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Abstract: Owing to the hasty growth of communication technologies in the Underwater Internet of
Things (UIoT), many researchers and industries focus on enhancing the existing technologies of UIoT
systems for developing numerous applications such as oceanography, diver networks monitoring,
deep-sea exploration and early warning systems. In a constrained UIoT environment, communication
media such as acoustic, infrared (IR), visible light, radiofrequency (RF) and magnet induction (MI)
are generally used to transmit information via digitally linked underwater devices. However, each
medium has its technical limitations: for example, the acoustic medium has challenges such as narrow-
channel bandwidth, low data rate, high cost, etc., and optical medium has challenges such as high
absorption, scattering, long-distance data transmission, etc. Moreover, the malicious node can steal
the underwater data by employing blackhole attacks, routing attacks, Sybil attacks, etc. Furthermore,
due to heavyweight, the existing privacy and security mechanism of the terrestrial internet of things
(IoT) cannot be applied directly to UIoT environment. Hence, this paper aims to provide a systematic
review of recent trends, applications, communication technologies, challenges, security threats and
privacy issues of UIoT system. Additionally, this paper highlights the methods of preventing the
technical challenges and security attacks of the UIoT environment. Finally, this systematic review
contributes much to the profit of researchers to analyze and improve the performance of services in
UIoT applications.

Keywords: Underwater Internet of Things (UIoT); trends; challenges; security and privacy

1. Introduction

During the past few decades, researchers and developers have shown much interest
in developing UIoT applications such as deep-sea exploration, divers’ system monitoring,
early warning generation, naval network surveillance, etc. As shown in Figure 1, the UIoT
network consists of heterogeneous devices such as underwater sensor nodes (UW-SNodes),
underwater cluster heads (UW-CHs), remotely operated underwater vehicles (ROVs),
unmanned underwater vehicles (UUVs), autonomous underwater vehicles (AUVs), etc.
The UIoT devices can be fixed or mobile, moving from one location to another to gather
information and transmit that information via digitally linked devices in water bodies
such as the gateway or buoy in surface water. In addition, other devices like moving
gateways, satellites, base stations, etc., are utilized to expand the communication range of
UIoT applications.
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In the recent survey produced by the United States National Oceanic and Atmospheric
Administration (NOAA), 97% of the earth’s surface is covered with water [1]. The UIoT
environment is coped with smart sensing underwater devices that are installed with het-
erogeneous functionalities. Many researchers have proposed different methodologies to
design and develop various UIoT applications in the last few years. However, the chal-
lenges and limitations are still concerns for the UIoT environment based on the application,
channel types and channel characteristics. Channel types define the type of medium used
in UIoT environments such as RF, acoustic, optical (VLC: visible light communication or
IR: infrared) and MI, and channel characteristics represent the technical factors that affect
the medium used in UIoT environments, such as propagation speed, turbulence, pressure,
node mobility, etc. [2] Security attacks and privacy issues are the other key challenges in
the current UIoT system [3].

This research aims at providing a survey of the state-of-the-art research, commu-
nication technologies, challenges, security attacks and privacy issues and provides the
mitigation methodology to overcome the challenges and security attacks in the current
UIoT system. Furthermore, this research will help the researchers and developers to build
new UIoT applications by considering the best channel type with security and privacy
models. The key contributions of this paper are briefed under research goals in Table 1.

The layout of this paper is delivered as follows: Section 2 represents the prior study
insights and recently used communication technologies of the UIoT system. Section 3
describes the technical challenges, security attacks and privacy issues of UIoT system.
Section 4 provides the available methods to overcome the challenges, security attacks and
privacy issues of the UIoT system. Section 5 highlights the findings, future work and
directions of UIoT system, and Section 6 concludes the paper.
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Table 1. Research Goals.

Queries (Qs) Discussion

Q1: What are the current trends
of the UIoT system?

UIoT is the growing trend in the current IoT system. Recently, numerous UIoT
applications have been developed for the industries. Therefore, Q1 provides

the survey based on the latest article and the recently
developed UIoT applications.

Furthermore, the communication technologies of UIoT are discussed, which
includes the pros and cons of UIoT channels such as RF,

acoustic, optical and MI.

Q2: What are the challenges of the
current UIoT system?

Challenges include technical challenges, security attacks and privacy issues.
Therefore, Q2 discusses the technical challenges based on UIoT channel

characteristics and the possible security challenges and privacy issues in UIoT.

Q3: What are the possible methods to overcome
the challenges, security attacks and privacy

issues in the UIoT system?

In the UIoT system, most of the challenges and security issues are still of
concern. Likewise, privacy methodologies are not yet considered for the

current UIoT system. Therefore, Q3 highlights the countermeasures taken to
overcome the challenges, security attacks and privacy issues of the current

UIoT system.

Q4 and Q5: What are the findings and
future directions?

Q4 discusses the findings based on the systematic review and Q5 highlights
the future direction of this paper.

2. Q1: What Are the Recent Trends of UIoT System?

This section discusses the recent trends and applications developed in the UIoT system
along with the communication technologies of the current UIoT system.

2.1. Prior Research

Many articles discuss the latest research and applications developed in the UIoT sys-
tem [4]. For example, in [5], Gussen et al. unveiled a survey on underwater communication
technologies, including the pros and cons of using optical, acoustic and RF channels in
the UIoT environment. Furthermore, the research shows that the RF channel is unsuitable
for the underwater environment due to its high absorption rate. In [5,6], the channel
characteristics of electromagnetic (EM) signals in UIoT and the use of EM signals in the
military application were discussed. In [7–10], the challenges and merits of using acoustic
signals in UIoT were discussed. Furthermore, the research shows that an acoustic signal
reveals low absorption rates underwater. Therefore, the acoustic signal is used for long-
distance communication in the UIoT environment, but the drawbacks are low bandwidth
(1–100 kHz), limited speed (≈1500 m/s) and high delay in data transmission.

In [11–14], the latest research on underwater optical communication (UwOC) tech-
niques was discussed, and the strength and weaknesses of optical signals were shortened.
Additionally, the research showed that UwOC are used for short-range communication
with a high data rate in the UIoT environment, but UwOC cannot be applicable for long-
range distances due to high attenuation.

