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Abstract: As the techniques of autonomous driving become increasingly valued and universal, real-
time semantic segmentation has become very popular and challenging in the field of deep learning
and computer vision in recent years. However, in order to apply the deep learning model to edge
devices accompanying sensors on vehicles, we need to design a structure that has the best trade-off
between accuracy and inference time. In previous works, several methods sacrificed accuracy to
obtain a faster inference time, while others aimed to find the best accuracy under the condition of
real time. Nevertheless, the accuracies of previous real-time semantic segmentation methods still
have a large gap compared to general semantic segmentation methods. As a result, we propose
a network architecture based on a dual encoder and a self-attention mechanism. Compared with
preceding works, we achieved a 78.6% mIoU with a speed of 39.4 FPS with a 1024 × 2048 resolution
on a Cityscapes test submission.

Keywords: real-time semantic segmentation; deep learning; autonomous driving; image recognition;
convolution neural network; edge devices

1. Introduction

With the rise of deep learning, self-driving cars have become increasingly popular
in recent years. Semantic segmentation task is one of the fundamental and challenging
tasks in computer vision and deep learning, and it can be widely applied to different
applications, such as autonomous driving [1–10] and video surveillance systems [11,12],
accompanying sensors on vehicles. Different from the general classification [13–16] and
object detection [17–19] tasks, with semantic segmentation task it is more difficult to achieve
good results because it needs to assign a label to each pixel in an image. However, the
common classification task only needs to classify the whole image into a class. Both the
classification and object detection tasks have lots of information inside the image to classify
the objects.

In addition, semantic segmentation task can be differentiated into real-time semantic
segmentation [6–10] and non-real-time semantic segmentation [1–5]. The goal of real-time
semantic segmentation is to find the best trade-off among the accuracy, inference time, and
the number of parameters in the network. On the other hand, the objective of non-real-
time semantic segmentation is to achieve the highest accuracy and ignore the number of
parameters and the inference time in the network.

However, most of the frameworks [1,3,5,20] in non-real-time semantic segmentation
cannot be applied on edge devices due to the large model and parameters. The number
of parameters of the network in non-real-time semantic segmentation is at least 10 times
or even 100 times that of the number of parameters of the model in real-time semantic
segmentation. Although several previous methods proposed extreme lightweight [21,22]
or fast inference time [6,7,10] models for real-time semantic segmentation, the accuracy of
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these methods have a large gap from the accuracy of non-real-time semantic segmentation,
and they may classify most of the objects incompletely.

Therefore, we propose a novel and lightweight deep learning framework with a dual
encoder and self-attention module that can achieve state-of-the-art results with many fewer
parameters compared with other methods in the field of real-time semantic segmentation
as shown in Figure 1. We trained and tested our model on the Cityscapes Dataset [23],
which is based on road scenes in Germany and adjacent countries.

Figure 1. Speed–accuracy comparison using the Cityscapes Dataset. Our methods achieved a
state-of-the-art trade-off between the accuracy and the inference time.

The main contributions are summarized as follows:

• We propose a novel and lightweight network with a dual encoder and self-attention
module for real-time semantic segmentation in the field of autonomous driving;

• We designed and integrated the refinement module and the factorized atrous spatial
pyramid pooling module into the network;

• We achieved state-of-the-art results in terms of accuracy with fewer parameters.

2. Background Knowledge
2.1. General Semantic Segmentation Network

In the general semantic segmentation task, the objective of the previously proposed
methods is to achieve the best accuracy. Numerous works [1–5] were proposed to im-
prove the performance of predicting a label for each pixel, and the results can be used in
autonomous driving. Moreover, among all deep learning-based semantic segmentation
approaches, the encoder–decoder structure is the most commonly adopted model, such as
in [1,6–8,24–27]. For example, Zhao et al. [26] proposed the pyramid pooling module as the
bottleneck between the encoder and decoder. It inputs the feature map to different kernel
sizes, such as 1 × 1, 2 × 2, 3 × 3, and 6 × 6 convolutional layers in parallel first, and then it
fuses the features of these output feature maps to extract the features from different scales.

