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Abstract: Signal features can be obscured in noisy environments, resulting in low accuracy of radar
emitter signal recognition based on traditional methods. To improve the ability of learning features
from noisy signals, a new radar emitter signal recognition method based on one-dimensional (1D)
deep residual shrinkage network (DRSN) is proposed, which offers the following advantages: (i)
Unimportant features are eliminated using the soft thresholding function, and the thresholds are
automatically set based on the attention mechanism; (ii) without any professional knowledge of
signal processing or dimension conversion of data, the 1D DRSN can automatically learn the features
characterizing the signal directly from the 1D data and achieve a high recognition rate for noisy
signals. The effectiveness of the 1D DRSN was experimentally verified under different types of noise.
In addition, comparison with other deep learning methods revealed the superior performance of the
DRSN. Last, the mechanism of eliminating redundant features using the soft thresholding function
was analyzed.

Keywords: radar emitter signal recognition; high noise; one-dimensional residual shrinkage network;
soft thresholding

1. Introduction

One of the most important functions of radar countermeasure systems is that radar
emitter signal recognition, in which classification and recognition of intercepted radar
signals are carried out to determine the radar type, purpose, carrier, threat level, and
recognition credibility of the radar [1]. Therefore, accurate radar emitter signal recognition
is essential for subsequent radar analysis and action preparation.

The existing radar emitter signal recognition methods can be divided into two cat-
egories. The first category includes traditional signal analysis methods, including gray
correlation analysis [2], template matching [3], fuzzy matching [4], and attribute mea-
surement [5]. However, there are various deficiencies in the traditional methods, the
recognition performance is dependent on the richness of prior knowledge, tolerance rate
and robustness are poor, and they do not have automatic learning abilities. The second
category includes deep learning methods, which are usually based on time-frequency
transform. For example, the classification and recognition of signals were achieved us-
ing the Choi–Williams time-frequency distribution with convolutional neural network
(CNN) [6]. In a study by Zhao et al., the Margenau–Hill time-frequency distribution and
smooth pseudo-Wigner–Ville distribution (SPWVD) were used as signal features, and then
a classifier was built for radar emitter signal recognition based on an automatic encoder
(AE), a deep belief network (DBN), and a CNN [7]. Based on the deep Q-learning network
(DQN) [8], the Cohen’s class time-frequency distributions were used for signal recognition.
Wu et al. [9] used one-dimensional (1D) CNN for radar signal recognition. However, the
parameter optimization of traditional deep learning methods is a difficult task, the error
function gradient may gradually become inaccurate in the process of reverse propagation.
When the network layer is too deep, the parameters in the initial layers cannot be optimized
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well. Moreover, the 1D raw signal needs to be converted to a two-dimensional signal,
consuming extra time and calculation resources.

With the development of radar technology, the electromagnetic environment is be-
coming increasingly complex, and received radar signals are inevitably accompanied by
noise [10,11]. What is more tricky is that different types of noise have different impacts
on radar signals. Traditional signal analysis and processing methods are effective only
for a certain type of noise. Besides, the recognition accuracy is low under strong noise
conditions. For deep learning methods, the learned high-level features are likely to be less
discriminative under the interference of noise. Therefore, it is necessary to develop a new
radar emitter signal recognition model that not only has the ability to process different
types of noise, but can also achieve a high recognition rate under strong noise conditions.
To achieve the above requirements, in this study, a radar emitter signal recognition method
based on a 1D deep residual shrinkage network (DRSN) is proposed.

The main contribution of this study are as follows:

(1) Important features could be directly extracted from a time-sequential sequence using
a 1D DRSN without dimension conversion. Compared with traditional deep learning
methods, the recognition accuracy was improved.

(2) The rectified linear unit (ReLU) was replaced by a soft thresholding function to
eliminate unimportant features. Moreover, the attention mechanism was used to
adaptively set the threshold to achieve recognition of noisy radar emitter signals. The
mechanism of elimination of redundant features using the soft thresholding function
was analyzed.

(3) Radar emitter signals containing different types of noise were recognized using the
proposed method, showing excellent results.

The rest of this article is organized as follows. Four noise models are proposed in
Section 2, and the structure of the 1D DRSN is proposed in Section 3. Section 4 presents
tests and data analysis, followed by the elucidation of the denoising mechanism of the soft
thresholding function in Section 5. Finally, the study is concluded in Section 6.

