
sensors

Article

Multi-Cloud Resource Management Techniques for
Cyber-Physical Systems

Vlad Bucur 1 and Liviu-Cristian Miclea 2,*

����������
�������

Citation: Bucur, V.; Miclea, L.-C.

Multi-Cloud Resource Management

Techniques for Cyber-Physical

Systems. Sensors 2021, 21, 8364.

https://doi.org/10.3390/s21248364

Academic Editor: Subhas

Mukhopadhyay

Received: 29 October 2021

Accepted: 7 December 2021

Published: 15 December 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 MassMutual Romania, Record Park, Strada Onisifor Ghibu 20 A, 400185 Cluj-Napoca, Romania;
vbucur1@gmail.com

2 Department of Automation, Faculty of Automation and Computer Science, Technical University Cluj-Napoca,
28 Memorandumului Street, 400114 Cluj-Napoca, Romania

* Correspondence: liviu.miclea@aut.utcluj.ro

Abstract: Information technology is based on data management between various sources. Software
projects, as varied as simple applications or as complex as self-driving cars, are heavily reliant on
the amounts, and types, of data ingested by one or more interconnected systems. Data is not only
consumed but is transformed or mutated which requires copious amounts of computing resources.
One of the most exciting areas of cyber-physical systems, autonomous vehicles, makes heavy use
of deep learning and AI to mimic the highly complex actions of a human driver. Attempting to
map human behavior (a large and abstract concept) requires large amounts of data, used by AIs
to increase their knowledge and better attempt to solve complex problems. This paper outlines a
full-fledged solution for managing resources in a multi-cloud environment. The purpose of this API
is to accommodate ever-increasing resource requirements by leveraging the multi-cloud and using
commercially available tools to scale resources and make systems more resilient while remaining as
cloud agnostic as possible. To that effect, the work herein will consist of an architectural breakdown
of the resource management API, a low-level description of the implementation and an experiment
aimed at proving the feasibility, and applicability of the systems described.

Keywords: cloud computing; AI; machine learning; neural networks; multi-cloud; cloud storage
performance; self-driving cars; autonomous vehicles; resource management; API development;
cyber-physical systems

1. Introduction

Large scale machine learning and, more generally, AI applications need a large-scale
approach to resource management. Resource management is understood to mean both
hardware needs, especially storage and processing needs, in the case of machine learning,
and software needs. In terms of software resources, robotics and AI applications need
an easily scalable and maintainable framework that enables ease of use, distribution,
instantiation, and can accommodate an ever-expanding set of business requirements [1].

Before presenting our approach to a multi-cloud resource management architecture it
is important to understand the current state of the art in terms of resource management
in the cloud. One of the most common uses of large-scale resource management systems
in enterprise software today is for managing media files. Specifically, for self-driving
cars, storing images to help with machine learning is of crucial importance. Media files
have a particularity that other types of files do not in the sense that they are very large,
they cannot necessarily always be compressed or split into smaller chunks, and they are
a cornerstone of our daily lives [2]. Media files are an essential tool that many AIs, and
implicitly robots, are trained on by using visual imagery [3]. The result of this cavalcade of
information is that robots are learning to do things such as drive, in the case of self-driving
cars, understand emotions, manage traffic, facial recognition, or even gardening [1]. An
AI’s ability to perform beyond its normal constraints of decision trees and cascading logic

Sensors 2021, 21, 8364. https://doi.org/10.3390/s21248364 https://www.mdpi.com/journal/sensors

https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://doi.org/10.3390/s21248364
https://doi.org/10.3390/s21248364
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/s21248364
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s21248364?type=check_update&version=1

Sensors 2021, 21, 8364 2 of 17

rests on its ability to have quick access to as much information as possible. Hence why the
need for multi-tiered cloud architecture for streaming video or images is already there as
discussed by Eduardo Gama et al. in his article on fog/cloud architecture for streaming [4].

The article discusses a three-layered architecture, using a single cloud network that
is obfuscated by a fog layer to keep the implementation hidden from the end process [4].
This setup addresses end customers and is subject to the laws and specifications of various
European and international telecommunications standards [4] but is a good starting point
in understanding how a resource management system can be used to handle large amounts
of resources. Basically, the end user communicates via one of their Internet connected
devices to hardware that is typically “user friendly”, such as 5G or telecom networks [4].
The packages then pass through a network of servers that forward the requests onto a
database layer which finally retrieves the requested footage and streams it back to the
user [4]. The proposed solution would then use services to connect all these layers together
and ensure that multiple service implementations, perhaps one for each streaming interface,
could work together [4].

Another approach to handling such large amounts of data or managing resources, such
as instances of VMs, Lambda expressions or load balancing is to, in fact, let the AI work not
only for the end user’s benefit but for its own benefit as well. In this situation, a possible
implementation would be the use of intelligent agents to retrieve information, data mine or
do language processing [5]. The agent’s behavior is motivated by programmed internal or
external factors and the agent can take split second decisions as to the number of resources
to divert or allocate from or to a process [5]. This is useful in and of itself in any hardware
configuration, but it becomes especially useful in the context of cloud computing. Since
cloud computing is distributed, parallel, cost sensitive, performance sensitive and nearly
ubiquitous it forces developers to optimize the way they use resources.

A third proposed architecture, specifically for autonomous vehicles, consists of using
a Hadoop cluster in the cloud to store very large amounts of data [6]. According to the
authors, Google’s self-driving solution stores roughly one gigabyte of sensor data per
second and this is obviously a big challenge for any software developer to handle [6]. The
proposed solution would funnel all data sources through Flume, a tool used for collecting
a large amount of streaming data to a Kafka cluster, which will then in turn send the data
to Hadoop [6]. The HDFS (Hadoop Distributed File System) would then stream the data
to another Kafka cluster which would be used by applications to consume the data [6].
A convolutional deep learning neural network is used by the vehicle to analyze the shifting
in the pixels of the input image [6]. Using a combination of local respective fields, shared
weights and biases and a pooling layer the car will detect a completed image [6]. The article
further establishes a need to quickly process and store large amounts of data, usually as
images, in a reliable fashion.

In A Cloud-Connected Autonomous Driving System, Wenfu Wang et al. highlights a
three-part system for autonomous vehicle applications using a cloud layer, an application
layer and a vehicle layer [7]. The article addresses several concerns over the architecture of
such an application including safety related concerns regarding cloud availability, latency
and security [7]. While cloud services are heavily used in autonomous driving applications,
with a whopping 78% of participants in a survey answering positively when asked about a
service-oriented architecture in a 2019 article [8], there are still many valid concerns about
having a single point of failure. The solution proposed by Wang et al. is to harness the
hot backup solution implemented by most cloud providers to ensure continuity of service
for the application [7]. However, this solution does not protect in case of provider wide
blackouts, nor does it consider the time required to run the backup routines and throttling
procedures for distributing the data to the different servers provided by the cloud vendor.
While it is true that most of these tasks are done in the background and the application is
rarely affected by loss of data, it is nonetheless not a full proof solution.

Works presented in this article as well as many others that deal with cyber-physical
systems show a desire to move to a cloud environment that is many times conditioned by

Sensors 2021, 21, 8364 3 of 17

complex security and availability needs. However, when leveraged together with complex
machine learning mechanisms the multi-cloud is a boon to AI development [9]. The rest of
this paper will explore ways in which a resilient and scalable multi-cloud architecture can
be used to manage resources, costs and data integrity while enforcing safety requirements
by providing more than a single point of failure.