In [15], Kumar et al. developed a single hybrid optical, acoustic modem to achieve
a high bandwidth rate, low battery consumption and long-distance data transmission.
In [16], a built-in optical, acoustic communication technique was proposed by integrating
the optical system into the existing acoustic communication technology to offer a high
data rate, long-distance data transfer and low latency in underwater communication.
In addition, from [17–20], other acoustic–optical combined technologies were discussed.
In [21], Delphin et al. proposed the new technique by considering multiple mediums and
bandwidths based on the distance for reliable data transmission in the UIoT environment.
In [22], Delphin et al. developed the underwater hybrid software-defined modem to
support the fast and reliable communication system in UIoT. Figure 2 shows that the
UIoT applications are grouped into five major categories and have numerous subdivisions
according to the survey carried out by Chien-Chi Kao et al. [23]. Moreover, in [24,25], the
classifications and descriptions of each UIoT application are indicated.
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2.2. Communication Technologies of UIoT

Based on the research highlighted in Section 2.1, the recent communication trends in
UIoT are described underneath and the essential channel attributes are briefed in Table 2.

Table 2. Communication technologies of UIoT [2–25].

Attributes Acoustic RF Optical MI

Channel speed ≈1500 m/s ≈3.33 × 108 m/s ≈3.33 × 108 m/s ≈3.33 × 108 m/s

Communication range ≈kilometer (km) ≈10 m ≈10–100 m ≈10–100 m

Data rate ≈kbps ≈Mbps ≈Gbps ≈Mbps

Signal operation Audible Non-visible and
non-audible Visible Non-visible and

non-audible

Frequency band 10−15 kHz 30−300 Hz ≈5 × 1014 Hz -

Size of the Antena ≈0.1 s ≈0.5 s ≈0.1 s ≈0.1 s

Channel characteristics
dependency

Undersea noise,
temperature, pressure,

Doppler spread,
salinity, etc.

Conductivity
Undersea noise,

attenuation, turbidity,
scattering, etc.

Conductivity

Bandwidth ≈1–100 Kilohertz (kHz) ≈Megahertz (MHz) ≤150 Megahertz (MHz) ≈Megahertz (MHz)

Purpose of each
channel

Long-range
communication

Surface water
communication

Short-range
communication

Underground
communication

in deep sea

Transmission power >10 watts (W) megawatts
(MW)−watts(W)

megawatts
(MW)−watts(W) 10−8 watts (W)

Power loss dependency ≈0.1 dB per meter (m)
or per hertz (Hz)

≈28 dB per kilometer
(km) or one million

hertz (HZ)

Depending on the
turbulence of water

Depending on the
permeability of
undersea soils

From the physics perception, unlike satellite, TV, mobile and radio communication
frequency ranges, the conductivity of radiofrequency in seawater is very high. Thus,
Radiofrequency (RF) wave propagation is affected strongly. For this reason, it is not easy
to establish links using ultra-high frequency (UHF) and very high frequency (VHF) more
than 10 m away from the sea surface. As for lower frequencies, RM attenuation can
be considered short enough for reliable communication to occur over a few kilometers.
However, the frequencies from 3 kHz to 30 kHz and from 3 Hz to 3 kHz are not enough to
transmit at high data rates.
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The channel performance and behavior are the main difference between optical and RF
channels in the UIoT environment. There is an insulating material named dielectric utilized
for optical channel propagation in UIoT. This mechanism is explained by the plasma fre-
quency, operating as either a dielectric or conductor, following the frequency range. There
are changes from a conductor to a dielectric at around 250 GHz in seawater. Attenuation
and scattering are minor in the case of short-distance communication. Furthermore, the
speed is up to 3 × 108 m/s. Therefore, the optical signal is more reliable in short-range
communication up to 10 m and suitable up to 100 m. Visible light communication (VLC)
is the communication technology derived from an optical signal in UIoT. The ranges are
from 450 nanometers to 550 nanometers at 500 Mbps and a distance of 100 m. Moreover,
the speed is very high, up to 5 m. Therefore, VLC is very effective in short-range and
one-to-one communication.

As stated, electromagnetic signals and optical signals have a limited transmission
range. In addition, these signals are heavily affected by attenuation, scattering, and turbu-
lence. This leads to a limit on the transmission distance. Therefore, acoustic communication
technology is used for long-distance propagation in UIoT. The communication distance is
up to 1 km at a speed of approximately 1500 m/second.

Magnetic Induction (MI) based communication technology is most commonly used in
the underground of the seabed. It can cover a maximum of 10 m. The MI signal propagation
speed is the same as the speed of light inside water, 3 × 108 m/s. Moreover, the data rate is
in the order of kilobits per second (kbps).

3. Q2: What Are the Challenges of the Current UIoT System

This section describes the UIoT system’s challenges, including channel characteristics,
technical challenges, security challenges and privacy issues.

3.1. Channel Characteristics of UIoT

Delphin et al. pointed out that most of the characteristics of IoT systems are suitable
for the UIoT environment since UIoT is the subclause of IoT [26]. Most of the available IoT
protocols are designed and developed for stable nodes. Additionally, the performance of
IoT networks can be reduced with the addition of new nodes and variations in terrestrial
environment techniques. This statement highlights why the existing protocols and security
models of terrestrial IoT should not be directly applied to UIoT.

3.1.1. Underwater Channel

Unlike terrestrial IoT, UIoT nodes typically communicate via acoustic, optical, RF and
MI channels [27]. This results in long propagation delay, high battery consumption, high
error rate, etc. Moreover, the behavior of each channel’s characteristics is different in the
UIoT environment [2–4]. For example, the bandwidth of the acoustic channel is only a
small percentage when compared to the RF channel [28]. Furthermore, due to the open
characteristics of this UIoT environment, the attackers can easily inject the malicious node
and steal the data or hack the communication channel [29].

3.1.2. Energy Consumption and Storage

UIoT nodes are designed with limited battery power, computational capacity and
memory space [21]. Furthermore, the nodes consume more power for data gathering,
processing and transferring. Compared to terrestrial networks, the nodes are rechargeable
using solar energy. However, in UIoT networks, it is not easy to maintain or recharge due
to the natural behavior of the environment. This may cause power constraints in UIoT
networks.