2. Signal Noise

We do not know what types of noise it is when intercepting a radar emitter signal.
Thus, the ability to process different types of noise is essential for a radar emitter signal
recognition model. The following four representative types of noise were used as the back-
ground noise of the radar emitter signal, and then the 1D DRSN was used for recognition.

2.1. Gaussian Noise

With strong randomness, gaussian noise widely exists in the environment [12]. Under
a low signal-to-noise ratio (SNR), Gaussian noise can severely impact the time-domain
waveform of the signal and cover up useful information, resulting in difficulty in signal
recognition. As a type of Gaussian noise, white Gaussian noise is often added to a signal to
form additive white Gaussian noise in communication channels for testing and modeling,
where the probability density function is as follows:

f (x) =
1√
2πσ

e−(x−µ)2/2σ2
(1)

where x is a random variable, and µ, σ are the mean and standard deviation of the Gaussian
distribution, respectively.

2.2. Laplacian Noise

Laplacian noise is a non-Gaussian noise. There are often pulse noise and co-channel
interference in the actual communication environment [13], causing the Gaussian noise
model to no longer be applicable, so it is essential to recognize radar emitter signals with
non-Gaussian noise. In this study, Laplacian noise was used as a non-Gaussian noise for
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testing the performance of the proposed model. The Laplacian probability density function
is as follows:

f (x) =
1

2λ
e
−|x−µ|

λ (2)

where x is a random variable and λ, µ are constants.

2.3. Poisson Noise

Poisson noise is a signal-dependent noise. Different from the distribution of white
Gaussian noise, which is independent of the signal, the distribution of Poisson noise is
closely related to the signal; i.e., there is a strong correlation between the noise intensity and
signal intensity [14]. The traditional methods for processing additive Gaussian noise are not
applicable to Poisson noise. Considering the advantage of deep learning-based methods
with self-learning discriminant features, in this study, radar emitter signals with Poisson
noise were recognized using the 1D DRSN method. The probability density function of
Poisson noise is as follows:

f (k; λ) =
λke−λ

k!
(k = 0, 1, · · ·) (3)

where λ is the average frequency of a random event per unit time.

2.4. Cauchy Noise

Cauchy noise is a kind of Lévy noise, which has a heavy-tailed probability distribu-
tion [15]. In the field of radar emitter signal recognition, Cauchy distributions can be used
to simulate burr noise environment. The probability density function of Cauchy noise
is as follows:

f (x; µ; σ) =
1
π

[
σ

(x− µ)2 + σ2

]
(4)

where µ is the location parameter, and σ is the scale parameter.

3. One-Dimensional Deep Residual Shrinkage Network (1D DRSN)
3.1. 1D Convolution

In the proposed 1D DRSN method, 1D convolution will be used. The convolutional
layer is the key difference between a CNN and a fully connected neural network (FCNN),
the number of training parameters is greatly reduced by the convolutional layer via weight
sharing. Since the radar emitter signal was 1D, 1D convolution was used in this study.
Compared with traditional two-dimensional convolution, 1D convolution requires fewer
parameters, and there is no need for signal dimension conversion, which reduces the time
cost and calculation resources necessary. The process of 1D convolution is as follows:

yj = ∑
i=C

kij ∗ xi + bj (5)

where yj is the jth channel of the output feature map, k is the convolutional kernel, b is the
bias, and C is the number of input channels. The 1D convolution is shown in Figure 1, and
the height in Figure 1 is 1.

3.2. 1D DRSN

The difference between the DRSN [16] and general deep learning methods, like
residual network (ResNet), is that the traditional ReLU is replaced by the soft thresholding
function as a nonlinear activation function. A soft threshold is often used as a key step
in signal denoising [17]. In traditional denoising algorithms, the signal is converted
into a domain with unimportant features near zero, then these features near zero are set
to 0 by the soft thresholding function. For instance, the key to the wavelet denoising
algorithm is to design a filter that amplifies useful information in the signal and reduces
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the noise information to near zero, then the soft threshold function is used to filter the noise.
However, extensive knowledge is required to design this kind of filter in reality; thus, it is
often a difficult task. By integrating the soft thresholding function and the deep learning
method, the DRSN can effectively improve the recognition accuracy while overcoming
the difficulties associated with manually designed filters. The soft threshold function
is as follows:

y =


x− τ x > τ

0 −τ ≤ x ≤ τ

x + τ x < −τ

(6)
Sensors 2021, 21, x FOR PEER REVIEW 4 of 19 
 

 

Channels Height

Width

(a)

Channels

Width

Height

(b)

Convolutional 
kernel Input feature map

A channel of the 
output feature map

*

(c)  
Figure 1. One-dimensional convolution, (a) input features, (b) convolutional kernel, and (c) the 1D 
convolution process. 

