been devel-
oped in the field of human activity recognition. Teng et al. [25] proposed a method for
training a CNN model with small filters using a separate loss function for each layer.
They also implemented the proposed model on an Android smartphone using PyTorch
Mobile to evaluate the on-device prediction time. Xu et al. [26] proposed InnoHAR, a
combination of the Inception module [27] and a gated recurrent unit (GRU). Moreover,
they implemented the model in the MinnowBoard Turbot (MinnorBoard Wiki. Minnor-
Board Turbot. http://minnowboard.outof.biz/MinnowBoard_Turbot.html (accessed on
27 April 2021)), which is a small embedded platform, and evaluated the prediction time.
In addition, Agarwal et al. [28] proposed a lightweight deep learning model for human
activity recognition that can run on an edge device.

2.4. Contributions of the Study

From the above information, the following are the main contributions of this study.

• We propose a method for detecting the motions on a trampoline using a smartwatch.
• We investigate how detailed the motion detection on the trampoline can be estimated

from the acceleration data obtained from the smartwatch.
• We implement our method as an application that runs on a smartwatch, and evaluate

its effectiveness in terms of the prediction time and the battery consumption.

We chose the motions that can be performed on a home trampoline, referring to
papers that have examined the effects of trampoline exercises. We decided the following six
types of motions: two-legged standing (ST; stand) [29], walking (WL, walk) [30], marching
(jumping-walking) (MR; march) [29], two-legged jumping (TJ; two-jump) [30–32], one-
legged jumping (left) (LJ; one-jump-left), and one-legged jumping (right) (RJ; one-jump-
right) [31,33,34].

3. Method of Detecting Motions on a Trampoline with a Smartwatch

Figure 1 depicts the outline of our method. This system input is the 3-axis acceleration
data obtained from a smartwatch worn on the arm. We proposed herein a CNN-based
motion detection method. The measured acceleration data were divided into fixed windows
to use as the CNN input. We divided the acceleration data into windows with a window
size of 64 and a stride width of 64. When the sampling frequency was 100 Hz, the model
predicted the motion performed on the trampoline from the data of 0.64 s.

Table 1 shows the CNN model used in this study. Conv1D indicates the convolu-
tional layer. MaxPooling1D indicates the pooling layer. GAP indicates the global aver-
age pooling layer. The activation function of the output layer is the softmax function.
Hasegawa et al. [15] showed that VGG16 [35] is a model that achieves a high estimation
accuracy in human activity recognition; hence, we adjusted the parameters based on
VGG16. As shown in Figure 2, global average pooling (GAP) [36] was used instead of

http:// minnowboard.outof.biz/MinnowBoard_Turbot.html


Sensors 2021, 21, 8413 4 of 14

fully-connected layers to reduce the number of parameters. We adopted GAP because
reducing the number of parameters not only reduces the model size, but also suppresses
overfitting. In addition, by reducing the number of parameters, it may have the effect of
easily training the model in human activity recognition with limited training data.

Table 1. Model architecture.

Layer Type Number of Filter Shape of Output Output Channels

Conv1D 16 192 16
Conv1D 16 192 16

MaxPooling1D 2 96 16
Conv1D 32 96 32
Conv1D 32 96 32

MaxPooling1D 2 48 32
Conv1D 64 48 64
Conv1D 64 48 64
Conv1D 64 48 64

MaxPooling1D 2 24 128
Conv1D 128 24 128
Conv1D 128 24 128
Conv1D 128 24 128

MaxPooling1D 2 12 128
Conv1D 128 12 128
Conv1D 128 12 128
Conv1D 128 12 128

MaxPooling1D 2 6 128
GAP - - 128

Softmax - - 6

Input Output

Feature Extractor

GA
P

So
ftm

ax

Input OutputFC FC

So
ftm

axVGG16

Ours

Figure 2. Overview of the original VGG16 and the model used in this study (Ours). The Feature
Extractor denotes the part of the architecture shown in Table 1, from the first Conv1D with the
16 filters to the MaxPooling1D before the GAP. FC indicates the fully-connected layer. GAP indicates
the global average pooling layer. Softmax is the output layer with softmax activation function.



Sensors 2021, 21, 8413 5 of 14

4. Experiments for Evaluating the Classification Performance
4.1. Data Collection

We conducted a data collection experiment to evaluate the estimation accuracy of our
method. A smartwatch was worn on the left wrist, and the user performed motions on
a trampoline. One set consisted of the subjects moving in the order of ST, WL, MR, TJ,
LJ, RJ for 10 s. Five sets were performed by each subject. The subjects took a 1 min rest
between each set. The subjects were eight healthy males in their 20 s (Table 2). The height
and weight information were self-reported and not actual measurements.