3.1.3. Environmental Condition

Due to internal waves, mammals activity and other objects’ behaviors lead to dynamic
topology formation in UIoT networks [30]. The frequent changes of the UIoT network topol-
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ogy can cause rerouting, transmission loss and data accuracy issues [31]. Compared with
the terrestrial IoT, in UIoT networks, the nodes are sparsely deployed for data gathering and
transmission. Furthermore, since the UIoT nodes are mobile, localization, synchronization
and secure communication are the other issues in UIoT networks.

3.2. Technical Challenges of UIoT

As a branch of the terrestrial internet of things (T-IoT), some particularities of UIoT
are similar to T-IoT [32]. Unfortunately, due to the difference in the working environment,
some unique particularities and constraints are outlined below.

3.2.1. Limited Resources

In the UIoT environment, the battery and storage capacity of sensing devices are very
limited.

Limited battery: The optical and acoustic communication channel in the UIoT environ-
ment consumes more power than RF communication. Furthermore, energy harvesting
is impossible due to the unavailability of solar power creation in the UIoT environment.
This causes data loss and reduces battery lifetime [33]. In addition, the existing low energy
consumption or optimization methods used in the terrestrial environment, for example,
the methods used in references [34,35], cannot be applied to UIoT networks.

Limited storage capacity: The memory size of devices in the UIoT environment is limited.
Moreover, memory formatting is impossible in the UIoT environment. This causes failure
in data gathering and data transmitting [2].

3.2.2. Unreliable Channel Condition

In the UIoT Environment, the Cause of Unreliable Communication Channels Refer to
the Factors that can Affect Data Transmission Loss Underwater.

Limited bandwidth and transmission delay: In an acoustic communication channel, the
bandwidth is limited, such as from 100 kHz to 500 kHz, from 10 kHz to 100 kHz, and
from 500 Hz to 10 kHz for short, medium and long-range communication in the UIoT
environment, respectively. Furthermore, the data rate is a maximum of 100 kb/s. This
causes a delay in data transmission [21].

Attenuation and scattering: Approximately ≤150 MHz and Hz to 10 kHZ can be used
for long-range data transmission in an optical and acoustic communication channel. Even
though light spreads much more compared to the sound signal in the UIoT environment,
both signals suffer the problem of attenuation and scattering in long-range communication.
This causes a transmission loss for long-range communication [36].

High propagation delay: In the UIoT environment, numerous factors such as turbidity,
depth, pH level, density, temperature, etc., are the major causes of high propagation delay
in optical and acoustic channel communication. This causes transmission loss or delay in
transmission [37].

Channel noise: In the UIoT environment, channel noise refers to the noise factor
that affects the underwater communication channel, such as environmental and ambient
noise. Environmental noise is the noise generated by human beings such as shipping,
fishing, naval activities, etc., and ambient noise is the background sound generated from
an unknown source such as wind, underwater objects, sea animals, etc. [38]

Node mobility: The UIoT environment consists of static and mobile nodes. The static
nodes are placed in a fixed position and the mobile nodes move from one place to another
for data collection. However, the characteristics of deep seawater such as internal wave,
sediment formation and deliberate motion of other particles, force the nodes to move from
one to another at any time in the UIoT environment. This term is also defined as external
force mobility. Due to external force mobility, the connectivity can be easily broken, which
causes data transmission errors [22].
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3.2.3. Insecure Environment

In the UIoT environment, security methods are particularly necessary to monitor
naval applications. however, due to the environmental condition, it is difficult to monitor
the uiot networks and devices. in this case, the attackers find it easy to access the nodes or
devices in the uiot environment. such types of attacks are denial-of-service (dos) attacks,
jamming attacks, flooding attacks, etc. this causes serious damage to the legitimate node in
the uiot environment [39].

3.2.4. High Cost

As shown in Figure 1 of Section 1, in the UIoT environment, the sensor nodes are
devices that are sparsely deployed. Additionally, the products are from different vendors.
Therefore, it is too costly to install, monitor and manage the network and devices in the
UIoT environment [2–4].

3.2.5. Dynamic Topology

Node mobility was discussed in Section 3.3.2. As shown in Figure 3, the UUVs and
mobile nodes are automatically moving from one place to another or by external forces.
Node mobility can form a new topology by modifying the existing topology. Therefore,
node mobility is the major cause of dynamic topology formation in UIoT networks. This
causes routing problems in the UIoT environment [40].

Sensors 2021, 21, x FOR PEER REVIEW 7 of 35 
 

 

force mobility. Due to external force mobility, the connectivity can be easily broken, which 
causes data transmission errors [22]. 

3.2.3. Insecure Environment 
In the UIoT environment, security methods are particularly necessary to monitor na-

val applications. however, due to the environmental condition, it is difficult to monitor 
the uiot networks and devices. in this case, the attackers find it easy to access the nodes or 
devices in the uiot environment. such types of attacks are denial-of-service (dos) attacks, 
jamming attacks, flooding attacks, etc. this causes serious damage to the legitimate node 
in the uiot environment [39].  

3.2.4. High Cost 
As shown in Figure 1 of Section 1, in the UIoT environment, the sensor nodes are 

devices that are sparsely deployed. Additionally, the products are from different vendors. 
Therefore, it is too costly to install, monitor and manage the network and devices in the 
UIoT environment [2–4]. 

3.2.5. Dynamic Topology 
Node mobility was discussed in Section 3.3.2. As shown in Figure 3, the UUVs and 

mobile nodes are automatically moving from one place to another or by external forces. 
Node mobility can form a new topology by modifying the existing topology. Therefore, 
node mobility is the major cause of dynamic topology formation in UIoT networks. This 
causes routing problems in the UIoT environment [40]. 

 
Figure 3. Dynamic topology formation. 

3.2.6. Physical Damages 
In the UIoT environment, the nodes are too deeply deployed in a harsh environment. 

Furthermore, nodes can be damaged easily because of marine objects such as deep-sea 
mammals, waste particles, internal waves, etc., which can cause severe damage to UIoT 
nodes, such as hardware failure, software error and broken links, making them dead 
nodes [3]. 

3.2.7. Network Configuration 
In the UIoT environment, since the nodes are mobile or stable, the connectivity can 

be easily broken or can generate a new topology, which can cause network configuration 
problems in UIoT networks [21].  

Figure 3. Dynamic topology formation.

3.2.6. Physical Damages

In the UIoT environment, the nodes are too deeply deployed in a harsh environment.
Furthermore, nodes can be damaged easily because of marine objects such as deep-sea
mammals, waste particles, internal waves, etc., which can cause severe damage to UIoT
nodes, such as hardware failure, software error and broken links, making them dead
nodes [3].