3.2. 1D DRSN 
The difference between the DRSN [16] and general deep learning methods, like re-

sidual network (ResNet), is that the traditional ReLU is replaced by the soft thresholding 
function as a nonlinear activation function. A soft threshold is often used as a key step in 
signal denoising [17]. In traditional denoising algorithms, the signal is converted into a 
domain with unimportant features near zero, then these features near zero are set to 0 by 
the soft thresholding function. For instance, the key to the wavelet denoising algorithm is 
to design a filter that amplifies useful information in the signal and reduces the noise in-
formation to near zero, then the soft threshold function is used to filter the noise. How-
ever, extensive knowledge is required to design this kind of filter in reality; thus, it is often 
a difficult task. By integrating the soft thresholding function and the deep learning 
method, the DRSN can effectively improve the recognition accuracy while overcoming 
the difficulties associated with manually designed filters. The soft threshold function is as 
follows: 𝑦 = 𝑥 − 𝜏 𝑥 > 𝜏0 −𝜏 ≤ 𝑥 ≤ 𝜏𝑥 + 𝜏 𝑥 < −𝜏  (6)

where 𝜏 is a threshold with a positive value. Different from ReLU, which sets the negative 
values to 0, the soft thresholding function sets the values near zero to 0, and the negative 
useful features are retained. The partial derivative of the soft thresholding function is as 
follows: 𝛥𝑦𝛥𝑥 = 1 𝑥 > 𝜏0 −𝜏 ≤ 𝑥 ≤ 𝜏1 𝑥 > 𝜏  (7)

The partial derivative of the soft thresholding function is either 1 or 0; thus, vanishing 
gradient and exploding gradient can be avoided. The diagrams of the soft thresholding 
function and ReLU function are shown in Figure 2. 

Figure 1. One-dimensional convolution, (a) input features, (b) convolutional kernel, and (c) the 1D convolution process.

where τ is a threshold with a positive value. Different from ReLU, which sets the
negative values to 0, the soft thresholding function sets the values near zero to 0, and
the negative useful features are retained. The partial derivative of the soft thresholding
function is as follows:

∆y
∆x

=


1 x > τ

0 −τ ≤ x ≤ τ

1 x > τ

(7)

The partial derivative of the soft thresholding function is either 1 or 0; thus, vanishing
gradient and exploding gradient can be avoided. The diagrams of the soft thresholding
function and ReLU function are shown in Figure 2.

The residual shrinkage units of the 1D DRSN are shown in Figure 3a, which include
two batch normalization units, two ReLU activation functions, two 1D convolutional
layers, one identity shortcut and one attention mechanism unit. The purpose of batch
normalization is to reduce the training difficulty and to increase the training speed, and
the equations are as follows:

µ =
1

Nbatch

Nbatch

∑
n=1

xn (8)

σ2 =
1

Nbatch

Nbatch

∑
n=1

(xn − µ)2 (9)

x̂n =
(xn − µ)√

σ2 + ε
(10)
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yn = γx̂n + β (11)

where xn and yn are the input features and output features of a certain batch, γ and β are
two parameters that can be trained, and ε is a near-zero positive number used to prevent
zero division. In batch normalization, the samples are converted to a distribution with a
mean of 0 and standard deviation of 1 to reduce the training difficulty.
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As one of the common activation functions in existing deep learning networks [18],
the ReLU function can effectively prevent vanishing gradient and increase the training
speed. The equation is as follows:

y = max(x, 0) (12)

The soft threshold is determined by the attention mechanism. As shown in Figure 3a,
assuming that the output after two 1D convolutional layers is x, and the output after taking
the absolute value and global average pooling is:

yc = GAP(abs(x)) = average
i,j

(∣∣xi,j,c
∣∣) (13)

where y is a vector with a length of C, i, j and c are the index numbers of the width, height
and channel of the feature map. The output z is obtained through two fully connected
layers and is then converted to a number between 0 and 1 using the sigmoid function.

a = sigmoid(z) =
1

1 + e−z (14)

where a is also a vector with a length of C, and the threshold is obtained after multiplication
of Equations (12) and (13).