Table 2. Subjects information.

ID Age Gender Dominant Height [cm] Weight [kg]

A 23 Male Right 163.0 52.0
B 22 Male Right 169.5 55.0
C 23 Male Right 161.0 54.0
D 24 Male Right 173.0 55.0
E 22 Male Right 165.0 75.0
F 23 Male Right 170.5 60.0
G 22 Male Right 170.0 76.5
H 23 Male Right 170.0 55.0

Figure 3 shows the home trampoline used in the experiments. In this experiment, we
used a trampoline with a diameter of 102 cm (the diameter of the membrane surface is
67.5 cm). Figure 4 shows the six types of motions performed on the home trampoline show
in Figure 3.

The smartwatch used for the data collection was an Apple Watch SE. We measured
the data using a developed application that collects acceleration data. This application
used the Core Motion framework [37], where the acceleration data unit is G. Therefore,
−1.0 is observed in the Z axis when the screen was placed on a desk with the top up. In
other words, 1 [G] = 9.8 [m/s2]. The sampling frequency was set to 100 Hz. In the data
collection experiment, we also collected the data from the Apple Watch gyroscope and
the accelerometer, gyroscope, and magnetic sensor of the iPhone stored in the right front
pocket of the pants. However, these data were not used in this study.

Figure 3. Home trampoline used in the experiments.



Sensors 2021, 21, 8413 6 of 14

Figure 4. Six types of motions on the trampoline to be recognized by our method. ST is the staying behavior where the user
stands and stops on the trampoline. WK is the walking behavior where the user stomps his/her feet on the trampoline. MR
is also the walking behavior where the user stomps his/her feet while jumping lightly on the trampoline. TJ is the jumping
behavior where the user jumps on the trampoline with both feet. LJ is also the jumping behavior where the user raises
his/her right leg and jumps on the trampoline with his/her left leg. RJ is the opposite of LJ, the jumping behavior where the
user raises his/her left leg and jumps on the trampoline with his/her right leg.

4.2. Baseline

As a baseline for the conventional method, we compared our method with the method
using hand-crafted features (HCF) (Table 3) and Random Forest (RF) [38]. The features
in Table 3 are extracted from the three-axis acceleration data and used as input to the RF.
We adopted the features used in the study to estimate the smartphone position from its
acceleration sensor [39] and the study to estimate the type of sidewalk surface [40]. For the
frequency domain, we subjected the frame to a fast Fourier transform and calculated the
same values in the all-, low-, mid-, and high-frequency regions. The low-frequency region
was 0–4.2 Hz, the mid-frequency region was 4.2–8.4 Hz, and the high-frequency region
was 8.4–12.6 Hz.

Table 3. List of features.

Domain Feature Name

Time

Mean
Mean of absolute values

Standard deviation
Standard deviation of absolute values

Minimum
Maximum

Root mean square
1st quartile

Median
3rd quartile

Interquartile range
Correlation coefficient between axes

Correlation coefficient of absolute values between axes
Initial value in the frame
Final value in the frame

Intensity
Skewness
Kurtosis

Zero-crossing rate



Sensors 2021, 21, 8413 7 of 14

Table 3. Cont.

Domain Feature Name

Frequency

Maximum
Frequency of maximum

2nd maximum
Frequency of 2nd maximum

Standard deviation
1st quartile

Median
3rd quartile

Interquartile range
Correlation coefficient between axes

We also performed a comparison with the baseline CNN models: the simple CNN
model proposed in the related work [14] (Simple CNN) and the original VGG16 using
fully-connected layers [15] (VGG16).

4.3. Evaluation Method

We adopted accuracy as an evaluation index because the number of data for each
class was not significantly biased. We used the leave-one-subject-out cross-validation
(LOSO-CV) as the evaluation method. LOSO-CV used one subject as the test data and the
remaining subjects as the training data, and replaces the test subject to test all the subjects.

The CNN models were optimized with Adam [41]. The learning rate was set to
1.0 × 10−3. The loss function was categorical cross entropy. The minibatch size was 20. The
number of epochs was 100. We used TensorFlow to build the models. The models were
trained on MacBook Pro (13-inch, M1, 2020) with 16 GB RAM.