In addition, atrous spatial pyramid pooling (ASPP) was proposed by Chen et al. [24]
to extract multiscale contextual information via different approaches. They used atrous
convolution with different dilation rates and global average pooling instead of the common
convolution to design the ASPP [24]. The benefit of atrous convolution is that it can further
enlarge the kernel size and the receptive field without increasing the number of parameters
in the model. Therefore, they used large dilation rates to further extract larger feature maps,
because the semantic segmentation task needs more global information from the input
images. In addition, it can maintain the size of the output feature map as the same size as
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the input feature map, and it does not need to use an additional upsampling layer to obtain
the same size. Furthermore, several other works [2,3,27] proposed the attention-based
mechanism to achieve good results. Both Zhu et al.’s [2] and Huang et al.’s [3] works used
the ResNet-101 [28] as the backbone in the networks. Although the preceding methods
mentioned above can achieve high accuracies in the general semantic segmentation task,
their number of parameters are too large to be applied on the edge devices.

2.2. Real-Time Semantic Segmentation Network

Due to the problem of applying the general semantic segmentation model on the edge
devices mentioned in the previous section, an increasing number of real-time semantic
segmentation methods have been proposed. Several previous works concentrate on re-
ducing the inference time or the computational complexity of the model and achieve an
acceptable accuracy, while others focus on improving the accuracy while still satisfying the
condition of real time. For instance, Romera et al. [29] proposed the ERFNet, which uses
the factorized convolution layer in the encoder of the network. The factorized convolution
layer decomposes the general 3 × 3 convolution into 3 × 1 and 1 × 3 convolution layers to
reduce the number of parameters in the network.

Zhao et al. [30] introduced the image cascade network, which uses three different
resolutions (1024 × 2048, 512 × 1024, and 256 × 512) as the input of the three encoders and
concatenates each output of the encoders as the cascade feature fusion. Moreover, they
adopted the cascade label guidance strategy to guide the learning stage of low, medium,
and high resolution, which is similar to deep supervision. On the other hand, the U-
Net [31] structure is widely adopted in the real-time semantic segmentation task. For
example, Oršic et al. [8] adopted the U-Net [31] structure to design the model and used the
ResNet-18 [28] as the encoder of the network. Furthermore, they adopted spatial pyramid
pooling (SPP) [26] to increase the receptive field between the encoder and decoder blocks.
Moreover, Hu et al.’s [9] work also utilized the U-Net [31] structure with the ResNet-18 [28]
backbone and the attention modules in each skip connections of the network for non-local
context aggregation. Yu et al. [6] proposed the bilateral segmentation network (BiSeNet)
which combined two encoders and one decoder. They designed the spatial path and
the context path to preserve the spatial information and obtain the sufficient receptive
field, respectively.

3. Proposed Method

In the proposed network, we designed a novel architecture from the concept of the
U-Net [31] and the BiSeNet [6]. We propose a dual encoder and a single decoder with a skip
connection. In this section, we introduce the overall network architecture, the proposed
refinement module and the factorized atrous spatial pyramid pooling module.