This paper will explore ways in which resources can be managed and optimized in
a multi-cloud environment using an architecture suited for large-scale, resource heavy
operations undertaken by various applications and services. We hope to provide a blueprint
for a possible solution on how to implement such a large-scale resource management
system in a multi-cloud environment. To that end we will be focusing on identifying
parallels between current single-cloud implementations and patterns that could be used in
the multi-cloud along with a layered architecture, a realistic implementation and a mock
proof-of-concept of a multi-cloud application. A series of challenges and possible issues
will be presented before concluding.

2. Architecture

This section will provide an overview of the architectural choices adopted by the
authors in implementing this resource management approach. It will contain definitions of
ambiguous terms, an analysis of possible approaches and it will offer a high-level view on
the flow of the entire resource management process.

2.1. Terminology

The definition of “resource” in computer programming is not ubiquitous nor is it entirely
clear. In the Apple Developer Guide a resource is defined as “data files that accompany a
program’s executable code” [10]. Indeed, this definition is one that is commonly used in collo-
quial programming jargon and equates “resources” to files holding data. However, a cloud
platform does not just hold data, but it also provides system resources for manipulating and
handling that data. The United States National Institute of Standards and Technology defines
a computing resource as “an operating system abstraction that is visible at the application
program interface, has a unique name, and is capable of being shared” [11]. It further goes on
to clarify that, in the context of the document in which the definition appears, files, programs,
databases and even external media are considered resources. Finally, in The Kubernetes Resource
Model (KRM), Brian Grant defines “resources” as Kubernetes pods, which are configured
using YAML or JSON files [11]. A Kubernetes pod consists of an entire Docker container,
therefore making the “resource” effectively unbounded, capable of holding both data and the
applications that could manipulate it. Kubernetes does not limit itself to Docker containers
though, but instead offers solutions even for non-containerized applications such as object
storage in the cloud or serverless operations.

We, the authors, feel that given the lack of clarity on what a “resource” is understood
to mean in computer programming, a clarification needs to be made on how that term
will be used in the context of this article. Hereinafter, the authors understand “resource”
to mean any hardware, software or data used in the process of running an application.
The broadness of the definition stems from the complexity of cloud systems, where data
is not just static, but can be dynamically modified by various calls to the cloud’s API.
One example of this are AWS Lambdas, chunks of code used in Serverless computing
that enable developers to run an application without provisioning for it or managing
servers [12]. Lambdas can be triggered by calling any number of AWS services, from
provisioning for new VMs to uploading files into S3 storage. Therefore, it stands to reason
that an application which would make use of cloud storage, for example, would need to
account for other types of resources used, outside of just the data storage requirements.

A “resource-management system”, therefore, needs to handle more than just balanc-
ing the loads of data upload, download or transformation from one server to another.
It needs to account for the duration of time spent executing serverless or cloud-side op-
erations. Additionally, it will need to consider if the data it manages the resources for

Sensors 2021, 21, 8364 4 of 17

is to be transformed upon upload or not, and if it is, what the acceptable timeframe for
a response is. Based on this knowledge, we define a “resource-management system” as
being an encompassing ecosystem that an application uses to carry out its business logic.
It is understood that the rest of this article will accept the definitions of “resources” and
“resource-management system” as defined by the authors.

2.2. Approach

There are two approaches to creating an API that manages multiple, simultaneous
connections to various cloud providers: through a messaging service or as a dependency.
The most common approach to working with distributed systems is Representational State
Transfer, known as REST. The architectural style was first proposed by Roy Fielding and it
presented a set of constraints. At the core of any RESTful service lies this set of constraints,
which are treated more like suggestions and not enforcements as they would be in a
SOAP architecture [13]. The degree to which those constraints are followed indicates the
application’s Richardson Maturity Model [14], as defined in “REST in Practice—Hypermedia
and Systems Architecture” and then popularized by Martin Fowler in a 2010 article [15].
Due to these very lax constraints only about 0.8% of web services are fully compliant with
REST [16]. Even so, the basic constraints of statelessness, usage of HTTP action verbs and
data transfer structure have become synonymous with distributed computing.

Using a REST based architecture greatly reduces the onboarding or learning process
for a new API. HTTP calls using basic CRUD (Create, Read, Update, Delete) commands
return a predictable pattern of results. No installation or declaration of dependency is
required in any one project, any API using REST can be easily scaled, HTTP is language
agnostic (as are JSON and XML) and tools for documenting an API’s functionality are
abundant. However, REST does have some drawbacks, the most significant of which are
its statelessness and the obfuscation of internals.

Since REST is stateless, responses cannot contain resources. In the case of large media
files this immediately becomes a problem because the file needs to be converted into a byte
stream and then saved to file. This a costly operation, especially when resources need to be
available synchronously. Furthermore, not all files are supported by MIME classification,
which is widely used by REST. This leads to complications if the file is requested in a
browser as the process that will implement the API will need to handle converting the file
into something the end customer can see in their browser.

Finally, there is the issue of transparency. A REST API intentionally hides the im-
plementation from the calling process (see Figure 1). This makes the debugging process
considerably more complicated. In a case where a distributed storage strategy [16] would
be employed to distribute file information over multiple clouds, debugging could become
extremely complicated. Additionally, developers would be unaware during development
and debugging of what is happening when they add a resource into the cloud through a
REST call. This is in fact one of the biggest issues with using cloud services today, hence
why solutions have been developed to debug locally. The most well-known of these is
LocalStack, which mocks an AWS cluster on the developer’s local machine [17].

The alternative to using a REST based API would be to use a library as a dependency
and then call the API methods provided by that library. There is a significant caveat
to this approach, specifically that an API designed to be used as a dependency is not
language agnostic and needs to be declared in every project that uses it. However, this
approach allows for greater visibility and customization from a development standpoint,
which is why the rest of this paper will focus specifically on a more traditional, stateful
implementation of a multi-cloud API.

Figure 2 shows a combination of a simplified layered architecture using agents—
independently deployed applications that run on the cloud’s side—to monitor and com-
municate with each cloud. The API will need to provide compatibility with each of these
providers separately and any others not listed. This is a common practice in many flexible

Sensors 2021, 21, 8364 5 of 17

ecosystems, even today, and it provides genericity and vendor agnosticism, while also
allowing for customized plugins.

Sensors 2021, 21, x FOR PEER REVIEW 5 of 18

Figure 1. REST API Architecture with Multi-Cloud Application.

The alternative to using a REST based API would be to use a library as a dependency
and then call the API methods provided by that library. There is a significant caveat to
this approach, specifically that an API designed to be used as a dependency is not
language agnostic and needs to be declared in every project that uses it. However, this
approach allows for greater visibility and customization from a development standpoint,
which is why the rest of this paper will focus specifically on a more traditional, stateful
implementation of a multi-cloud API.

Figure 2 shows a combination of a simplified layered architecture using
agents—independently deployed applications that run on the cloud’s side—to monitor
and communicate with each cloud. The API will need to provide compatibility with each
of these providers separately and any others not listed. This is a common practice in
many flexible ecosystems, even today, and it provides genericity and vendor
agnosticism, while also allowing for customized plugins.