3.2.7. Network Configuration

In the UIoT environment, since the nodes are mobile or stable, the connectivity can
be easily broken or can generate a new topology, which can cause network configuration
problems in UIoT networks [21].

3.3. Security Challenges of UIoT

This section describes the security challenges of UIoT that affect confidentiality, pri-
vacy, availability, resilience, authentication, safety, etc. The research shows a constant set of
challenges for UIoT.
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3.3.1. Complex Environment

As discussed in Section 3.2.3, the UIoT is complex and insecure. For most of the
applications, the sensor nodes are sparsely deployed and not well managed. This makes
way for attackers to inject malicious nodes inside the UIoT networks. Furthermore, as
discussed in Section 3.2.7, the underwater nodes can be physically broken due to the natural
behavior of deep-sea and other living organisms. Therefore, monitoring and protecting
nodes in a complex environment is an important discussion for the developers.

3.3.2. Data Privacy

In the UIoT environment, data privacy is extremely important since it can handle
sensitive data in naval applications such as secret operations, identity sharing, enemy
submarine tracking, etc. Since the UIoT environment is harsh, it is difficult to apply
the privacy methods of terrestrial IoT environments such as k-anonymity, l-diversity, t-
closeness and differential privacy to the UIoT environment. Therefore, the attackers can
steal private data from UIoT devices.

3.3.3. Network and Device Management

The dynamic behavior of nodes and changes in topology as discussed earlier in
Section 3.2.5 and other issues such as the limited battery, limited memory, routing, etc.,
can impact the management of networks and devices underwater. Therefore, as shown
in Figure 4, it is difficult to manage the underwater network management system func-
tionalities such as fault, configuration, accounting, performance, security and constrained
(FCAPSC) management in the UIoT environment. Therefore, the attacker can target
FCAPSC functionalities [21].
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3.3.4. Localization Techniques

In UIoT networks, node management is necessary to protect the nodes from physical
damages and security attacks. In this case, it is necessary to adapt localization techniques
to UIoT nodes to identify the location of each node underwater. However, due to heavy-
weight and environmental limitations, the localization mechanism in terrestrial networks
cannot be applied directly to the UIoT environment [41].

3.4. Security Goals, Attacks and Privacy of UIoT

This Section describes the security goals, attacks and privacy of UIoT networks.
Figure 5 illustrates the security goals and classification of attacks in UIoT.
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3.4.1. Security Goals of UIoT

It is classified into two parts (1) primary security goals and (2) secondary security
goals [42–44]. Integrity, confidentiality and availability are the three primary security goals
of UIoT, expected to be available in all UIoT applications. On the other hand, privacy,
synchronization, authenticity, quality of service, auditability, accountability and secure
localization are the secondary security goals of UIoT. The classification of UIoT security
goals are described underneath.

Confidentiality

In UIoT networks, confidentiality is the essential feature for securing underwater data.
A key sharing mechanism is a suitable approach that can be utilized to protect the data
during transmission. In addition, for confidentiality, an auto-decision-making mechanism
must be used for storing and retrieving data in the UIoT environment [42].

Integrity

In UIoT networks, data integrity is essential to maintain the accuracy and reliability of
underwater data. Data integrity refers to the approaches to check whether the received
data are altered during transmission via an underwater channel. For example, a message
integrity check (MIC) can be used to verify the data integrity of received underwater data.
In addition, an auto-integrity-checking mechanism such as logs integrity and software
integrity can be used to verify the integrity of log reports and device software, respectively,
in the UIoT environment [42].

Availability

In UIoT networks, data availability is necessary to provide the quality of services such
as preventing UIoT devices from malicious attacks, securing harbor environment, securing
diverse life at risk, etc. Self-healing, auto-recovery and centralized data sharing functions
are necessary to support availability in UIoT networks [42].

Privacy

In UIoT networks, privacy refers to the information or service that a particular user or
device can access. As discussed in Section 3.3.2, it is difficult to adapt the existing privacy
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approaches directly to UIoT networks. Hence, it is necessary to port a robust privacy
approach for UIoT to protect the data from attackers. The types of privacy approaches that
need to be considered in UIoT are categorized underneath:

UIoT data privacy: In UIoT networks, data privacy is necessary in naval applications to
protect secret messages from attackers, e.g., enemy submarine attacking and secret message
passing.

UIoT device privacy: In UIoT networks, a device identity is generally used to track and
transfer information to UIoT devices. This identity is traceable; therefore, it is easy for the
attackers to steal the information. In this case, a robust identity protection approach is
necessary to hide the device identity from malicious nodes.

UIoT location privacy: In UIoT networks, location information is necessary to track
the mobility of UIoT devices. The location information is open and is essential for data
transmission between the nodes in the underwater environment. In addition, hiding the
location of nodes based on necessity is a challenging task. Hence, it is necessary to port a
privacy-based location sharing mechanism for UIoT devices.

Authenticity

In UIoT networks, authentication refers to the verification between sender and receiver
node. As discussed in Section 3.3.1, the environmental condition is complex. In addition,
it is difficult to adapt the terrestrial authentication scheme to the UIoT environment.
Therefore, the attacker finds it easier to block the channel. Hence, it is necessary to design a
lightweight authentication scheme for UIoT networks.

Auditability

In UIoT networks, it is necessary to analyze security functions’ security activities and
performance to provide high-quality services. Hence, an auto-auditing or self-auditing
mechanism can be considered to evaluate the security systems in the UIoT environment.

Others

In UIoT networks, other security goals such as audibility, data freshness, self-organization,
time synchronization, secure localization, etc., can be considered to provide the quality of
services (QoS) in the UIoT environment.

3.4.2. Passive Attacks

The unauthorized attacker attacks the UIoT channel without altering the data. These
attacks have silent carriers because they do not carry any signals. The attacker is hidden
during a passive attack and can cause node tampering, jamming, message distortion
and replaying. Furthermore, the attacker can anticipate the idea of UIoT networks by
identifying packet traffic, observing packet exchange nodes and predicting the location
of nodes. Passive attacks are also known as privacy-based attacks. The types of passive
attacks are mentioned below:

Monitoring and eavesdropping: It is the most commonly used attack against data privacy
in UIoT environment. When the network traffic is at its peak, the attacker can steal impor-
tant information by tapping the network configuration. This type of attack is categorized
under privacy-based attacks.