3.1. Network Architecture

We propose a novel dual encoder–decoder architecture with skip connection for the
task of semantic segmentation, which is inspired by BiSeNet [6]. Different from BiSeNet [6],
we adopted the concurrent spatial and channel squeeze and excitation (scSE) [32,33] as
our self-attention module and introduced a new factorized atrous spatial pyramid pooling
module (FASPPM) in the model to strengthen the network’s accuracy. As shown in Figure 2,
we utilized the spatial path (i.e., the bottom path) and the context path (i.e., the top path)
as the dual encoder in the model, which was originally proposed by Yu et al. in [6]. The
spatial path can assist the network to acquire the wealthy spatial information, because we
only use three convolution layers with the stride of 2, followed by batch normalization [34]
and ReLU [35] to downsample the input images. Furthermore, we used a kernel size of
seven at the first convolution layer of the spatial path to let the model learn the larger
receptive field. After the input images pass through three Conv-Bn-ReLU blocks, the
deformable convolution [36] is used to deform the receptive field, and the receptive field is
adjusted to polygon according to the different objects’ size rather than the common square
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size, which can boost the model’s adaptation to the transformation of the objects. The
self-attention mechanism of concurrent scSE [32,33] module can extract the crucial spatial
information and the channel information from the input feature maps, and it can enhance
the model with a small account of additional parameters, which is helpful and efficient
to introduce in the model. On the other hand, the context path can provide abundant
contextual information and the sufficient receptive field. We adopted two lightweight
backbone networks, namely, HarDNet-68ds [37] and ResNet-18 [28], in the context path
to reduce the parameters in the overall network. In the HarDNet-68ds [37], we removed
the last harmonic dense block (HDB) to further reduce the model’s size due to the fact of
its large number of channels. Unlike the other backbone networks, which have a large
amount of parameters, such as VGG-net [38], Inception [39], and the Densely Connected
Network (DenseNet) [40], the HarDNet, designed by Chao et al. [37], not only can reduce
the model’s sizes (number of parameters and the weights of the model), but it can also
decrease the number of dynamic random access memory (DRAM) accesses for reading
and writing the model’s parameters. It can even reduce the power consumption of edge
devices that only have limited computational power. In addition, Chao et al. [37] proposed
a metric called convolutional input/output (CIO) that can approximately measure the
real DRAM traffic. CIO is the summation of the input tensor size and the output tensor
size of all convolutions in the network. In addition to HarDNet-68ds [37], we adopted
ResNet-18 [28] as the backbone network, which is the lightest version of the ResNet [28]. It
is widely used in classification tasks and object detection tasks. ResNet [28] introduces the
concept of residual learning into the network, which is easier to use to train a very deep
neural network.

Figure 2. The proposed overall network architecture.

Because the semantic segmentation task generally needs to be trained for a very long
time, most methods [29,41,42] adopt the pre-trained backbone on the ImageNet data set [43]
to decrease the training time, and it can also assist a little bit to elevate the model’s accuracy.
Moreover, both the semantic segmentation task and the classification task classify different
objects with labels. Therefore, the backbone networks of our model were also pre-trained
on the ImageNet data set [43] to boost the accuracy.



Sensors 2021, 21, 8072 5 of 12

Different from Yu et al.’s [6] work, which only uses two encoders without any skip
connection, we utilized a skip connection with three atrous convolutions [1]. The skip
connection concatenates the low-level feature maps from both the context path and the
spatial path. Then, the concatenated feature maps are passed through three atrous convo-
lutions to further enlarge the receptive field with a dilation rate of 1, 3, and 6, followed
according to [44], to match the high-level feature maps which have a larger receptive field.
It also can enrich the detailed information from the low-level features. Moreover, we only
used a skip connection to provide detailed information to the high-level features. During
the experiments, we found that the accuracy would drop, and the inference time would
increase dramatically when we increased the number of skip connections. In addition, if
we used many skip connections in the network, the inference time of the model would be
longer, and the concatenated feature maps would lead to more parameters and memory
costs. On the contrary, if we did not use any skip connections, it would lead to a loss of
spatial information from the low-level features. Therefore, using one skip connection is a
better trade-off.

3.2. Refinement Module

Moreover, we improved the refinement module that was initially proposed in [6]. We
replaced the global average pooling with strip pooling [45] in the refinement module to
capture the long-range contextual dependencies and refine the feature map as shown in
Figure 3. In addition, the strip pooling [45] module can concentrate on the local details and
the long-range dependencies rather than the whole information of the feature map in the
global average pooling.

Figure 3. Refinement Module.