An example of such an architecture is Java’s JDBC API [18], an interface layer that is
used to communicate with various types of relational databases. Each database provider
implements the JDBC API interface and tailors the implementation to their specific
relational database solution. The finalized product is delivered to customers as a plugin
that is declared as a dependency in the project and is used for CRUD operations,
transaction management and security profiling for that specific database.

Kafka provides yet another example of this agent-based approach with its suite of
Connectors: individual applications that handle one connectivity scenario. For example,
the Kafka Connect FileStream Connectors are software build independently of the core
Kafka cluster that allow developers to easily transfer data from Kafka to a file. Confluent,
the parent company that operates the Kafka commercial license, offers dozens of these
connectors that can be used for all types of read or write operations from or to different
sources [19]. In addition to the commercially available connectors savvy developers can
create their own connectors, either by using the code bases provided by Confluent
through an open-source program, or by writing their own from scratch. This gives Kafka
an incredible amount of flexibility and scalability.

Figure 1. REST API Architecture with Multi-Cloud Application.
Sensors 2021, 21, x FOR PEER REVIEW 6 of 18

Figure 2. Resource management in the multi-cloud: simplified layered architecture.

2.3. Functionality
Adaptability to multiple cloud solutions is a baseline requirement for any

application or API working in a multi-cloud environment. Providing an easily extendable
solution then becomes key to helping expand the reach of the API itself. Making the API
scalable and generic allows any new cloud provider to simply add a plugin to work with
their version of the cloud. Additionally, the API is also exposed to enterprises that are
using it, allowing them to create their own custom plugins or connectors. Finally, all
these abstractions will make the cyber-physical systems using the API better managers of
resources by making them easily scalable and not reliant on any one cloud provider.
Rather, the systems will simply rely on the abstraction of a concept whose
implementation is handled, behind the scenes, in the API layer.

The API will communicate with each separate cloud using agents, instead of plugins
or just simple connectors that ferry data. These agents need to be lightweight, relatively
autonomous and deployable on command should the need arise to redeploy them.

Figure 2. Resource management in the multi-cloud: simplified layered architecture.

Sensors 2021, 21, 8364 6 of 17

An example of such an architecture is Java’s JDBC API [18], an interface layer that is
used to communicate with various types of relational databases. Each database provider
implements the JDBC API interface and tailors the implementation to their specific rela-
tional database solution. The finalized product is delivered to customers as a plugin that
is declared as a dependency in the project and is used for CRUD operations, transaction
management and security profiling for that specific database.

Kafka provides yet another example of this agent-based approach with its suite of
Connectors: individual applications that handle one connectivity scenario. For example,
the Kafka Connect FileStream Connectors are software build independently of the core
Kafka cluster that allow developers to easily transfer data from Kafka to a file. Confluent,
the parent company that operates the Kafka commercial license, offers dozens of these
connectors that can be used for all types of read or write operations from or to different
sources [19]. In addition to the commercially available connectors savvy developers can
create their own connectors, either by using the code bases provided by Confluent through
an open-source program, or by writing their own from scratch. This gives Kafka an
incredible amount of flexibility and scalability.

2.3. Functionality

Adaptability to multiple cloud solutions is a baseline requirement for any application
or API working in a multi-cloud environment. Providing an easily extendable solution then
becomes key to helping expand the reach of the API itself. Making the API scalable and
generic allows any new cloud provider to simply add a plugin to work with their version
of the cloud. Additionally, the API is also exposed to enterprises that are using it, allowing
them to create their own custom plugins or connectors. Finally, all these abstractions will
make the cyber-physical systems using the API better managers of resources by making
them easily scalable and not reliant on any one cloud provider. Rather, the systems will
simply rely on the abstraction of a concept whose implementation is handled, behind the
scenes, in the API layer.

The API will communicate with each separate cloud using agents, instead of plugins
or just simple connectors that ferry data. These agents need to be lightweight, relatively
autonomous and deployable on command should the need arise to redeploy them.

By lightweight it is understood that agents should use as little of the managed resource
as possible and that they should avoid complex implementations which would make them
cumbersome to use. In essence they should do three things: return metrics from each
cloud provider, query for a resource and carry back the results of requests made by the
controller. Each agent will need to have a vendor specific implementation so that it can
handle requests and responses successfully between the cloud provider and the controller.

The agent requires some degree of autonomy as it will need to be deployed on the fly
as more resource requests are made to a different cloud provider. This is not at all dissimilar
to how a cloud resource management system works, such as Kubernetes, where dockerized
services and applications can be autoscaled and dynamic deployment is orchestrated based
on the needs of a specific application. The difference between a Kubernetes implementation
and the agents’ approach, however, is that the agents will be dynamic and not be deployed
in a cluster, so that they can work on multiple clouds, on demand. To ensure seamless
deployment a possible solution would be to dockerize the agent packages, thus ensuring
that they are deployed in fully sustainable environments. Furthermore, dockerizing the
agent deployment will make it possible to deploy agents programatically, without needing
to previously set up each agent with a cloud provider.

Finally, the agents need to be redeployable easily. Albeit a simple requirement, the
implementation behind the redeployment process could be quite complex. Agents need to
realize that they are no longer connected to a counterparty, which is difficult to measure
in certain situations. A scenario that would need to be accounted for in an automatic
deployment environment would be the split-brain scenario.

Sensors 2021, 21, 8364 7 of 17

In a split-brain scenario, exemplified in Figure 3, the agent loses the connection to
the controller but not the cloud. The agent fails to report back to the controller, which
then prompts a fail-safe trigger to deploy a new agent and attach it to that cloud provider.
However, once the first agent’s internet connection comes back online it too will attempt to
connect to the controller. Such a situation must be carefully managed by both the controller
and the agent to ensure that partial information is not sent back to the controller nor that
the controller is flooded with events and messages from duplicate services.

Sensors 2021, 21, x FOR PEER REVIEW 8 of 18

Figure 3. Split brain scenario where a connection is dropped from only one side.

On its end, the entirety of the API communicates with both the process and the
controller, albeit in different ways. The process does not necessarily need to directly
communicate with the API: it will declare it as a dependency and then use the provided
methods to make requests. If a request fails, the API can return an exception or an error.
The API does not necessarily need to acknowledge every request, especially since all the
communication is done inside the process and is, most likely, asynchronous. Assume a
resource intensive operation, such as a self-driving car going from point A to point B, is
being processed. The process makes requests to the API for resources as needed, it
remains blissfully unaware of the API’s implementation, it only needs the resources.
Furthermore, the process anticipates a heavy resource load coming up and it
preemptively requests the API to provision for that heavier load, for example when the
car encounters traffic on the way to its destination. The API then receives these requests
from an application that implements it, and it sends them to the controller requesting
more resources. Based on the requests made by the process, provisioning for a heavier
incoming load, the controller allocates resources accordingly. Both the API and the
controller need to work asynchronously, because multiple threads will carry out the
request and send answers back to the API at various times during the execution of said
request.

The last element of Figure 2 is the process. The process is not part of the architecture
and does not need to know any implementation details about any of the levels above it
because of two main reasons. Firstly, as is the case with all encapsulation, the fewer
elements that have access to an implementation the easier it is to isolate and track any
potential bugs. Secondly, the API needs to be generic in order to accommodate multiple
agent types.

In essence the architecture presented in this section is not entirely different from any
type of large enterprise-level architecture, but it attempts to make use of intelligent
resource rationing and modern micro-services design patterns to ensure that

Figure 3. Split brain scenario where a connection is dropped from only one side.