Adversary and camouflage: In this case, the invisible attacker injects an adversary node
into the UIoT network. In effect, the adversary node can track and modify the information
in UIoT networks, such as stealing packets, rerouting packets and altering nodes.

Traffic analysis: In these attacks, the attacker infuses the UIoT networks by accessing
the pattern in the communication channel. Through this, the attacker can listen to the
location of each node, the routing path, the behavior, etc.
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3.4.3. Active Attacks

The unauthorized attacker can alter, infuse, erase or destroy information in UIoT
networks. The active attack can delete or modify the data during transmission and after
transmission. Active attacks in UIoT are categorised into five categories: (1) Denial-of-
service, (2) Message distortion, (3) Node tampering, (4) Message replay and (5) Masquerade
attacks. The types of active attacks are classified under each layer of UIoT networks, such
as a physical layer, data link layer, network layer, transport layer and application layer.

Denial of service attacks is one of the deadliest active attacks and can cause a ton of
damage. DoS attacks can be used at any layer of UIoT networks. DoS is an active attack
that attempts to make assets out of reach to the authentic node. The attacker tries to block
the authentic nodes from retrieving the services offered by the network [45]. Figure 6
shows the types of DoS attacks in UIoT.
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Node tampering: The UIoT nodes consist of hardware components such as a controller,
battery, transmitter and receiver. In node tampering, the attacker can track and modify the
software code of underwater nodes. Due to this, the software and hardware parts can be
broken, which causes severe damage to the nodes in the UIoT environment. In effect, it
causes network lifetime damages and data loss.

Message distortion: In these attacks, the attacker can alter the data sent by one UIoT
node to another. It can cause severe damages in case of emergency UIoT applications, e.g.,
message distortion in the naval application can break the security system. This could cause
confusion by passing wrong information to the end-users.

Message Replay: In these attacks, the attacker acts like the source node to send the same
information already sent by the source node, or the attacker purposely delays transferring
data by hacking. A message replay attack is also known as a play-back attack.

Masquerade: In these attacks, the attacker uses the fake identity to steal the information
from a legitimate node. A masquerade attack is a kind of privacy attack.

Jamming attack: In these attacks, the malicious nodes frequently send the noise signal
to disturb legitimate nodes in UIoT networks. Additionally, this attack can hack few special
nodes inside the UIoT networks, such as root node, gateway, underwater cluster head,
etc., which causes jamming in UIoT networks. In effect, it stops data transmission and
gathering. Figure 7 shows the jamming attack where a malicious node continuously attacks
the root node, disrupting the communication with the member node.
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Collision attack: This attack happens in the data-link layer of UIoT networks. A
collision happens when two underwater nodes send packets at the same time. Hence, to
avoid the collision in UIoT networks, the underwater nodes follow the data transmission
rules, namely, that underwater nodes should not use the same time for data transmission.
However, in a collision attack, the attacker will violate the rules and send the packets
simultaneously. In effect, the UIoT networks need frequent retransmission and cause
power loss.

Exhaustion attack/battery-oriented attack: This attack aims to drain the total energy
of underwater nodes in UIoT networks. For example, Figure 8 shows the battery-oriented
attack of UIoT networks. Here, the malicious node sent a routing request (RREQ) message
to node 0. In response, node 0 sent the routing response (RRES) message to the malicious
node. Finally, the malicious node will continuously send the corrupted packets until node
0 becomes dead. In effect, it reduces network lifetime.
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Node compromise attack: An attacker can capture, break and compromise UIoT nodes
to read or change information from memory. Moreover, what is terrible, is that the com-
promised nodes can penetrate into the network as authentic nodes to screen or disrupt it,
which can prompt considerably more prominent harm. An attacker can find the network
by checking the power of the acoustic signal and capturing them. More regrettable, is that
xfwithout a trace of hack-confirmation equipment or other security systems, the attacker
can undoubtedly break and compromise them to inspect private information (e.g., the
secret key, the encryption algorithm, the trust esteem) and alter this information in the
inward memory. Additionally, the compromised node can be penetrated into the network
as an actual node to screen it or perform persistent attacks.

Sybil attack: The Sybil attack is a type of routing attack. In this case, the attacker uses a
fake identity to steal the information while routing. Figure 9 shows that the attacker can
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locate any place in UIoT networks and use multiple identities to mislead routing. In effect,
it causes packet loss or transmission delay [46–48].
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Wormhole attack: An attacker uses two malicious nodes to tunnel traffic through the
UIoT networks in a wormhole attack [49–52]. The two plotting nodes capture packets
at one end and block them at another end. Wormhole attacks can make fake neighbor
associations and give the probability of an alternate path for routing. Figure 10 explains
how a wormhole attack occurs, causing a breach in the communication link, only because
it looks like the distance of the wormhole node is shorter than legitimate nodes.
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Unfairness: This is a type of DoS attack. The attacker aims to reduce the performance
of the legitimate nodes instead of completely blocking them from data transmission. In
effect, it can create transmission delay in UIoT networks.

Hello flooding attack: In a UIoT environment, every node will send HELLO packets to
identify its neighbor node. In a hello flooding attack, the adversary node in a UIoT network
will send numerous HELLO packets to legitimate nodes to exhaust their battery power. In
this case, the adversary node will convince the legitimate node by transmitting the signal
with high intensity. Therefore, the legitimate node will assume the adversary node as the
neighbor node and transmit data. In effect, it causes power failure and reduces the network
lifetime. Figure 11 shows that the malicious node sends HELLO packets with high signal
strength to attract the legitimate nodes in UIoT networks [53].
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Selective forwarding: In these attacks, the malicious node is located nearby the gateway
of UIoT networks. When some packets are detected, the legitimate nodes will find a new
route for transmitting the data to the gateway. As shown in Figure 12a, the malicious node
can selectively drop some packets before reaching the destination in this attack. In effect, it
causes packet loss in UIoT networks.
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Blackhole attack: In these attacks, the malicious node acts as the cluster head or gateway
to drop the packets while routing. Figure 12b shows that the malicious node can blackhole
by modifying or dropping the packets routed from legitimate nodes. The dropped packets
are referred to as black hole attacks in UIoT networks.