The strip pooling [45] averages the horizontal dimension and the vertical dimension
to capture the long-range dependencies in Equation (1), where x ∈ RH×W , yh ∈ RH ,
and yv ∈ Rw. The 1D 3 × 1 convolution and 1 × 3 convolution are used along both the
horizontal and vertical areas. After that, both feature maps are expanded to the size of the
input feature map and fused together for each channel, followed by a 1 × 1 convolutional
layer with a sigmoid function, and the input feature map is multiplied to further enhance
the important information in the long-range context.

yh
i =

1
W ∑

0≤j<W
xi,j, yv

j =
1
H ∑

0≤i<H
xi,j, yc,i,j = yh

c,i + yv
c,j (1)
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3.3. Factorized Atrous Spatial Pyramid Pooling Module (FASPPM)

At the last stage of the encoder in the network, we propose the FASPPM to further
extract the multiscale features and enlarge the receptive field, which is inspired by atrous
spatial pyramid pooling (ASPP) [24]. Although ASPP [24] can boost the accuracy, it also
brings a large number of parameters due to the large number of output channels due
to the concatenation after the ASPP [24] and the large channel size inside the parallel
atrous convolution layers [1]. Moreover, it is not suitable to embed on edge devices with
limited computation.

To reduce the overall number of parameters of the model, we factorized the 3 × 3
atrous convolution layer into a 3 × 1 atrous convolution layer and a 1 × 3 atrous con-
volution layer to decrease the computation and parameters in the model, followed by
batch normalization [34] and the ReLU [35] in the ASPP, respectively, as shown in Figure 4.
Furthermore, we also replaced the global average pooling with the strip pooling [45], as
mentioned in the previous section, to capture the long-range dependencies and multiplied
the output of the 1 × 1 convolution layer after concatenation. At last, the feature maps
were added with the input feature maps as the residual learning.

Figure 4. Factorized atrous spatial pyramid pooling module.

3.4. Loss Function

We used the cross-entropy loss and the region mutual information (RMI) loss [46] as
our main loss functions. In addition, we used another cross-entropy loss as the auxiliary
loss to supervise the output of the context path. In the path of auxiliary loss, it included
additional convolution layers and an upsampling layer, which can be ignored during
the inference time. Therefore, it will not increase the number of overall parameters of
the network and degrade the inference time. The total loss is shown in Equation (2),
where Lmain_CE represents the main cross-entropy loss, LRMI denotes the RMI loss [46], and
Lauxiliary_CE denotes the auxiliary cross-entropy loss.

Ltotal = Lmain_CE + LRMI + Lauxiliary_CE (2)

The cross-entropy loss is commonly used in classification tasks such as semantic
segmentation and object detection. The output of the decoder and the output of the
auxiliary path are input to the main cross-entropy loss and the auxiliary cross-entropy
loss, respectively, in Equations (3) and (4), where N is the number of pixels in an image,
C is the number of classes in the training data, y is the ground truth label, and p is the
estimated probability.
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In addition, we adopted the online hard example mining (OHEM) [47] strategy in the
cross-entropy loss to further boost the accuracy, which has been widely adopted by other
methods [3,48,49]. The OHEM [47] only trains the hard example during the training, and
we set the threshold to 0.7 following Reference [3]. The OHEM [47] only applied to the two
cross-entropy losses:

Lmain_CE = − 1
N

N

∑
n=1

C

∑
c=1

yn,clog
(

pmain
n,c

)
(3)

Lauxiliary_CE = − 1
N

N

∑
n=1

C

∑
c=1

yn,clog
(

pauxiliary
n,c

)
(4)

In addition, because the cross-entropy loss is a pixel-wise loss, which neglects the
dependencies in an image, we further used the RMI loss [46] to optimize the network.
The RMI loss [46] utilizes each pixel and its neighbor pixels to denote the original pixel
and maximizes the mutual information between the predicted result and the ground
truth image, which can be considered as the measurement of the structural similarity.
For example, the predicted probability, P, and the ground truth, Y, can be represented
in Equations (5) and (6), where pi is in the range of [0, 1], yi is either 0 or 1, and d is the
total pixels of the one pixel and the neighbor pixels, which equals to 9. Therefore, we can
obtain a multi-dimensional point for each pixel in an image, which can reach high order
consistency. The RMI loss [46] is shown from Equations (7) and (8), where M is a symmetric
positive semidefinite matrix, Cov(Y, P) is the covariance matrix of Y and P, det(·) is the
determinant of the matrix, d is used to normalize, and C denotes the number of classes.