The controller is a component of the API and acts as the brains of the application,
much like it does in a model-view-controller architecture. It is the element that coordinates
the deployment of agents, or their redeployment, as needed. The controller also interprets
the data it receives from the agents as well as the data it receives from the process, via
the API wrapper, and it makes the decisions as to which resources to contract, when
and for how long. Ideally the controller would also benefit from a predictive resource-
requirements model that will make it easier for it to automatically anticipate a resource
intensive task, based on the type, and frequency, of calls it receives from the API. For
the controller to benefit from a predictive model it will need to be supplied with regular
performance benchmarks from the clouds and cloud services the application is using.
This is an optional parameter which is setup during customer implementations as the
benchmarking is done automatically and can hinder performance somewhat, or interfere
with high throughput tasks.

Both the controller and the agents are part of the same package. The controller is
cloud agnostic while the agents are adapted to a cloud solution. The agents do not have
direct visibility of the controller. They act only as a bridge between the controller and the
cloud so that the former has select visibility of the cloud platform’s performance metrics
and is able to issue commands to it (and get back responses). Since this approach is not
REST based, the controller will not be language agnostic. The API, in its entirety, will be

Sensors 2021, 21, 8364 8 of 17

declared as a dependency by the project and the confirmation that a resource was acquired
or a request was posted to the server will be an internal communication.

On its end, the entirety of the API communicates with both the process and the
controller, albeit in different ways. The process does not necessarily need to directly
communicate with the API: it will declare it as a dependency and then use the provided
methods to make requests. If a request fails, the API can return an exception or an error.
The API does not necessarily need to acknowledge every request, especially since all the
communication is done inside the process and is, most likely, asynchronous. Assume a
resource intensive operation, such as a self-driving car going from point A to point B, is be-
ing processed. The process makes requests to the API for resources as needed, it remains
blissfully unaware of the API’s implementation, it only needs the resources. Furthermore,
the process anticipates a heavy resource load coming up and it preemptively requests the
API to provision for that heavier load, for example when the car encounters traffic on
the way to its destination. The API then receives these requests from an application that
implements it, and it sends them to the controller requesting more resources. Based on the
requests made by the process, provisioning for a heavier incoming load, the controller allo-
cates resources accordingly. Both the API and the controller need to work asynchronously,
because multiple threads will carry out the request and send answers back to the API at
various times during the execution of said request.

The last element of Figure 2 is the process. The process is not part of the architecture
and does not need to know any implementation details about any of the levels above
it because of two main reasons. Firstly, as is the case with all encapsulation, the fewer
elements that have access to an implementation the easier it is to isolate and track any
potential bugs. Secondly, the API needs to be generic in order to accommodate multiple
agent types.

In essence the architecture presented in this section is not entirely different from any
type of large enterprise-level architecture, but it attempts to make use of intelligent resource
rationing and modern micro-services design patterns to ensure that communication is
seamless at all levels of the hierarchy. That is, of course, if said levels even require commu-
nication. One of the key goals in having a resource management system is that not all levels
need to communicate to reduce the need to separately configure load-balancing solutions.
What makes this approach different from a traditional load balancer though is the fact
that it grants higher availability, the performance management is not solely relegated to a
certain provider or on premises servers and it heavily decreases vendor reliance.

3. Implementation

In this part of the article, we will present the real-world implementation of the API as
well as an experiment using mocked stubs of code to highlight how that implementation
would work in a production environment.

3.1. Development

Regardless of the implementation details the primary goal of any good API imple-
mentation is that it needs to be as generic as possible. In REST, making the API scalable
and easy to use means making it language agnostic.

There are many cases of this type of implementation, most notably REST over HTTP
which is used for a variety of web service interactions and requests [20]. When implement-
ing an API this way the user only needs to make calls to the API itself, usually in plain
text, and they will receive the information they requested without the need to memorize
many methods. When using REST, it is as easy as calling a PUT command for the API to
know that an application has signaled an intent to send something, somewhere. Similarly,
the API implementation in this case will just require the process to ask for more resources
and then the backend processes will file the request with the controller. Even in the case
of a dependency-based architecture, the preferred approach when designing an API is to

Sensors 2021, 21, 8364 9 of 17

use logically named methods, generally relying on HTTP action verbs, be as stateless as
possible and be easily extendable.

Any application also needs to be scalable, able to either handle multiple threads from a
predetermined thread pool, with extra resources on reserve, or to be idempotent to be easily
deployable in multiple instances. Additionally, the API will need to be easily maintainable
to give it the required flexibility to add support for even more cloud services in the future.
At the beginning it is expected that the application will only have support for a limited
number of cloud service providers but in the future this number might grow. Currently
many cloud providers offer a myriad of compilers, virtual machines and programming
languages to use when doing cloud development. However, not all cloud providers
are nearly as generous, and some have a limited number of programming languages,
compilers, or tools at a developer’s disposal. Furthermore, not all the libraries available
for every language are quite the same, so when the level of abstraction increases those
differences in implementation become very much minor. This issue will need to be handled
programmatically and is independent of the architecture chosen. One possible approach
to fixing it would be to closely follow the SOLID programming principles, specifically
Interface Segregation [21].

Interface Segregation is the I in the SOLID principles and it states that the absolute
minimum amount of code should go into an interface [21]. If a class needs a wide range of
functionality, it would just implement multiple interfaces, as multiple interface inheritance
is allowed by most object-oriented programming languages. The agent would, using this
approach, need to implement only the interfaces it needs and provide only the functionality
that a specific cloud provider is offering. Another approach would be for the controller to
act as a very generic wrapper on top of the agent, exposing only the most basic operations
that are provided by all cloud providers. Specific operations would be handled by an
extension of the controller that is injected with an agent as a dependency. Through casting
or some other means, such as reflections, the cloud specific controller uses the agent
dependency to call those methods specific to the agent and, implicitly, the cloud provider.

At the lowest level, however, the implementation will be very similar to most load
balancers currently available. The application will measure the throughput from a virtual
machine, or a service, deployed in the cloud and report the performance data. The controller
will interpret the data and compare it to previously established benchmarks, it will check
the current availability of the platform and resource requirements. The controller will
then make a call as to whether to scale on a different cloud provider or simply scale with
the current one. Should the application decide to stick with the current provider, but
should more resources still be needed from said provider, the controller will delegate load
balancing duties down the line to a dedicated cloud management platform like Kubernetes.
This is because Kubernetes will use specific end points created for each cloud provider to
use those cloud provider’s controllers to measure ingress and then decide on how many
new instances to request [22].

Figure 4 shows a high-level summary of the scenarios in which the application will
decide whether to request resources from the same provider or whether to switch to a new
provider. The diagram assumes that the controller was preloaded with information about
baseline performance data in the form of benchmarks.

In Figure 4, the actor, for example a machine learning application that uses AWS Sage-
Maker to deploy and manage to process data through Apache Spark, calls an operation
from the API to augment resources. The allocation process is done, programmatically,
through the controller keeping in mind the data request made by the Actor. At this point,
the controller then establishes which vendor to query for more resources, if AWS is unre-
sponsive or below benchmarks. The controller needs to be aware that the new vendor it
will provision from is above the current performance threshold. The controller will only be
able to establish which vendor is quickest by being aware of each vendor’s performance
benchmarks for various operations.