τc = ac · yc (15)

where τc is the threshold of channel c. The aim of Equation (14) is to emphasize that
different channels may have different thresholds in the feature map with C channels. In
this way, useful features can be flexibly retained, and useless features can be deleted.

Figure 3b is the overall structure of the 1D DRSN, which is similar to that of ResNet [19],
the only difference is that the residual module is replaced by the 1D residual shrinkage
building unit (RSBU) module, which integrates soft thresholding function and attention
mechanism. Note that the DRSN consists of a series of RSBU modules and a global average
pooling layer. The global average pooling layer is obtained by the mean of each channel,
whose function is to reduce the number of training weights and the risk of overfitting.

GAPc =
1
N

N

∑
n=1

xn
c (16)

where xc is the output features of channel c, and N is the number of features. The cross-
entropy function is used as the error propagation function:

L(θ) = −
k

∑
i=1

yi ln(ŷi) = −
k

∑
i=1

yi ln(g
(

θ, x)i
)

(17)

where y is the data label, ŷ is the predicted category, g(θ, x) is the output of the model, x
and θ are the input and parameters of the network model, and k is the number of categories
to be classified. After the cross-entropy error is calculated, the gradient descent algorithm
is used for parameter optimization. To achieve fast convergence, the adaptive moment
estimation (ADAM) method is used in this study, and the parameters proposed in previous
studies are used [20,21].

3.3. Network Construction

The structure of the proposed network is shown in Figure 4. The first and second
numbers in the bracket in residual shrinkage building units (RSBUs) are the number and
width of the convolutional kernel, respectively. “/2” represents a step length of 2. In the
RSBUs, three RSBUs were followed when the previous DRSN’s step length was 2, and
there were a total of 12 RSBUs. The number of iterations was 160. To accelerate the training
speed while ensuring the training accuracy, the original learning rate was set to 0.1. The
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learning rate decreased by 10-fold every 40 cycles until the number of iterations was 120,
lastly, the learning rate of the final 40 cycles decreased by 2-fold. The number of batch
samples was set to 128. To prevent overfitting of the model, we used L2 regularization, and
the penalty coefficient was set to 0.0001 according to the recommendations of [22].
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4. Results

The test platforms and parameters used in this study are shown in Table 1.

Table 1. Experiment platform parameters.

Project Parameter

CPU i7-10700

GPU RTX 2060

RAM 16G

Simulation Software MATLAB2020a, Python3.7, Tensorflow2.2

4.1. Datasets

Seven types of representative radar emitter signals were used, including 13-bit barker
codes, frequency coding signals, frequency diversity signals, linear frequency-modulated
signals (LFM), nonlinear frequency-modulated signals (NLFM), single-carrier frequency
signals (CW) and barker-lfm mixed modulation signals. The SNR of the signals ranged
from −8 dB to 4 dB with an interval of 2 dB, i.e., a total of seven SNRs. The sampling
frequency was 512 MHz. All radar emitter signal data contained only one pulse, and
the data length was 512, if the signal is less than 512 points, it shall be supplemented
completely by zero-filling method. Note that the recognition of short monopulse data was
more challenging. Four types of noise were generated, including Gaussian noise, Laplacian
noise, Poisson noise, and Cauchy noise. Under each noise conditions:

Training set and validation set: 300 samples were generated under each SNR and
signal type, a total of 7×7×300 = 14700 samples, which are randomly divided into 80% as
the training set and 20% as the validation set.

Testing set: 100 samples were generated under each SNR and signal type, a total of
7×7×100 = 4900 samples.

The parameters of the signals are shown in Table 2.
It is worth noting that the intervals of the carrier frequency and modulation parameters

with different types of signals are overlapped deliberately to increase the recognition difficulty.

4.2. Recognition Results of Radar Signals with the Four Types of Noise

The 1D DRSN model was used for recognition of radar emitter signals with four
different types of noise, i.e., Gaussian noise, Laplacian noise, Poisson noise and Cauchy
noise. The average recognition rate of the training set and validation set varied with the
number of iterations, as shown in Figure 5.
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Table 2. Specific parameters of seven types of radar emitter signals.