5. Results
5.1. Estimation Accuracy

We compared the estimation accuracies of each method for each subject. Table 4
shows the accuracies for each subject. The accuracies in bold indicate the highest accuracy
achieved for each subject. “Avg.” at the bottom of the table denotes the average estimated
accuracy of all subjects. Table 4 presents that our method achieves the highest estimation
accuracy on average for all subjects. Our method was more accurate than VGG16 when
the fully-connected layers were replaced with GAP. However, some subjects achieved the
highest accuracy with other methods. Subject D achieved the highest accuracy with the
method using HCF and RF, suggesting that the CNN model was ineffective. In short, a
difference existed in the effective features among individuals. However, our method works
well for most of the subjects. Our method achieved the highest accuracy on average, and
more than half of the subjects yielded the highest accuracy. In summary, our method was
accurately estimated in most cases of detecting the motions performed on a trampoline.

Table 4. Accuracy of each method for each subject.

Subject RF Simple CNN [14] VGG16 [15] Ours

A 74.4 73.3 76.2 82.9
B 77.3 80.9 71.1 80.7
C 57.6 66.7 59.3 67.1
D 86.7 72.4 68.0 76.0
E 75.6 82.0 75.6 85.1
F 58.0 63.6 63.3 68.0
G 63.3 82.2 82.4 88.0
H 82.4 76.7 86.4 82.4

Avg. 71.9 74.7 72.8 78.8



Sensors 2021, 21, 8413 8 of 14

5.2. Verification of Estimation Accuracy When the Number of Convolutional Layers Is Changed

Table 4 shows that Simple CNN with three convolutional layers can achieve almost
the same accuracy as Ours. In human activity recognition, some studies have achieved
adequate performance with a small CNN model [13,14]. Therefore, we also examine the
effect of the number of convolutional layers on the accuracy in our method. The number of
convolutional layers was increased from 1 to 19, with a pooling layer between every three
layers. Also, the number of output channels in the convolutional layer started at 16, and
was doubled every three layers.

Figure 5 shows the estimation accuracy when the number of convolutional layers is
changed. The box plots are estimation accuracy for each subject, and the line chart is the
mean of accuracy. According to Figure 5, the average accuracy tends to improve as the
number of convolutional layers is increased. However, there is a slight tendency for the
accuracy to decrease when the number of layers exceeds 15. The number of convolutional
layers in Ours is 13, which mostly achieves better accuracy. If we see the results with three
convolutional layers, which is the same as Simple CNN, we can find a discrepancy from the
results in Table 4. This is probably due to the difference in the number of output channels
in the convolutional layer and the number of pooling layers.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
Mean Accuracy

Accuracy when changing the number of layers

Num of Conv Layers

A
cc

ur
ac

y

Figure 5. Estimation accuracy when the number of convolutional layers is changed.

5.3. Possibility of Detailed Classification

Tables 5 and 6 present the confusion matrix for RF and our method, respectively.
Recall is the rate of the correctly predicted data in each class. Precision is the rate of the
correctly predicted data out of all the predicted data. The F-measure is the harmonic
average of recall and precision. The F-measure showed that both methods can estimate
ST and WL with high accuracy. In addition, when our method was used, the number of
cases of misclassifying three jump types was reduced when compared with that of the RF.
The number of cases, in which LJ and RJ were misclassified, was reduced, suggesting that
our method was effective in classifying jumps. However, both methods misclassified MR,
LJ, and RJ in many cases, implying that it was difficult to classify these targets. This was
because marching is a combination of left and right one-legged jumps; thus, it was difficult
to distinguish them with the window width used herein (64 samples; 0.64 s).



Sensors 2021, 21, 8413 9 of 14

Table 5. Confusion Matrix of the RF.

Pre.\Cor. ST WK MR TJ LJ RJ Precision [%]

ST 591 4 1 4 0 0 98.5
WL 7 551 39 3 0 91.7
MR 1 42 360 71 121 120 50.3
TJ 1 0 32 456 50 55 76.8
LJ 0 2 101 39 328 121 55.5
RJ 0 1 67 27 101 303 60.7

Recall [%] 98.5 91.8 60.0 76.0 54.7 50.5 71.9

F-measure [%] 98.5 91.8 54.8 76.4 55.1 55.1

Table 6. Confusion matrix of our method.