Gateway block attack: In this attack, the malicious node is located near the gateway
and blocks all the data transferred from legitimate nodes to the gateway. In this case, the
attacker manages to steal all the routing information sent to the gateway as the destination.
In effect, it causes complete packet loss. Therefore, a gateway block attack is referred to as
the main threat in UIoT networks.

Misdirection attack: In this attack, the malicious node can be located anywhere in the
UIoT network and track the routing path to change the route to the malicious node. In
effect, this attack causes packet loss or data transmission delay.

Homing attack: The malicious node observes the traffic in UIoT networks and attacks
the most special nodes in UIoT networks, such as cluster head and gateway. Additionally,
this attacker can jam or destroy those special nodes using a DoS attack.

Desynchronization attack: This attack disturbs the active connections between the nodes
in UIoT networks by sending fake packets. In this case, the fake packets will carry fake
sequence numbers to distract the synchronization process between the underwater nodes.
In effect, it affects the accuracy in UIoT networks.
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Clock skewing attack: In these attacks, the attacker tries to obtain the timestamp
information of a legitimate node. Therefore, the time stamp information can be changed in
a legitimate node. In effect, it causes a time synchronization problem in UIoT networks.

Data aggregation attack: In these attacks, the attacker tries to aggregate the legitimate
node’s privacy-based information in UIoT networks. The attacker can steal information
such as username, passwords, etc.

4. Q3: What Are the Methodologies Used to Overcome the Challenges in UIoT?

Several methods are proposed to solve the technical and security challenges of UIoT.
Some of them provide a general idea, and others give a solution for existing problems.
Some of the existing techniques to overcome the UIoT challenges are discussed below.

4.1. Methods to Overcome the Technical Challenges of UIoT
4.1.1. Low Battery Consumption Methods

In [54–64], the existing techniques for solving the battery problem in UIoT are dis-
cussed, and some methods are indicated herewith. In [56], Pendergast et al. proposed a
powerful and rechargeable module using Panasonic (CGR18650E) to provide sufficient
energy, and the experiment result shows that it is reliable and safe in the underwater
environment. In [58], Raffaele Guida et al. designed a battery-less underwater node that
can recharge via an acoustic signal from a short or long distance. In [59], Guanglin Xing
proposed a named data networking (NDN) approach for relay network topology in under-
water acoustic sensor networks to identify the node’s power consumption in a shallow sea
and deep-sea environment. Finally, in [60], Ahmed G, a two-level Redundant Transmission
Control (RTC) was proposed to control the communication in underwater acoustic sensor
networks, and the performance result shows that energy consumption is lower for the RTC
approach.

4.1.2. Memory Management Methods

In [7,65–68], the existing techniques for solving the storage management in UIoT are
discussed, and some methods are indicated herewith. In [7], I.F. Akyildiz et al. suggested
that underwater sensors need to perform some data caching due to the intermittent under-
water channel characteristics. In [65], Zahoor Ali Khan et al. researched Q-learning (QL),
comprising of reactive and proactive strategies to reduce the network overhead related
to network lifetime. In [66,67] memory management, an essential function to store and
retrieve information through smart sensing underwater devices, was studied to solve the
challenges of the underwater network management system (U-NMS).

4.1.3. Unreliable Data Transmission Methods

In [68–70], the existing techniques for solving the unreliable data communication in
UIoT are discussed, and some methods are indicated herewith. In [68], Li, N et al. show
that unreliable channels cause propagation delays. Therefore, three aspects of solving
this problem suggested reducing unnecessary routing detection, routing distance between
relay nodes and retransmission. In [69], S. Jiang recognized the need for an optimal design
to provide reliable end-to-end transmission. Thus, a reliable transmission control was
systematically reviewed, focusing on the data link, network and transport layers. Finally,
in [70], Fattah S et al. discussed the impact of noise from underwater environments on
reliable data transmission, and based on this, link reliability was an essential consideration
for data transmission to achieve the rate of high transmission in real-time scenarios.

4.1.4. Noise Modeling Methods

In [71–82], the existing techniques for solving the environmental noise and ambient
noise modeling in UIoT are discussed, and some methods are indicated herewith. In [72],
Chao Wang et al. designed a PG mixed noise model based on a single-photon avalanche
diode (SPAD) in an underwater visible light communication system by considering the
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attenuation and turbulence effect. Here, an algorithm for the noise model was also pre-
sented. In [76], Bagocius D et al. presented an underwater noise model to identify the noise
level of shallow water during different seasons. Finally, in [78], Pennucci et al. provide
the conceptual design and describe the effect of using ships in the UIoT environment by
providing various shipping noises for noise modeling underwater.

4.1.5. Localization Methods

In [83–86], the existing techniques for solving the localization problem in UIoT are
discussed, and some methods are indicated herewith. In [83], T. Islam et al. anticipated
that localization is a crucial element in the protocol design given the proposed geographic
routing protocols for underwater sensor networks. Suggestively, they resulted in accuracy
and coverage of localization as essential factors for performance based on the surveyed
centralized and distributed localization algorithms. In addition, P. Liu, B et al. proposed
the integrated navigation of the Inertial Navigation System (INS) in AUV with limited
doppler velocity log (DVL) to update the depth of the system based on the pressure sensor
integrated with AUV [84].

4.1.6. Low-Cost Communication Methods

In [17,87–101], the existing techniques for solving the high-cost issues in UIoT are
discussed, and some methods are indicated herewith. In [89], Bridget Benson et al. designed
a low-cost acoustic modem to reduce underwater acoustic sensor network cost and power
consumption. In [99], Waseem et al. designed a low-cost application to monitor water
quality using underwater wireless communication. In [100], Brian R et al. designed and
developed a low-cost glider to perform in shallow water, around 3-m depth, 3-m radius
and a minimum of 60 h durability. Finally, in [101], Abdillah designed and developed a
low-cost coral reef monitoring application for shallow water.

4.1.7. Device Management and Physical Damage Protection Methods

In [102,103], the existing techniques for solving the device management issues in UIoT
are discussed, and some methods are indicated herewith. In the case of device management,
in ISO/IEC 30140-1, fouling cleaners and housing cases shall be used for cleaning marine
wild animals attached to underwater devices, waterproofing and construction of underwa-
ter sensor nodes resistant to high water pressures, respectively. In addition, as a functional
requirement for underwater device management, identification of available resources and
status of the devices are suggested in ISO/IEC 30142. In [26], K. M, D.R. et al. designed and
developed the underwater network management system (U-NMS). The proposed system
enables automatic software updates and monitoring of underwater devices using fault,
configuration, accounting, performance, security and constrained management (FCAPSC)
functions of U-NMS for physical damage protection.