Signal Type Carrier Frequency Parameter

Barker 10~30 MHz 13-bit Barker code width of
each symbol is 1/13 us

Barker-lfm 10~30 MHz

Frequency bandwidth: 100
MHz to 200 MHz

13-bit Barker code width of
each symbol is 1/13 us

Frequency-coding 10~20 MHz
100~200 MHz

13-bit random code width of
each symbol is 1/13 us

Frequency diversity
10~20 MHz
50~60 MHz
90~100 MHz

None

LFM 20~30 MHz

Frequency bandwidth: 50
MHz to 200 MHz

1/2 up frequency modulation
1/2 down frequency

modulation

NLFM 20~30 MHz

Frequency bandwidth: 50
MHz to 200 MHz

Modulation: Quadratic
1/2 up frequency modulation

1/2 down frequency
modulation

CW 10~30 MHz None
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As Figure 5 shows, the accuracy of the training set and validation set of the four types
of noise reaches a high level as the number of iterations increases, and then they were both
stable after 120 iterations, indicating that the model has converged, and finally the training
accuracy nearly stabilized at 96.51%, 99.00%, 99.90%, and 99.99%, respectively.

The trained model was then evaluated using the testing set. The variation in the
recognition rate with SNR under the four noise conditions is shown in Figure 6.
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Figure 6a shows that under Gaussian noise, when the SNR is above −2 dB, the
recognition rate reaches over 86%. Note that, except for linear frequency modulated (LFM)
and nonlinear frequency modulated (NLFM) signals, the recognition rate of all signals
is above 85% when the SNR is over −6 dB. The reason for the low recognition rate of
LFM and NLFM signals with low SNR is that both LFM and NLFM signals are frequency
modulated signals, the raw time-domain waveforms of which are very similar, and the
difference in the frequency domain cannot reflected. Moreover, under the condition of
strong Gaussian noise, the features of the two signals are covered, which increases the
difficulty of recognition. However, the recognition accuracy of LFM and NLFM achieve
99% and 94%, respectively, when SNR is 4 dB shows that 1D DRSN is still better than
the general deep learning methods. If only the frequency modulation signal needs to be
recognized, the recognition rate would be improved. Under Laplacian noise, when the
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SNR is greater than −8 dB, the recognition rate of the 7 types of radar emitter signals is
greater than 69%. Figure 6a,b show that the overall recognition rate of radar emitter signals
with Laplacian noise is higher than that of the signals with Gaussian noise, indicating that
the 1D DRSN model has stronger adaptability for signal recognition under non-Gaussian
noise conditions. Under the condition of Poisson noise and Cauchy noise, the average
recognition rate is greater than 98%, 97%, respectively, as shown in Figure 6c,d. This is
because Poisson noise and Cauchy noise appear as a spike in the time-domain signal.
Compared with the signal amplitude, the Poisson noise and Cauchy noise amplitude are
much larger. Unlike the situation of the first two types of noise, where the time-domain
waveform is submerged by the noise, the time-domain waveform is basically retained
under the background of Poisson noise and Cauchy noise. Thus, the 1D DRSN model can
accurately filter out the Poisson noise and Cauchy noise, and the learned features have
strong discriminative ability, leading to a high average recognition rate. The recognition
rate under each condition is described in detail in the Appendix A.

4.3. Analysis of Learned Features

We analyzed the features learned by the 1D DRSN model. Specifically, the test samples
were input into the trained 1D DRSN model to extract the features after the global average
pooling layer, and the t-distributed stochastic neighbor embedding (t-SNE) was used to
reduce the dimensionality to two-dimensional space for visual analysis [23]. Although there
was information loss during the dimensionality reduction process, t-SNE, as a nonlinear
unsupervised dimensionality reduction method, can intuitively determine whether the
learned features are distinguishable. Figure 7 shows the two-dimensional t-distribution
diagrams of the radar emitter signals at 4 dB under four types of noise.
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As Figure 7a,b show that, except for some of the LFM and NLFM signals being aliased,
the most samples of the same type of radar emitter signal are concentrated in the same
area and away from other types of samples, indicating that the features learned by the 1D
DRSN have high discrimination ability. Some LFM and NLFM samples are aliased, the
reason why is that the only difference in terms of amplitude is that the changing rate in
the time domain. Against the noisy background, the Gaussian noise or Laplacian noise
covers this unique distinguishing feature, thereby causing aliasing of LFM and NLFM
samples. This also explains why the recognition rate of LFM and NLFM signals is low
when the SNR is low. If the LFM and NLFM signals are regarded as frequency modulation
signals, the recognition rate would be improved. In addition, Figure 7c,d show that the
distance between different types of samples is large and that the same types of samples are
concentrated in the same areas, indicating the high discrimination of the learned features.
As Poisson noise and Cauchy noise appear as a sudden spike in the time domain, it does
not affect the signal waveform, the DRSN filters out the noise well and is able to retain
useful features, resulting in high signal recognition rate.