Sensors 2021, 21, 8364 10 of 17

Sensors 2021, 21, x FOR PEER REVIEW 11 of 18

topics, static files (.ini, .yml, .xml, .json, etc.) or in a purely programmatic way, created
and populated at compile time.

Figure 4. Diagram depicting a complete, high-level, resource request workflow using the API.

3.2. Data Integrity
Ensuring data keeps its integrity is a complicated process for even the most basic

load balancer or queuing solution, even those that are running on a basic client-server
architecture and are not using distributed computing. More importantly, in the case of
autonomous vehicles data integrity can be, quite literally, a matter of life and death.
Therefore, it is very important to address this topic of utmost importance in its own
separate section.

Before delving deeper into the finer details on how the API will keep data structured
as intended it must be mentioned that the application presented in this article alone will
not be able to, and should not, handle data integrity by itself. It is preferred to use the
integrity guarantees provided by a cloud provider’s services individually. This is ideal
especially since the agent only communicates with the Kubernetes cluster, which then
brings up the requested cloud service using preconfigured pods. Moreover, the
separation of concerns is crucial to developing reliable scalable software and it empowers
an application to use the best available technology for any given task. No one software
developer or corporation can be highly skilled at each of the many complex tasks an
application undertakes. Using specialized tools for each task is, therefore, a forgone
conclusion.

Figure 4. Diagram depicting a complete, high-level, resource request workflow using the API.

Initially the controller will receive a request from the API for a new resource. It will
then ping one of the agents, the priority of which can be selected through a customer-level
implementation. All requests made by the controller to the agent(s) will be stored in Kafka
topics to ensure traceability and data integrity. After it pings the agent and establishes
that the agent is alive and can respond, the agent will then attempt to get a response from
the cloud provider. Once it gets a response it will forward the response to the controller,
which will then proceed with the next step in measuring whether the response is within
benchmark parameters or not. If it is within the parameters, the controller will tell the agent
to call on Kubernetes to begin the process of allocating new resources. Should the response
not be within the limits set by the benchmark, or a custom threshold, the controller will
then call on a new agent. The order in which each provider’s agent will be called will be
established by priority settings.

Should benchmarks not exist, the controller will ignore this step and default directly to
Kubernetes and have it request more resources. Finally, in a situation where the agent does
not respond at all, the controller will then call on a new agent. This call will loop several
times or for several seconds, both of which can be customized from the configuration file,
until it decides that, for reasons external to the runtime, it can no longer communicate with
the agents.

It is important to note that all the settings that a user might require to configure their
implementation of the API need to be editable by the developer. As a result, the application
steers away from hardcoded values for all its components, including the benchmarks. Users
and those who implement the API in their process’ logic will be allowed to configure the

Sensors 2021, 21, 8364 11 of 17

number of times the controller pings the agents, either by time or by number of tries, whether
the benchmarks are used or not, what benchmarks are used, if they are loaded up from a static
database or whether they are generated on the fly and more. Ideally, setting these options
should be achievable through multiple means, just like they are for any modern application.
Settings could be consumed from Kafka topics, static files (.ini, .yml, .xml, .json, etc.) or in a
purely programmatic way, created and populated at compile time.

3.2. Data Integrity

Ensuring data keeps its integrity is a complicated process for even the most basic
load balancer or queuing solution, even those that are running on a basic client-server
architecture and are not using distributed computing. More importantly, in the case
of autonomous vehicles data integrity can be, quite literally, a matter of life and death.
Therefore, it is very important to address this topic of utmost importance in its own
separate section.

Before delving deeper into the finer details on how the API will keep data structured
as intended it must be mentioned that the application presented in this article alone will not
be able to, and should not, handle data integrity by itself. It is preferred to use the integrity
guarantees provided by a cloud provider’s services individually. This is ideal especially
since the agent only communicates with the Kubernetes cluster, which then brings up the
requested cloud service using preconfigured pods. Moreover, the separation of concerns is
crucial to developing reliable scalable software and it empowers an application to use the
best available technology for any given task. No one software developer or corporation
can be highly skilled at each of the many complex tasks an application undertakes. Using
specialized tools for each task is, therefore, a forgone conclusion.

Keeping all of this in mind the best solution to ensure data integrity, in this approach,
would be a Kafka cluster specifically configured to run once the API is deployed in produc-
tion. Out of all the Kafka implementations available on the market the ideal, lightweight,
minimally configured solution would be Strimzi. Strimzi is a Kubernetes native Kafka
cluster that can be deployed in minutes, is highly configurable, has built in security and
uses dedicated nodes to deploy the cluster on [23].

Having a Kafka cluster that is so easily deployed means that the resource-management
API can leverage the incredibly robust Kafka ecosystem to ensure data integrity. Since the
cluster is so malleable and easily configurable the API will only need to create topics for
storing information that is sensitive to data corruption or disruption. The controller will
create Kafka topics on startup for all the data deemed sensitive and all agents will consume
these topics and then make requests to the Kubernetes cluster. Since the Kafka cluster
offers multiple backups of its brokers, topics and partitions, the application that works
with it needs to only consume or produce to a fixed endpoint. Thusly, if one agent has lost
its connection to the cloud, the application will continue to place records in that topic, and
once a new agent comes online that agent will then consume the data from the topic and
forward the request to Kubernetes. Once the request has reached Kubernetes, it will then
provision a resource and the application’s workflow will continue uninterrupted.

Since Kafka topics are by default just byte arrays, they can be configured to accept all
types of data. For example, topics that will be used by the application to request resources
could just use plain strings to make the request, and once an agent is deployed those
requests are forwarded to the Kubernetes cluster which will allocate more resources to the
requesting application.

Agents will use the provided Kafka offsets to know where to start picking up messages
from the topic. If the message is not consumed by an agent, the offset will not be committed
and therefore the next agent will pick up from where the last one left. Should the record
be consumed by an agent, but a resource would not be provisioned the agent will place
the negative response from Kubernetes in a dead letter queue (DLQ), natively provided
by Kafka, and the controller will then pick up the record from that DLQ and rehydrate
the original topic. This ensures that the next agent that starts consuming form the topic

Sensors 2021, 21, 8364 12 of 17

will also fulfill the failed resource provisioning attempt in addition to carrying out any
further requests.

3.3. Experiment Setup

To better illustrate the functionality of the API described herein an experiment has
been engineered that makes use of a multi-cloud resource management system to send
data to three cloud providers.

The three different cloud providers chosen for this experiment are: Amazon Web
Services (AWS), Google Cloud (GC) and LocalStack. While AWS and GC are well-known
commercial cloud providers that need no introduction, LocalStack might be a bit more
obscure. LocalStack is a Dockerized container that simulates a cloud environment on a
local machine. The cloud implementation simulated by LocalStack is AWS along with 24 of
its services. Using a LocalStack instance as part of the experiment is meant to simulate
private, on premise, clouds, which are a common practice in much of software development,
including applications for self-driving cars. Additionally, LocalStack provided a way to run
test scenarios related to interruptions of service, which are infrequent in production-level
cloud environments and hard to simulate on demand.

The test environment was set up to use IAM based authentication for AWS and GC.
The keys and two separate profiles, one for each cloud provider, were setup on the local
test machine. Operations were performed through the SDKs provided by Amazon and
Google separately using the stored credentials. The third profile, the local profile provided
by LocalStack, had no security constraints.