4.1.8. Connection and Reconfiguration Methods

In [104–106], the existing techniques for solving the connectivity issues in UIoT are dis-
cussed, and some methods are indicated herewith. In [105], L. Furno, a self-reconfiguration
algorithm is formulated for underwater robots based on energy heuristics. In [106], a
full-duplex, parameter configurable, multiple-user modem is developed and tested to
improve the throughput level in the UIoT environment.

4.2. Methods to Overcome the Security Challenges in UIoT
4.2.1. Methods to Prevent DoS Attacks

The existing techniques to prevent DoS attacks in UIoT are discussed herewith.
In [107], Martin et al. proposed a cautious calculation that checks the potential DoS
attack. This approach breaks down centered and broadcasted DoS attacks to initially
distinguish the attack and create pushback alerts or choke the malicious nodes as they
enter the UIoT networks. Data entropy is a proportion of the vulnerability related to an
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irregular variable. It tends to be deciphered as the normal most limited message length in
bits that can send an irregular variable to a recipient [108]. Entropy can be determined by
figuring a progression of constant bundles. The entropy esteem gives a depiction of the
comparing arbitrary appropriation of these sources IP addresses. The bigger the entropy,
the more irregular the source IP. The more modest the entropy, the smaller the dispersion
scope of the source IP locations of the parcels, and a few locations have a genuinely high
likelihood of an event. The expression for calculating the entropy is shown below:

E = −
Tn

∑
k=1

= pk log2 pk

Here pk is the possible outcome probability, Tn is the number of packets analyzed, and
E is the entropy.

4.2.2. Methods to Prevent Jamming Attacks

The existing techniques to prevent jamming attacks in UIoT are discussed herewith.
In [109], Misra et al. present a shortcoming identification calculation where nodes deliber-
ately trade revelation and affirmative packets. In [110], Bagali et al. present a productive
channel task conspire, an original cross-layer plan for helpful correspondence for jamming
detection. Finally, in [111], Xiao et al. proposed utilizing the game-hypothetical investi-
gation of sticking to UIoT and proposed a machine learning-based energy management
mechanism to adapt to jamming attacks in UIoT networks. The associations between a
UIoT and a responsive jamming device are defined as two jamming games.

Exponentially Weighted Moving Average (EWMA) was proposed by Osanaiye et al. [112]
as a measurable productive procedure for identifying little changes in time series infor-
mation. It works by first characterizing an edge that portrays standard conduct before
intermittently refreshing the normal of the noticed traffic. The EWMA algorithm can be
the countermeasure for jamming attacks. The below expression shows how the EWMA is
calculated:

x(d) = λ.y(d) + (1− λ). x(d− 1) d = 1, 2, 3, . . . N

x(d) is the data with moving average time d, λ is the parameter value between 0 and 1,
y(d) denotes the signal y at a time ‘d’, N is the number of observations in EWMA.

4.2.3. Methods to Prevent Node Compromise Attacks

To defend against node compromise attacks in UIoT networks, a mechanism such as a
high-level hardware protection scheme, trustworthiness, data management and configura-
tion management should be adapted for UIoT networks.

4.2.4. Methods to Prevent Sybil Attacks

Message authentication and proper localization mechanisms are necessary to prevent
the Sybil attack in the UIoT environment. The existing Sybil attack prevention methods
applicable for UIoT networks are explained herewith. In [46], Demirbas et al. proposed the
received signal strength indicator (RSSI) based light-weight approach to detect the Sybil
attack; this approach can be applicable in UIoT networks. In [47], W. Du et al. proposed
a pairwise random key predistribution scheme to secure the communication link that
can be used for UIoT networks. Resource-based testing is one of the solutions for Sybil
attack prevention in UIoT networks. In [48], Newsome et al. provide an example of
resource-based testing. This method can be used in UIoT.

4.2.5. Methods to Prevent Wormhole Attacks

The existing techniques to prevent wormhole attacks in UIoT are discussed herewith.
In [49], Gorlatova et al. used the HELLO message based on packet timing analysis to
control the wormhole attack, which can be used in UIoT networks. In [50], Kong et al.
proposed a two-tire-based localization method to identify the wormhole attack in a short
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time in UIoT networks. In [51], Shang-Ming Jen et al. proposed a hop-count-based analysis
method to prevent the wormhole attack, which can be applicable in UIoT networks. Finally,
in [52], Wang et al. proposed a distributed method to identify the wormhole attack in UIoT
networks.

4.2.6. Methods to Prevent Flooding Attacks

The existing techniques to prevent flooding attacks in UIoT are discussed herewith.
Bidirectional authentication is necessary to protect the nodes from flooding attacks in UIoT
networks. In [53], Prabhjot Kaur et al. proposed a centralized scheme to protect the hello
flooding attack that can be used in UIoT networks. In [113], Coutinho et al. proposed a
GEDAR, a geographical routing approach that prevents flooding attacks underwater. In
the GEDAR approach, the communication is established based on the location information
of UIoT nodes.

4.2.7. Methods to Prevent Black-Hole Attacks

The existing techniques to prevent black-hole attacks that can be considered for
UIoT are discussed herewith. In [114], a dynamic learning system (DPRAODV) was
proposed against black-hole attacks in mobile ad hoc networks. In [115], L. Tamilselvan
et al. proposed the cooperative black-hole prevention method using a fidelity table in
mobile ad hoc networks. In [116], Hanane Kalkha et al. proposed the tyenHidden Markov
Model technique to identify the black-hole attacks in wireless sensor networks.

5. Q4: What Are the Findings Based on the Existing Research Works?

This section highlights the significant findings of this research by reviewing the papers
concerning recent trends, technical challenges, privacy and security issues of UIoT. The
analysis is provided in Tables 3–5 based on the years from 2010 to 2021, and the results are
displayed in Figures 13–15.

Table 3. Systematic analysis on UIoT applications.