Pre.\Cor. ST WL MR TJ LJ RJ Precision [%]

ST 581 3 0 3 0 0 99.0
WL 8 578 65 3 2 5 87.4
MR 1 16 379 13 95 83 64.6
TJ 4 1 9 479 32 30 86.5
LJ 0 2 88 64 422 91 63.3
RJ 0 0 59 38 50 391 72.7

Recall [%] 97.8 96.3 63.2 79.8 70.3 65.2 78.8

F-measure [%] 98.4 91.7 63.9 83.0 66.6 68.7

5.4. Verification of the Effectiveness of Our Method in Practical Use

We discuss herein whether our method is effective in practical use. When training
only with the data of other subjects, the estimation accuracy obtained by our method
was 78.8% on average. The estimation accuracy was only approximately 70% for some
subjects; hence, the usability of our method might decrease in practical use. In the case of
activity recognition, the estimation accuracy is improved when the user’s own data are
included in the training data. Core ML and TensorFlow Lite have functions for on-device
personalization [42,43]. We now examine the estimation accuracy assuming a situation
where three sets of user data are available for training.

Figure 6 shows a box plot of the estimation accuracy for each subject when three sets
of test user data are used for the training. Each model is described as follows.

• None: Model trained using only the data of the other subjects (This result is the same
as the “Ours” in Table 4).

• FT: Model trained using the data of other subjects and then additionally trained using
the user’s three sets.

• FT-Classifier: Model trained using the data of other subjects and then additionally
trained with only the classifier part using the user’s three sets.

• Mixin: Model trained using the combined data of other subjects and the user’s
three sets.

FT-Classifier, in which only the classifier part was additionally trained, achieved the
same estimation accuracy as None. On the contrary, the estimation accuracy is improved
when the convolutional layers were also additionally trained. In general, deep transfer
learning, which freezes the feature extractor, works well. However, in this case of person-
alization, the additional training of only the classifier did not necessarily work well, and
it was also necessary to additionally train the feature extractor. In particular, since the
classifier is composed of a single output layer, the number of parameters for personalization
may have been too small. The accuracy will also be improved if the model is retrained by
adding the user data to the training data.



Sensors 2021, 21, 8413 10 of 14

None FT FT-Classifier Mixin

65

70

75

80

85

90

95
None
FT
FT-Classifier
Mixin

Accuracy

Model

A
cc
ur
ac
y

Figure 6. Estimation accuracy when using the user data for training.

Figure 7 shows a box plot of the F-measure. In the case of None, which is a model
trained only with the data of other people, the F-measure of MR, LJ, and RJ is 64.6% on
average. The wrong detection of these estimation targets will lead to a decrease in usability.
In contrast, in the case of Mixin, the F-measure of MR, LJ, and RJ are 86.0% on average,
indicating that the wrong positives of these estimation targets are less than None. In the
case of FT, the F-measure of MR, LJ, and RJ improved compared to None, but the average
F-measure is 76.7%. Therefore, considering that it is difficult to distinguish between LJ and
RJ, the estimation accuracy is 88.0% when they are considered as one estimation target.
The estimation accuracy is 95.5% when MR, LJ, and RJ are considered as one estimation
target. Therefore, we believe that a system with less misclassification in practical use can
be realized using these three estimation targets as one label, such as jumping on one foot.

ST WK MR TJ LJ RJ

20

30

40

50

60

70

80

90

100 None
FT
FT-Classifier
Mixin

F-measure per Label

Label

F-
m

ea
su

re

Figure 7. F-measure for each estimation target when using the user data for training.



Sensors 2021, 21, 8413 11 of 14

6. Experiments for Evaluating On-Device Performance
6.1. How to Verify the Performance on a Smartwatch

We implemented our method on a smartwatch to run on a device, and verified
the effectiveness of our method in a real environment. We used Apple Watch as the
smartwatch and Core ML for the model implementation. Core ML is a machine learning
framework developed by Apple that is optimized for Apple’s hardware and can run
prediction processing by machine learning models completely on-device. In Core ML,
if we add a mlmodel file, the model format of Core ML, to Xcode, Xcode automatically
generates the source code for use in the application. Applications can use the generated
code to perform a prediction by using the model. Models from Python libraries, such as
TensorFlow, can also be converted for Core ML. We can use Core ML Tools to convert the
model built by Python libraries to the mlmodel format.

We describe herein the watchOS App for evaluating the on-device performance of the
models. Figure 8 illustrates the conversion workflow for using the created model on the
Apple Watch. First, the model created by TensorFlow was converted to the mlmodel format
using Core ML Tools. The mlmodel file was added to Xcode and used in the application.
The application collected the acceleration data at 0.01 s intervals (100 Hz) using the Core
Motion framework and performed inference on the model after collecting 64 samples in
three axes. Figure 9 depicts a screenshot of the created watchOS App. The acceleration
data were collected when the button was tapped. The model performed inference when
the data satisfying the window size were collected.