LocalStack was deployed through Docker Desktop on a Windows 10 based machine
using WSL 2 shell for running Linux natively on Windows. The distribution of Linux used
to run the containers was Ubuntu 20.04. Containers were allocated four CPUs and ten
gigabytes of RAM as well as sixty gigabytes of storage space. The configuration of the
computer running the LocalStack container was as follows:

• Intel Core i7-7700K @ 4.20 ghz (8 cpus)
• 16 GB of DDR4 RAM @ 1.20 ghz
• Samsung SSD 860 EVO M.2 2TB
• Windows 10 Pro 10.0.19042 build 19042

The cloud service under test was each of the cloud providers’ proprietary cloud
storage solution. In the case of AWS, S3 was used, while in case of GC the experiment was
conducted using Cloud Storage. The choice of which cloud service to use came down to
ensuring a fair and level playing field during the experiment. The application was also
designed to test a commonly used resource in development, cloud storage. Furthermore,
running the tests on cloud storage abstracted the provisioning of resources as both S3 and
Cloud Storage are hardware agnostic.

Both types of storage options provided the ability to run tests in the same region,
namely the Eastern Coast of the United States (us-east-1). Finally, cloud storage is ubiq-
uitous in cloud developed. It is used intensively, is highly distributed and very flexible
which makes it a great choice for storing data to be used in machine learning, as is the case
of self-driving cars.

To run the experiment a simple application was developed, using each cloud provider’s
SDK, to run a PUT operation into a predefined bucket. In S3 a specifically designed PutO-
bjectRequest class was used for both AWS and on LocalStack, since this was the only
class that would return a REST-like response. The Google Cloud SDK provided a create()
method, part of a generic Storage class, that was implicitly built like a REST API. The
method used PUT operations and returned a response on either success or failure.

The application was deployed from the main class, in as lightweight a manner as
possible, and used these methods to send batches of 100 files to each bucket, without
any delay, to simulate a real-life workflow where speed is of the essence. After recording
the baseline performance of each cloud, the application was modified to throw random
exceptions every three operations to gauge the speed at which the backup cloud would pick

Sensors 2021, 21, 8364 13 of 17

up the failed PUT request. Response times were measured on successfully completing the
PUT operation, exception and backup operation completion. Java was used throughout the
coding of the application and Instant.now() was the measurement of choice for calculating
the timing of each operation. Instant.now() returns the GMT to the nanosecond. This
was useful given the time zone differences between the local machine and the cloud
hosted storage.

3.4. Experiment Results

The results of the experiment are presented, in milliseconds, in Table 1. Baseline values
represent the total duration of each upload operation when done using solely one cloud. For
each of the multi-cloud solutions the first provider is the one that “fails” while the second
one is the backup. All times in the table represent the start time after the first successful
PUT call and the end time after the confirmation that the operation was successful.

Table 1. Speed of upload using single and multi-cloud.

Provider Start End Start ∆ End

Baseline LocalStack 2021-07-24T20:45:00.4838 2021-07-24T20:45:02.5394 2055.6
Baseline AWS 2021-07-24T20:44:21.9280 2021-07-24T20:44:36.0373 14,109.3

Baseline GCloud 2021-07-24T20:21:22.4182 2021-07-24T20:21:52.4176 29,999.4
AWS w/LocalStack 2021-07-24T17:19:27.8162 2021-07-24T17:19:43.9570 16,140.8
LocalStack w/AWS 2021-07-24T17:14:20.9198 2021-07-24T17:14:30.0327 9112.9

AWS w/GC 2021-07-24T20:43:03.7763 2021-07-24T20:43:30.8339 27,057.6
GC w/AWS 2021-07-24T20:41:30.3472 2021-07-24T20:42:05.3864 35,039.2

From Table 1 it is immediately clear that there are major differences between the speed
of upload among cloud providers. LocalStack is the quickest one to complete the upload,
which is entirely due to it being locally hosted and not requiring an internet connection. The
second quickest, by quite a large margin, is AWS S3 which took less than half the time to
upload 100 files as it took GC Cloud Storage. Notably, however, all cloud providers, in both
multi-cloud and single cloud, had a 100% success rate in uploading the files with no data
losses. It is important to keep this in mind when analyzing the multi-cloud performance.

Turning to the multi-cloud measurements one can observe clear slowdowns when
using multiple providers. Most notably, when using a combination of LocalStack as a
primary cloud and AWS as the backup the time required to upload the data jumps by
approximatively 434%. This appears to be an outlier, however, since the implicit delay of
sending information over the network, with authentication, is considerably larger in the
baseline results as well.

Analyzing the AWS to GC and GC to AWS figures though shows some interesting
facts. When using a combination of AWS S3 as primary cloud and GC as backup the
slowdown in GC is significant enough to increase the duration of upload from the AWS
baseline by more than 52%. However, when reversing the primary and backup clouds
the difference between the GC baseline and the combined multi-cloud approach between
GC and AWS shows only a 15% increase in upload time. This shows that, in a highly
optimized production environment, some cloud provider’s services are considerably better
than others in some key areas. Google Cloud Storage is significantly slower than AWS S3
and even in a basic experiment where a record is sent to the S3 bucket roughly 33 times
out of 100, the delay, even with authentication and internet connection, is small enough to
encourage developers to use both clouds at the same time and optimize the usage of each
storage solution.

Another important element of the experiment was represented by the interruptions
in service tests, which showed similar results to the values in Table 1. The interruptions in
service could only be tested using LocalStack but it’s important to note that, despite a 5000-ms
delay (a result of automatic retries in the AWS SDK), the PUT operations were successfully
completed on LocalStack and no data was lost because of the service outage.

Sensors 2021, 21, 8364 14 of 17

Most importantly though, the results show that there is a clear use case for an API to
manage resources in the multi-cloud, since there are considerable differences between each
cloud offering even in the most basic of services offered. The API implementation outlined
in this section would make use of benchmarks, such as the baseline figures in Table 1, to
determine which cloud offering is the best suited for managing a certain resource, be it
storage, serverless operations or provisioning. Furthermore, the experiment proves that
a workable model of the API could be used successfully in a production environment
because of its resilience and ability to quickly switch between cloud providers, seamlessly,
granted that runtime environments are properly configured.

Last, but not least, it compels the authors to discuss the ever-important issue of pric-
ing. While prices for these PUT operations were relatively low there were still significant
differences in costs between the two commercial cloud providers. In AWS customers have
access to a limited number of free operations. What constitutes as “free” is determined by
AWS based on data usage, uptime, compute power or time windows. Google Cloud has a
different pricing strategy. It offers prospects $300 worth of “free credits” [24] but those cred-
its are only applicable to some products [25] and are time limited, lasting only 90 days [26].
Crucially though, while both providers opt for a “pay as you go” pricing, AWS offers
completely free data transfers into S3 and only charges for anything over 1 GB/month for
transferring data out of S3 [27]. This represents a significant cost-optimization opportunity
for using a multi-cloud environment to manage financial resources used by an application.
Software using low amounts of storage or that does not need to download data from a
bucket could use S3 indefinitely, for free. In the case of Google Cloud Storage, the same
software would be charged for every operation that goes beyond the $300 ceiling provided
by the trial.

4. Challenges and Future Improvements

Most of the challenges related to this application and its architecture are caused by
the complexity of working with distributed computing. A few of these challenges will be
presented in the current section.