Main Clause Subclause Paper Count References Number

Environmental monitoring

Pollution monitoring 3 [117–119]

Water quality monitoring 11 [120–130]

Monitoring depth, temperature, pressure,
and pH level. 9 [131–139]

Fish farm and fish growth monitoring 22 [140–161]

Resource exploration

Finding the lost treasure 4 [162–165]

Underwater object tracking 9 [166–174]

Natural resource finding (Coral reefs,
minerals, manganese, etc.) 13 [175–186]

Disaster prevention
Earthquakes, Tsunami warning system 7 [187–193]

Landslide detection and prevention 9 [194–202]

Naval applications

Submarine detection 2 [203,204]

Mine detection 4 [205–208]

Surveillance 3 [209–211]

Others

Aquathlon (Scuba-diving, underwater
hockey, underwater wrestling, etc.) 6 [212–217]

Navigation assistance 9 [218–226]

Localization 15 [85,86,227–239]
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Table 4. Systematic analysis of the technical challenges in UIoT networks.

Problems Solutions and Effective Methods Paper Count References Number

Transmission issues Methods to preventing path loss and data
loss in UIoT networks. 17 [240–256]

Environmental issues

Methods to solve unreliable channel
conditions in UIoT networks. 10 [257–266]

Methods to solve limited resources
in UIoT networks. 15 [26,54–64,267–269]

Insecure environment issues
Methods used to support trust management,
security management, hardware protection,

etc., in UIoT networks.
19 [42,107,113,270–285]

Cost issues Lost cost design approaches
for UIoT networks 15 [87–101]

Channel noise issues

Methods to prevent ambient noise, mammals
noise, other environmental noise

in UIoT networks.
Methods to predict noise level

in UIoT networks.

12 [71–82]

Damages in UIoT devices Methods to prevent internal or external
damages of UIoT devices. 9 [26,286–292]

Device or network
configuration issues

Methods supporting self-configuration or
auto-configuration mechanism for devices in

UIoT networks.
4 [26,104–106]

Table 5. Systematic analysis of security issues and management in UIoT networks.

Main Clause Subclause Paper Count References Number

Key focus on security attacks
and management

Papers discussing privacy and security
attacks on UIoT networks. 10 [271,293–301]

Papers discussing attack prevention methods
and management in UIoT networks. 19 [42,107,113,270–285]

Papers discussing message authentication
techniques in UIoT networks. 6 [42,302–306]

Papers discussing localization security in
UIoT networks. 10 [42,271,307–314]

Papers discussing key management
in UIoT networks. 6 [315–320]

Papers discussing information management
in UIoT networks. 3 [78,321,322]

Papers discussing trust management
in UIoT networks. 19 [273,275,276,314,323–337]
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6. Q5: Future Direction

According to the results obtained from the current research study conducted based
on queries in Table 1, the suggestion for the future direction of UIoT is discussed in the
Section s beneath:

6.1. Build Hybrid Communication Models for Future UIoT

Based on the research study in Section 2, acoustic, optical, RF and MI are the commu-
nication technologies used in the UIoT environment. As shown in Table 2, each medium
has its advantages and disadvantages. To overcome the technical challenges discussed in
Section 3.2, it is necessary to port multi-medium (hybrid) communication technology in
UIoT [21]. The multi-medium communication technology can improve the transmission
speed, increase the battery life, and deliver reliable data transmission in UIoT.

6.2. Build Underwater Automatic Battery Recharging Module for Future UIoT

Based on the research study in Section 3, the devices or nodes in the UIoT environment
have limited resources. Additionally, it is difficult to recharge in a constrained underwater
environment. In effect, it reduces battery life and network lifetime if any one of the nodes
is dead. In [267], Yongil Kim et al. introduced a metal-free sodium-seawater battery
(Na-SWB). In [268], J Cho et al. proposed a battery degradation prediction and power
optimization mechanism for surface buoys based on sea batteries. In [269], Moon Son et al.
proposed a rechargeable seawater battery (SWB) mechanism that produces energy from
seawater. Finally, in [338], the Miresearch group developed battery-free sensor nodes for
underwater exploration. Therefore, to solve the battery issues in UIoT, it is necessary to
build an undersea battery or an automatic recharging mechanism or deploy battery-free
nodes.

6.3. Build Standard Security Models for Future UIoT

Sections 3.3 and 3.4 describes the security issues and possible security attacks in UIoT
networks. This research study shows that it is necessary to build a robust security model
that includes high-level security architecture, confidentiality, integrity, availability, quality
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of service (QoS), etc., to protect the UIoT nodes from attacks such as DoS attacks, routing,
jamming attacks and so on.

6.4. Build Privacy Models for Future UIoT

Based on the discussion in Section 3.3.2, it is necessary to handle privacy issues
in essential applications of UIoT such as diver networks, naval applications, tracking
applications, etc. However, since the terrestrial privacy models are heavyweight, it is
difficult to apply in UIoT environments. Moreover, as discussed in Section 3.4.1, it is
necessary to consider data privacy, device privacy and location privacy in UIoT. Hence, it
is necessary to build lightweight privacy models for UIoT systems by adapting privacy
models in terrestrial networks such as k-anonymity, l-diversity, t-closeness and differential
privacy.

7. Conclusions

This paper reviews existing research papers based on recent trends, applications, chal-
lenges, security and privacy issues of UIoT. Additionally, the possible solutions to overcome
the technical challenges, privacy and security issues are discussed based on the systematic
studies. The research goals are developed in Table 1, including four research queries from
Q1 to Q4, and the solutions are provided under Sections 2–5. Section 2 provides the survey
based on the latest articles, the recently developed applications and the existing communi-
cation technologies of UIoT. Section 3 describes the existing challenges of UIoT systems,
including technical challenges, privacy and security attacks in UIoT networks. Section 4
provides the methodology to overcome the challenges described in Section 3. In Section 4,
the significant findings are highlighted by reviewing the total number of papers concerning
UIoT applications, technical challenges, privacy and security issues of UIoT. Finally, the
future direction in Section 5 shows that the hybrid communication technologies in UIoT
that include acoustic, optical, IR and MI medium can overcome the technical challenges of
the UIoT system. Therefore, further research needs hybrid modem technology to support
fast, reliable and low power consumption-based communication in UIoT. Moreover, in the
future, the privacy and security issues can be solved by building standard security models
and security architecture for UIoT. Furthermore, it is necessary to build battery-free sensors
or undersea energy models for energy storage and automatic recharging in the future.
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