Figure 8. Conversion workflow for using a model on watchOS.

Figure 9. watchOS app used in the experiment.



Sensors 2021, 21, 8413 12 of 14

We used the latency and the power consumption to evaluate the performance on the
smartwatch. We also described the experiment for evaluating the on-device performance.
Using the watchOS app that we created, we collected acceleration data and perform
inference for 1 h. The app recorded the latency and the remaining battery power after
each inference. We started the experiment with 100% battery. During the experiments, the
Apple Watch was kept stationary with the app running. The model was evaluated based
on the average inference time and the battery consumption when the acceleration data
were collected, and the model inference was run for 1 h. The verification was performed
on an Apple Watch SE with watchOS 7.3.2.

6.2. Results

Table 7 shows the mlmodel file size, average inference time, and battery consumption
for each CNN model. The model size of our CNN model was the smallest compared
to the other models because the filter size of the convolutional layer was small and the
number of parameters was reduced by using GAP. In contrast, VGG16, which had the same
structure for the feature extraction part, had the largest model size because the number
of parameters was larger than our method due to the usage of fully-connected layers.
In addition, Simple CNN showed the smallest inference time, which may be because it
requires less processing for inference due to the small number of layers. However, in all
models, the inference time was less than what it took to collect the acceleration data needed
for inference (640 ms). Therefore, it is practical to run the model on the Apple Watch. In
addition, the battery consumption for the acceleration data collection and inference was
only approximately 7% at most after 1 h of use. Even if we assume that the amount of time
spent on trampoline exercise per day is at most 1 h, it is still within the range of normal
use, even with the limited battery capacity of the Apple Watch. However, note that these
performance results were obtained using Apple Watch and Core ML. Core ML is built on
top of Apple’s device-optimized low-level foundation of Accelerate, BNNS, and Metal
Performance Shaders. Therefore, the performance obtained herein may not be achievable
on other platforms; thus, verifying the performance on other platforms will be a future task.

Table 7. Model size and performance on Apple Watch.

Model Size [MB] Time [ms/window] Battery [%/h]

Simple CNN 4.0 8.1 7
VGG16 8.6 17.8 5

Ours 1.3 12.5 5

7. Conclusions

In this study, we developed and evaluated a method for detecting the motions per-
formed on a trampoline from the acceleration data obtained from a smartwatch. Ac-
cordingly, we proposed a method based on VGG16, an effective CNN model for activity
recognition, and verified its effectiveness. Consequently, an accuracy that was 6% higher
than the original VGG16 was achieved by using GAP. In addition, when we verified the
ability of our method to classify actions in detail, we found it difficult to classify three types
of jumps and marching. Marching was likely to misclassify one-legged jumps. We also
evaluated the CNN models performance on an Apple Watch. Our method was found to
have a small model size and was practical in terms of the inference time and the battery
consumption. In the future, we would like to investigate the use of sensors not used in
this study, as well as methods using dynamic window widths, and verify whether or not
these methods can achieve a high classification accuracy. We would also like to evaluate
the performance on platforms other than Apple Watch.



Sensors 2021, 21, 8413 13 of 14

Author Contributions: Conceptualization, S.K. and T.H.; methodology, S.K.; software, S.K.; valida-
tion, S.K.; formal analysis, S.K.; investigation, S.K.; resources, T.H.; data curation, S.K.; writing—
original draft preparation, S.K.; writing—review and editing, S.K. and T.H.; visualization, S.K.;
supervision, T.H.; project administration, T.H.; funding acquisition, S.K. and T.H. All authors have
read and agreed to the published version of the manuscript.

Funding: This work was supported by foundation for the Fusion Of Science and Technology.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data used to support the findings of this study are available from
the corresponding author upon request.

Acknowledgments: This research was supported by a grant from the foundation for the Fusion Of
Science and Technology.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. RingFit Adventure. Nintendo. Available online: https://www.nintendo.co.jp/ring (accessed on 27 April 2021).
2. The Prevention of Lifestyle Diseases. Ministry of Health, Labour and Welfare. Available online: https://www.mhlw.go.jp/stf/

seisakunitsuite/bunya/kenkou_iryou/kenkou/seikatsu/seikatusyuukan.html (accessed on 27 April 2021).
3. Trampobics. Sasakwa Sports Foundation. Available online: https://www.ssf.or.jp/ssf_eyes/dictionary/trampobics.html

(accessed on 27 April 2021).
4. Miura, K.; Suzuki, T.; Matsumoto, M.; Takuno, E. Aerobic jumping by mini-trampolin in female. Jpn. J. Phys. Fit. 1986, 35, 561.