P = [p1, p2, . . . , pd]
T , P ∈ [0, 1] (5)

Y = [y1, y2, . . . , yd]
T , Y ∈ {0, 1} (6)

M = ∑ Y− Cov(Y, P)
(
∑ P−1)TCov(Y, P)T

M ∈ Rd×d (7)

LRMI =
C

∑
c=1

(
− 1

2d
log(det(M))

)
(8)

4. Results

In this section, we describe our training details and the data set that we used for
training and testing. Then, we compare the proposed results with other previous methods
in real-time semantic segmentation.

4.1. Training Details

We conducted all experiments using PyTorch 1.5. We utilized the stochastic gradient
descent (SGD) optimizer with a momentum of 0.9, an initial learning rate of 0.005, and
a weight decay of 0.0005 in training. In addition, we adopted the poly learning rate

strategy [1] in which the initial learning rate was multiplied by
(

1− iter
max_iter

)power
for each

iteration with the power set as 0.9. For the ResNet-18 [28] backbone and the HarDNet-
68ds [37] backbone, we trained these models with the iteration set to 640,000. Both of these
backbone networks were trained and tested on a single NVIDIA GTX1080Ti GPU with the
batch size set as three. Moreover, we used both the fine annotation training data and the
validation data to train the model to enhance the accuracy. For data augmentation, we
applied a random scale between 0.5 and 2.0, random crop, random horizontal flip, random
color jitter, and GridMask [50]. The random crop resolution was 1024 × 1024.

4.2. Benchmark and Evaluation Metrics

The Cityscapes Dataset [23] is an urban street scene data set for the semantic segmen-
tation task that includes 2975 training images, 500 validation images, and 1525 test images
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in high-quality pixel-level annotations. In addition, there are 20,000 additional training
images in coarse annotations. The data set was recorded in the streets from 50 different
cities, which are primarily in Germany and its neighboring countries. It also covers dif-
ferent seasons, such as spring, summer and fall. The Cityscapes Dataset [23] comprises
19 classes: road, sidewalk, building, wall, fence, pole, traffic light, traffic sign, vegetation,
terrain, sky, person, rider, car, truck, bus, train, motorcycle, and bicycle. Therefore, it is
suitable for the task of autonomous driving training.

For the quantitative comparison, we needed to use a standard metric to measure
the accuracy. Therefore, the standard Jaccard index, also known as the mean intersection
over union (mIoU) [51], was used to compare the results, which is commonly used in the
semantic segmentation task. To obtain the mIoU, we needed to upload the predicted test
data on an official online server [23].

4.3. Comparison with State-of-the-Art Methods

A list of the quantitative comparison of the Cityscapes Dataset [23] is shown in
Table 1. Our proposed method achieved a higher mIoU than the other proposed methods,
and we obtained fewer parameters compared to most of the other works. For example,
the results of our mIoU were higher than the method for SwiftNet [8] with many fewer
parameters in the network of HarDNet-68ds [37], which is more precise and lightweight
than SwiftNet [8]. Moreover, we could still achieve in real-time the semantic segmentation
task even at a high resolution of 1024 × 2048. As stated in [30], a frame per second (FPS)
higher than 30, in general, is sufficient for real-time semantic segmentation. The FPS
is tested using TensorRT [52], which is commonly used to accelerate the inference time
in real-time semantic segmentation. On the other hand, although the FPS measured in
GAS [10] is higher than 100, Lin et al. [10] utilized a smaller resolution of the test data to
test the FPS, and it would increase a few FPS during the inference time. Their mIoU was
also much lower than the mIoU of our proposed method. Compared to other methods
with the same input resolution, the proposed method using the ResNet-18 [28] backbone
had the highest FPS as well.