The first and arguably least damaging issue is that of API maintenance. Any API,
whether language-agnostic or as a dependency needs to be thoroughly documented, using
all the techniques listed here:

• Extensive in-code documentation, usually in the form of comments or other, language
specific, notations (i.e., JavaDocs).

• Instruction manuals for developers that need to implement the API.
• API documentation, available online, fully featuring in-code examples, in multiple

languages, if required.

Generally, the problem with this approach is that semantics, descriptions and purposes
change throughout a product’s lifespan and it is quite possible that different naming
conventions, semantic complexity or inconsistent documentation will lead to longer review
processes, slower commit rates and more convoluted concepts inside the API itself. The
task of documenting an API, providing examples, and keeping them updated is a major
overhead for any organization. Examples must be clear, concise and act as a catch-all for at
least the most basic of operations.

The second challenge that will be faced by any implementing application is the issue
of individual, provider-level, SLAs. Harmonizing SLAs and implicitly costs, in the form
of both actual costs and perceived costs, such as losses with downtime or server outages,
becomes very complicated when the implementation and responses are hidden.

Usually developers, businesses and processes know of a failure as soon as it happens
because something stops working. In the case of the application discussed here, when
something stops working the controller simply goes to the next cloud provider in the list.
When using this application for demonstrative purposes and simply using the lowest tier
of hardware, usually free, this is not much of an issue because switching from one free VM
to another involves almost no costs. Though, this is not quite the case.

Sensors 2021, 21, 8364 15 of 17

The problem is that VM configurations among cloud providers are not identical and
in a situation where a provider is switched during a resource intensive machine learning
process, for example, the “same” hardware might be more expensive when using a different
provider. That is because even if the switching is kept to the same tier of machine the
actual hardware offered by different cloud providers differs significantly. The solution here
would be to configure which tier machine is to be used for each operation, and for each
vendor, if a need ever arises to switch vendors.

Another considerable hurdle are the benchmarks since without updated benchmarks
the application becomes a simple load balancing mechanism. Instead of balancing resources
between different VMs on the same cloud though it distributes resources to various VMs
of different cloud providers.

Benchmarks need to be kept up to date and need to be done regularly to ensure that
when the controller decides on whether to switch from one cloud provider to another,
based on a response time comparison between that cloud provider and its benchmark,
it does not do so using old information. Although there’s myriad ways to solve this issue,
dropping the benchmarks all together and working solely on pings to and from a cloud
provider might invalidate the resource optimization process. Another solution would be to
employ micro-benchmarks [28] which would cut down on the overhead and would be able
to provide quickly available snapshots of a vendor’s performance profile.

Based on just the ping alone the controller cannot make but a split-second decision on
which server has the better internet connection, but not whether that server offers better
object storage speeds, more CPU cycles or higher uptime. These decisions need to be
made based on a comparison between the benchmark numbers, crosschecked with the
expected response time, to ensure that resources are used more efficiently when switching
to another vendor.

Before concluding the Challenges section several observations about the proof-of-concept
experiment must also be raised. One of the most difficult things to test in the current cloud
environment are service outages. Ensuring continuity is at the base of this multi-cloud
approach to managing resources and must, as a result, be tested. Currently most cloud
providers offer incredible uptime guarantees making it hard to test with service outages in
a production environment. These tests are not just important because they prove resilience,
recoverability and guaranteed uptime but because they can be an important window into
studying data integrity and distribution in multi-cloud systems. While testing locally with a
mock cloud was insightful in demonstrating that the API can easily recover from a catastrophic
failure it was not enough to prove what would happen in a real-world scenario where
an application consumes data from a bucket that suddenly goes dark. The data that was
stored in that bucket might immediately become obsolete and the consumer application will
need to work only with the backup bucket from that point onward. To demonstrate what
impact this would have on an actual application the experiment will need to be expanded
upon to use the full resource management ecosystem, including Kafka for backup and data
transfer, Kubernetes for provisioning, an application that uploads significant data and another
application that works with that data in a semi-real-time fashion.

Moreover, the experiment only deals with one type of cloud resource: cloud stor-
age. A resource management system should not be understood to mean a data transfer
utility, but rather an ecosystem for managing the multitude of cloud services on offer.
An enterprise level proof-of-concept would, as a result, need to manage more than just
storage resources and would need to verify that the integrity of any operation made by the
application is kept throughout.

The final limitation of the experiment is that testing was only run with two cloud
services at once. While that goes to prove the concept of managing resource in a multi-
cloud environment, in the future the experiment should be expanded upon to include
three or more cloud providers. Additionally, custom agent implementations should also
be considered for testing. This would expand the coverage of testing to encompass data
integrity and the recovery processes of applications that use these resources.

Sensors 2021, 21, 8364 16 of 17

5. Conclusions

When it comes to resource intensive operations AI, robotics and machine learning are
the most likely candidates to use the multi-cloud. Cyber-physical systems are poised to
become forerunners in terms of hardware usage in the following years. While the concept
of the multi-cloud is novel, the huge amount of data already in circulation and the petabytes
of data created every minute need to be efficiently sifted through, processed, organized,
and then fed to AIs for them to grow. Additionally, all these systems, be they self-driving
cars, shop attendants, gardening robots or even intelligent devices, will need to become
increasingly more aware of their surroundings and act on split second decisions.

Developers currently need to provision ahead of time for resources they anticipate
will be used. They need to manually call, in some way or another, be it programmatically
or through over provisioning, the resources they need. This is costly, error prone and raises
multiple safety concerns.

The application presented in this paper hopes to ease the developers’ jobs when it
comes to resource allocation and stability. Such an application will also help researchers by
making it possible to harmonize costs and increase the capacity of AI development and
research in the future. The end goal is to empower cyber-physical systems in a way that
makes them part of our daily lives and helps us solve complex issues, and not just in their
current state, as limited, experimental applications with considerable drawbacks.

Author Contributions: Conceptualization, V.B. and L.-C.M.; methodology, V.B.; software, V.B.;
formal analysis, V.B. and L.-C.M.; investigation, V.B.; resources, V.B. and L.-C.M.; data curation,
V.B.; writing—original draft preparation, V.B.; writing—review and editing, V.B.; visualization, V.B.;
supervision, L.-C.M.; funding acquisition, L.-C.M. All authors have read and agreed to the published
version of the manuscript.

Funding: This work is based on the research supported wholly by the Technical University of
Cluj-Napoca with the aid of Prof. Dr. Liviu-Cristian Miclea.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Acknowledgments: The authors acknowledge the support offered by the Technical University of
Cluj-Napoca in publishing this paper.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Ilager, S.; Muralidhar, R.; Buyya, R. Artificial Intelligence (AI)-Centric Management of Resources in Modern Distributed

Computing Systems. In Proceedings of the 2020 IEEE Cloud Summit, Harrisburg, PA, USA, 21–22 October 2020; pp. 1–10.
2. Aazam, M.; Huh, E.N. Inter-cloud Media Storage and Media Cloud Architecture for Inter-cloud Communication. In Proceedings

of the 2014 IEEE 7th International Conference on Cloud Computing, Anchorage, AK, USA, 27 June–2 July 2014; pp. 982–985.
3. Li, Z.N.; Kuang, P.; Zhang, T.; Yan, H.R.; Gu, X.F. Deep Reinforcement Learning Based Game Decision Algorithm for Digital

Media Education. In Proceedings of the 2019 16th International Computer Conference on Wavelet Active Media Technology and
Information Processing, Chengdu, China, 14–15 December 2019; pp. 139–142.