(In Japanese)
5. Yamaji, K.; Onodera, K.; Kitamura, K. Dropout rate and program implementation rate during the implementation of exercise

programs to improve physical fitness. J. Heal. Phys. Educ. Recreat. 1988, 38, 607–612. (In Japanese)
6. HOP AMP. IVRC History Archive. Available online: http://ivrc.net/archive/hop-amp-2007 (accessed on 27 April 2021).
7. Space Hoppers. Coconoe Inc. Available online: https://9ye.jp/works/spacehoppers (accessed on 27 April 2021).
8. Fukuchi, K.; Sukedai, Y.; Ohno, Y.; Miwa, S.; Ooba, H. An Entertainment System Using Trampoline with Self-portrait Photo

System that Motivates Competitive Creation. IPSJ J. 2017, 58, 1003–1013. (In Japanese)
9. Mori, H.; Shiratori, K.; Fujieda, T.; Hoshino, J. Versatile training field: The wellness entertainment system using trampoline

interface. In Proceedings of ACM SIGGRAPH 2009 Emerging Technologies; ACM: New York, NY, USA, 2009. [CrossRef]
10. Mukai, K.; Nakatsuru, Y.; Hoshino, J. Movements Detection of Trampoline Interface for Support of Health Exercise. IPSJ Interact.

2012, 193–198. (In Japanese)
11. Kwapisz, J.; Weiss, G.; Moore, S. Activity recognition using cell phone accelerometers. ACM SIGKDD Explor. Newsl. 2010,

12, 78–82. [CrossRef]
12. Yang, J. Toward physical activity diary: Motion recognition using simple acceleration features with mobile phones. In Proceedings

of the 1st International Workshop on Interactive Multimedia for Consumer Electronics, Beijing, China, 23 October 2009; ACM:
New York, NY, USA, 2009; pp. 1–10. [CrossRef]

13. Gjoreski, H.; Bizjak, J.; Gjoreski, M.; Gams, M. Comparing Deep and Classical Machine Learning Methods for Human Activity
Recogniton using Wrist Acceleromter. In Proceedings of the 25th International Joint Conference on Artificial Intelligence, New
York, NY, USA, 9–15 July 2016; pp. 1–7.

14. Li, F.; Shirahama, K.; Nisar, M.A.; Köping, L. Comparison of Feature Learning Methods for Human Activity Recognition Using
Wearable Sensors. Sensors 2019, 18, 679. [CrossRef] [PubMed]

15. Hasegawa, T.; Koshino, M. Representation learning by convolutional neural network in activity recognition on smartphone
sensing. In Proceedings of the 2nd International Conference on Computational Intelligence and Intelligent Systems, Bangkok,
Thailand, 23–25 November 2019; ACM: New York, NY, USA, 2019; pp. 99–104. [CrossRef]

16. Roggen, D.; Calatroni, A.; Rossi, M.; Holleczek, T.; Förster, K.; Tröster, G.; Lukowicz, P.; Bannach, D.; Pirkl, G.; Ferscha, A.; et
al. Collecting complex activity datasets in highly rich networked sensor environments. In Proceedings of the 7th International
Conference on Networked Sensing System, Kassel, Germany, 15–18 June 2010; pp. 233–240. [CrossRef]

17. Lukowicz, P.; Pirkl, G.; Bannach, D.; Wagner, F.; Calatroni, A.; Foerster, K.; Holleczek, T.; Rossi, M.; Roggen, D.; Tröester, G.;
et al. Recording a Complex, Multi Modal Activity Data Set for Context Recognition. In Proceedings of the 23rd International
Conference on Architecture of Computing Systems, Hannover, Germany, 22–25 February 2010; pp. 1–6.