Table 1. Quantitative results in the test data of the Cityscapes Dataset.

Method Resolution GPU mIoU FPS Parameters

SegNet [53] 360 × 640 Titan 56.1 14.6 29.5 M
ESPNet [21] 512 × 1024 Titan X 60.3 112.9 0.4 M

ESPNetv2 [22] 512 × 1024 Titan X 62.1 80.0 0.8 M
ERFNet [29] 512 × 1024 Titan X M 68.0 41.7 2.1 M
ICNet [30] 1024 × 2048 Titan X 69.5 30.3 26.5 M

BiSeNet (Xception39) [6] 768 × 1536 Titan XP 68.4 105.8 5.8 M
BiSeNet (ResNet-18) [6] 768 × 1536 Titan XP 74.7 65.5 49.0 M

DFANet [7] 1024 × 1024 Titan X 71.3 100.0 7.8 M
SwiftNet [8] 1024 × 2048 GTX 1080Ti 75.5 39.9 11.8 M
FANet-34 [9] 1024 × 2048 Titan X 75.5 58.0 -

GAS [10] 769 × 1537 Titan XP 71.8 108.4 -
STDC2-Seg75 [54] 768 × 1536 GTX 1080Ti 76.8 97.0 -
HyperSeg-M [55] 512 × 1024 GTX 1080Ti 75.8 36.9 10.1 M

DESANet-RN 1024 × 2048 GTX 1080Ti 77.7 58.3 15.3 M
DESANet-HN 1024 × 2048 GTX 1080Ti 78.6 39.4 6.2 M

On the other hand, the predicted results were from six different cities of the test data
set. The qualitative results of the ResNet-18 [28] backbone and the HarDNet-68ds [37]
backbone are shown in Figure 5. The proposed method could classify most of the objects
correctly in each pixel, such as road, sidewalk, car, bus, and vegetation. Moreover, the
small objects could also be classified accurately such as traffic lights and traffic signs.
Comparing the qualitative results of the network with the ResNet-18 [28] backbone and
the HarDNet-68ds [37] backbone, most of the objects in the predicted results looked very
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similar. However, we could still obviously distinguish that the qualitative results of the
HarDNet-68ds [37] backbone had a better classification with buses and trucks as shown
in Figure 6.

Figure 5. (a) Input image and the results of the (b) ResNet-18 backbone [28] and the (c) HarDNet-
68ds [37] backbone.

Figure 6. (a) Input image and results of the (b) ResNet-18 backbone [28] and the (c) HarDNet-
68ds [37] backbone.

5. Conclusions

In this article, we proposed a novel real-time semantic segmentation method with
a dual encoder and self-attention module for autonomous driving. The dual encoder
included a spatial path and a context path, which could preserve spatial information and
provide abundant contextual information, respectively. The self-attention module was
used to acquire crucial spatial information and channel information from the input feature
maps in both the spatial path and the context path. Furthermore, we proposed the FASPPM
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to extract the multiscale features and enlarge the receptive field, which largely reduced
the number of parameters and computational complexity than the original ASPP [24]. We
also used a skip connection to provide detailed information from low-level features to the
high-level features and achieved a better trade-off in accuracy, number of parameters, and
FPS compared with other methods derived from the U-Net structure [31]. The proposed
method achieved state-of-the-art results in terms of accuracy in the real-time semantic
segmentation task with many fewer parameters using the Cityscapes Dataset [23]. For ex-
ample, the results of our mIoU were higher than the SwiftNet method [8] with many fewer
parameters in the network of HarDNet-68ds [37], which is more precise and lightweight
than SwiftNet [8]. In addition, we could still achieve the semantic segmentation task in
real time, which means the FPS was higher than 30, in general. Finally, compared with
preceding works, we achieved a 78.6% mIoU with a speed of 39.4 FPS with a 1024 × 2048
resolution on a Cityscapes test submission.
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