4. Gama, E.S.; Immich, R.; Bittencourt, L.F. Towards a Multi-Tier Fog/Cloud Architecture for Video Streaming. In Proceedings of the
2018 IEEE/ACM International Conference on Utility and Cloud Computing Companion (UCC Companion), Zurich, Switzerland,
17–20 December 2018; pp. 13–14.

5. Qiu, L.; Li, K. The Research of Intelligent Agent System Architecture Based on Cloud Computing. In Proceedings of the 2016 12th
International Conference on Computational Intelligence and Security (CIS), Wuxi, China, 16–19 December 2016; pp. 693–696.

6. Kumar, S.; Goel, E. Changing the world of Autonomous Vehicles using Cloud and Big Data. In Proceedings of the 2018
Second International Conference on Inventive Communication and Computational Technologies (ICICCT), Coimbatore, India,
20–21 April 2018; pp. 368–376.

7. Wang, W.; Deng, H.; Sun, M.; Pan, Z. A Cloud-Connected Autonomous Driving System. In Proceedings of the 2020 IEEE 5th
International Conference on Cloud Computing and Big Data Analytics (ICCCBDA), Chengdu, China, 10–13 April 2020; pp. 96–102.

Sensors 2021, 21, 8364 17 of 17

8. Banijamali, A.; Heisig, P.; Kristan, J.; Kuvaja, P.; Oivo, M. Software Architecture Design of Cloud Platforms in Automotive
Domain: An Online Survey. In Proceedings of the 2019 IEEE 12th Conference on Service-Oriented Computing and Applications
(SOCA), Kaohsiung, Taiwan, 18–21 November 2019; p. 172.

9. Salman, T.; Bhamare, D.; Erbad, A.; Jain, R.; Samaka, M. Machine Learning for Anomaly Detection and Categorization in Multi-
Cloud Environments. In Proceedings of the 2017 IEEE 4th International Conference on Cyber Security and Cloud Computing
(CSCloud), New York, NY, USA, 26–28 June 2017; pp. 97–103.

10. Apple Inc. Resource Programming Guide. 2016. Available online: https://developer.apple.com/library/archive/documentation/
Cocoa/Conceptual/LoadingResources/Introduction/Introduction.html#:~{}:text=and%20Localization%20Guide-,About%20
Resources,and%20into%20more%20appropriate%20tools (accessed on 30 July 2021).

11. U.S. Department of Commerce Technology Administration–National Institute of Standards and Technology. Minimum Sys-
tem Requirements for Multi-User Operating Systems. 1993. Available online: https://csrc.nist.gov/glossary/term/resource
(accessed on 30 July 2021).

12. Amazon Web Services. AWS Lambda. 2021. Available online: https://aws.amazon.com/lambda/ (accessed on 30 July 2021).
13. World Wide Web Consortium (W3C). 2004. Available online: https://www.w3.org/TR/soap/ (accessed on 14 January 2021).
14. Webber, J.; Parastatidis, S.; Robinson, I.S. REST in Practice-Hypermedia and Systems Architecture; O’Reilly: Sebastopol, CA, USA, 2010.
15. Fowler, M. Richardson Maturity Model. martinfowler.com. 2010. Available online: https://martinfowler.com/articles/

richardsonMaturityModel.html (accessed on 14 January 2021).
16. Neumann, A.; Laranjeiro, N.; Bernardino, J. An Analysis of Public REST Web Service APIs. IEEE Trans. Serv. Comput. 2018, 14, 957–970.

[CrossRef]
17. LocalStack. What Is LocalStack? 2021. Available online: https://localstack.cloud/docs/getting-started/overview/ (accessed on

30 July 2021).
18. Zhang, Y.; Zhang, L. JDBC-based middleware applications in instant message systems. In Proceedings of the 2014 2nd Interna-

tional Conference on Systems and Informatics (ICSAI 2014), Shanghai, China, 15–17 November 2014; pp. 1044–1049.
19. Confluent. Connectors to Kafka. 2021. Available online: https://docs.confluent.io/home/connect/overview.html (accessed on

30 July 2021).
20. Roger, C.L. Building Web Services the REST Way. 2020. Available online: http://www.xfront.com/REST-Web-Services.html

(accessed on 30 September 2021).
21. Martin, R.C. Design Principles and Design Patterns; Object Mentor: Gurnee, IL, USA, 2000; pp. 597–631.
22. Kubernetes. 2020. Available online: https://github.com/kubernetes-sigs (accessed on 30 September 2021).
23. Strimzi. Strimzi Overview Guide. 2021. Available online: https://strimzi.io/docs/operators/latest/overview.html (accessed on

30 July 2021).
24. Google Cloud. Google Cloud Pricing. 2021. Available online: https://cloud.google.com/pricing (accessed on 30 July 2021).
25. Google Cloud. Solve Real Business Challenges on Google Cloud. 2021. Available online: https://cloud.google.com/free

(accessed on 30 July 2021).
26. Google Cloud. Google Cloud Free Program. 2021. Available online: https://cloud.google.com/free/docs/gcp-free-tier/#free-trial

(accessed on 30 July 2021).
27. Amazon Web Services, Amazon S3 pricing. 2021. Available online: https://aws.amazon.com/s3/pricing/ (accessed on 30 July 2021).
28. Scheuner, J.; Leitner, P. Estimating Cloud Application Performance Based on Micro-Benchmark Profiling. In Proceedings of the

2018 IEEE 11th International Conference on Cloud Computing (CLOUD), San Francisco, CA, USA, 2–7 July 2018; pp. 90–97.

https://developer.apple.com/library/archive/documentation/Cocoa/Conceptual/LoadingResources/Introduction/Introduction.html#:~{}:text=and%20Localization%20Guide-,About%20Resources,and%20into%20more%20appropriate%20tools
https://developer.apple.com/library/archive/documentation/Cocoa/Conceptual/LoadingResources/Introduction/Introduction.html#:~{}:text=and%20Localization%20Guide-,About%20Resources,and%20into%20more%20appropriate%20tools
https://developer.apple.com/library/archive/documentation/Cocoa/Conceptual/LoadingResources/Introduction/Introduction.html#:~{}:text=and%20Localization%20Guide-,About%20Resources,and%20into%20more%20appropriate%20tools
https://csrc.nist.gov/glossary/term/resource
https://aws.amazon.com/lambda/
https://www.w3.org/TR/soap/
https://martinfowler.com/articles/richardsonMaturityModel.html
https://martinfowler.com/articles/richardsonMaturityModel.html
http://doi.org/10.1109/TSC.2018.2847344
https://localstack.cloud/docs/getting-started/overview/
https://docs.confluent.io/home/connect/overview.html
http://www.xfront.com/REST-Web-Services.html
https://github.com/kubernetes-sigs
https://strimzi.io/docs/operators/latest/overview.html
https://cloud.google.com/pricing
https://cloud.google.com/free
https://cloud.google.com/free/docs/gcp-free-tier/#free-trial
https://aws.amazon.com/s3/pricing/

	Introduction
	Architecture
	Terminology
	Approach
	Functionality

	Implementation
	Development
	Data Integrity
	Experiment Setup
	Experiment Results

	Challenges and Future Improvements
	Conclusions
	References