18. Kawaguchi, N.; Ogawa, N.; Iwasaki, Y.; Kaji, K.; Terada, T.; Nurao, K.; Inoue, S.; Kawahara, Y.; Sumi, Y.; Nishio, N. HASC
Challenge: Gathering large scale human activity corpus for the real-world activity understandings. In Proceedings of the 2nd
Augmented Human International Conference, Tokyo, Japan, 13 March 2011; ACM: New York, NY, USA, 2011; pp. 1–5. [CrossRef]

19. Howard, A.G.; Zhu, M.; Chen, B.; Kalenichenko, D.; Wang, W.; Weyand, T.; Andreetto, M.; Adam, H. MobileNets: Efficient
Convolutional Neural Networks for Mobile Vision Applications. arXiv 2017, arXiv:1704.04861.

https://www.nintendo.co.jp/ring
https://www.mhlw.go.jp/stf/seisakunitsuite/bunya/kenkou_iryou/ kenkou/seikatsu/seikatusyuukan.html
https://www.mhlw.go.jp/stf/seisakunitsuite/bunya/kenkou_iryou/ kenkou/seikatsu/seikatusyuukan.html
https://www.ssf.or.jp/ssf_eyes/dictionary/trampobics.html
http://ivrc.net/archive/hop-amp-2007
https://9ye.jp/works/spacehoppers
http://doi.org/10.1145/1597956.1597981
http://dx.doi.org/10.1145/1964897.1964918
http://dx.doi.org/10.1145/1631040.1631042
http://dx.doi.org/10.3390/s18020679
http://www.ncbi.nlm.nih.gov/pubmed/29495310
http://dx.doi.org/10.1145/3372422.3372439
http://dx.doi.org/10.1109/INSS.2010.5573462
http://dx.doi.org/10.1145/1959826.1959853


Sensors 2021, 21, 8413 14 of 14

20. Tan, M.; Le, Q. EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks. In Proceedings of the 36th
International Conference on Machine Learning, Long Beach, CA, USA, 10–15 June 2019; pp. 6105–6114.

21. Xu, M.; Liu, J.; Liu, Y.; Lin, F.X.; Liu, Y.; Liu, X. A First Look at Deep Learning Apps on Smartphones. In Proceedings of the World
Wide Web Conference, San Francisco, CA, USA, 13–17 May 2019; pp. 2125–2136.

22. TensorFlow Lite. Google. Available online: https://www.tensorflow.org/lite (accessed on 27 April 2021).
23. PyTorch Mobile. Facebook. Available online: https://pytorch.org/mobile (accessed on 27 April 2021).
24. Core ML Overview. Apple Inc. Available online: https://developer.apple.com/machine-learning/core-ml (accessed on 27 April

2021).
25. Tang, Y.; Teng, Q.; Zhang, L.; Min, F.; He, J. Layer-Wise Training Convolutional Neural Networks With Smaller Filters for Human

Activity Recognition Using Wearable Sensors. IEEE Sensors J. 2021, 21, 581–592. [CrossRef]
26. Xu, C.; Chai, D.; He, J.; Zhang, X.; Duan, S. InnoHAR: A Deep Neural Network for Complex Human Activity Recognition. IEEE

Access 2019, 7, 9893–9902. [CrossRef]
27. Szegedy, C.; Liu, W.; Jia, Y.; Sermanet, P.; Reed, S.; Anguelov, D.; Erhan, D.; Vanhoucke, V.; Rabinovich, A. Going Deeper with

Convolutions. In Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition, Boston, MA, USA, 7–12
June 2015; pp. 1–9. [CrossRef]

28. Agarwal, P.; Alam, M. A Lightweight Deep Learning Model for Human Activity Recognition on Edge Devices. Procedia Comput.
Sci. 2020, 167, 2364–2373. [CrossRef]

29. Kanchanasamut, W.; Pensrl, P. Effects of weight-bearing exercise on a mini-trampoline on foot mobility, plantar pressure and
sensation of diabetic neuropathic feet; a preliminary study. Diabet. Foot Ankle 2017, 8, 1287239. [CrossRef] [PubMed]

30. Matsumura, F. Trampobics. Jpn. Assoc. Univ. Phys. Educ. Sport. 1991, 18, 76–79. (In Japanese)
31. Aalizadeh, B.; Mohammadzadeh, H.; Khazani, A.; Dadras, A. Effect of a Trampoline Exercise on the Anthropometric Measures

and Motor Performance of Adolescent Students. Int. J. Prev. Med. 2016, 7, 91. [CrossRef] [PubMed]
32. Takahashi, T.; Ishida, H.; Nashimoto, Y.; Shiobara, S.; Arai, Y. Effects of trampoline exercise on the trunk and lower limb muscle

strength in male university students. Res. Educ. Pract. Dev. Gunma Univ. 2019, 36, 101–106. (In Japanese)
33. Giagazoglou, P.; Kokaridas, D.; Sidiropoulou, M.; Patsiaouras, A.; Karra, C.; Neofotistou, K. Effects of a trampoline exercise

intervention on motor performance and balance ability of children with intellectual disabilities. Res. Dev. Disabil. 2013,
34, 2701–2707. [CrossRef] [PubMed]

34. Aragão, F.A.; Karamanidis, K.; Vaz, M.A.; Arampatzis, A. Mini-trampoline exercise related to mechanisms of dynamic stability
improves the ability to regain balance in elderly. J. Elerctromyography Kinesiol. 2011, 21, 512–518. [CrossRef] [PubMed]

35. Simonyan, K.; Zisserman, A. Very Deep Convolutional Networks for Large-Scale Image Recognition. In Proceedings of the 3rd
International Conference on Learning Representations, San Diego, CA, USA, 7–9 May 2015.

36. Lin, M.; Chen, Q.; Yan, S. Network In Network. In Proceedings of the 2nd International Conference on Learning Representation,
Banff, AB, Canada, 14–16 April 2014.

37. CMMotionManager. Apple Inc. Available online: https://developer.apple.com/documentation/coremotion/cmmotionmanager
(accessed on 27 April 2021).

38. Breiman, L. Random Forests. Mach. Learn. 2001, 45, 5–32. [CrossRef]
39. Hasegawa, T.; Koshino, M. Detection of Smartphone Wearing Position in Walking Using Deep Learning. IPSJ J. 2016, 57, 2186–2196.

(In Japanese)
40. Kobayashi, S.; Hasegawa, T. Smartphone-based Estimation of Sidewalk Surface Type via Deep Learning. Sensors Mater. 2021,

33, 35–51. [CrossRef]
41. Kingma, D.P.; Ba, J.L. Adam: A Method for Stochastic Optimization. In Proceedings of the 3rd International Conference on

Learning Representations, San Diego, CA, USA, 7–9 May 2015.
42. Personalizing a Model with On-Device Updates—Apple Developer Documentation. Apple Inc. Available online: https:

//developer.apple.com/documentation/coreml/core_ml_api/personalizing_a_model_with_on-device_updates (accessed on 3
May 2021).

43. Example on-device model personalization with TensorFlow Lite. TensorFlow Blog. Available online: https://blog.tensorflow.
org/2019/12/example-on-device-model-personalization.html (accessed on 3 May 2021).

https://www.tensorflow.org/lite
https://pytorch.org/mobile
https://developer. apple.com/machine-learning/core-ml
http://dx.doi.org/10.1109/JSEN.2020.3015521
http://dx.doi.org/10.1109/ACCESS.2018.2890675
http://dx.doi.org/10.1109/CVPR.2015.7298594
http://dx.doi.org/10.1016/j.procs.2020.03.289
http://dx.doi.org/10.1080/2000625X.2017.1287239
http://www.ncbi.nlm.nih.gov/pubmed/28326159
http://dx.doi.org/10.4103/2008-7802.186225
http://www.ncbi.nlm.nih.gov/pubmed/27512557
http://dx.doi.org/10.1016/j.ridd.2013.05.034
http://www.ncbi.nlm.nih.gov/pubmed/23770889
http://dx.doi.org/10.1016/j.jelekin.2011.01.003
http://www.ncbi.nlm.nih.gov/pubmed/21306917
https://developer.apple.com/documentation/coremotion/cmmotionmanager
http://dx.doi.org/10.1023/A:1010933404324
http://dx.doi.org/10.18494/SAM.2021.2976
https://developer.apple.com/documentation/coreml/core_ml_api/personalizing_a_model_with_on-device_updates
https://developer.apple.com/documentation/coreml/core_ml_api/personalizing_a_model_with_on-device_updates
https://blog.tensorflow.org/2019/12/example- on-device-model-personalization.html
https://blog.tensorflow.org/2019/12/example- on-device-model-personalization.html

	Introduction
	Related Works
	Systems for Promoting Trampoline Exercise
	Motion Sensor-Based Human Activity Recognition
	On-Device Deep Learning
	Contributions of the Study

	Method of Detecting Motions on a Trampoline with a Smartwatch
	Experiments for Evaluating the Classification Performance
	Data Collection
	Baseline
	Evaluation Method

	Results
	Estimation Accuracy
	Verification of Estimation Accuracy When the Number of Convolutional Layers Is Changed
	Possibility of Detailed Classification
	Verification of the Effectiveness of Our Method in Practical Use

	Experiments for Evaluating On-Device Performance
	How to Verify the Performance on a Smartwatch
	Results

	Conclusions
	References