4.4. Comparison with Other Models

To further verify the effectiveness of the 1D DRSN, we compared the proposed method
with some of the state-of-the-art deep learning networks, i.e., 1D ResNet and 1D ConvNet.
The same network structure was used, as shown in Table 3.

Table 3. Structural parameters of the three models.

Number of
Blocks Output Size DRSN ResNet ConvNet

1 1 × 512 × 1 Input Input Input
1 4 × 256 × 1 Conv (4, 3, /2) Conv (4, 3, /2) Conv (4, 3, /2)
1 4 × 128 × 1 RSBU (4, 3, /2) RBU (4, 3, /2) CBU (4, 3, /2)
3 4 × 128 × 1 RSBU (4, 3) RBU (4, 3) CBU (4, 3)
1 8 × 64 × 1 RSBU (8, 3, /2) RBU (8, 3, /2) CBU (8, 3, /2)
3 8 × 64 × 1 RSBU (8, 3) RBU (8, 3) CBU (8, 3)
1 16 × 32 × 1 RSBU (16, 3, /2) RBU (16, 3, /2) CBU (16, 3, /2)
3 16 × 32 × 1 RSBU (16, 3) RBU (16, 3) CBU (16, 3)
1 16 BN, ReLU, GAP BN, ReLU, GAP BN, ReLU, GAP
1 7 FC FC FC

In Table 3, RBU stands for ResNet residual module unit. Unlike RSBU, RBU uses
ReLU as the activation function without the attention mechanism, so the only difference
between DRSN and ResNet is the activation function, which one uses the soft thresholding
function and the other uses the ReLU function. CBU represents convolution module unit,
which is different from RBU and RSBU in that it has no identity connection.

The average recognition rates of the four models under Gaussian noise, Laplacian
noise, Poisson noise and Cauchy noise are shown in Figure 8. Under all noise conditions,
the average recognition rate of the 1D DRSN is higher than those of 1D ResNet and 1D
ConvNet, indicating that the 1D DRSN model has a better performance, which is because
1D DRSN uses a soft thresholding activation function to retain useful features of the signal
while eliminate the useless features of noise.

Tables 4–7 show the average recognition accuracies of DRSN, ResNet and ConvNet
under four kinds of noise conditions on the test set, which indicated that the DRSN model
has a better performance for radar emitter signal recognition under noisy condition.

Table 8 shows the number of parameters and training time per epoch for DRSN, ResNet
and ConvNet models, respectively. It can be seen that the DRSN improves recognition
accuracy without significantly increasing the consuming of time and computing resources.
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Table 4. Average accuracies of the DRSN, ResNet and ConvNet with Gaussian noise (%).

Method Test Accuracy

DRSN 92.25
ResNet 91.26

ConvNet 86.34

Table 5. Average accuracies of the DRSN, ResNet and ConvNet with Laplacian noise (%).

Method Test Accuracy

DRSN 96.18
ResNet 94.49

ConvNet 89.86

Table 6. Average accuracies of the DRSN, ResNet and ConvNet with Poisson noise (%).

Method Test Accuracy

DRSN 99.94
ResNet 99.61

ConvNet 93.63
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Table 7. Average accuracies of the DRSN, ResNet and ConvNet with Cauchy noise (%).

Method Test Accuracy

DRSN 99.88
ResNet 99.71

ConvNet 81.67

Table 8. The number of parameters and training time per epoch for DRSN, ResNet and ConvNet.

Model DRSN ResNet ConvNet

Quantity of
parameters 12,215 8855 8855

Time per epoch 2.56 s 1.57 s 1.55 s

4.5. Comparison with Different Sampling Frequencies

Under the condition of Nyquist sampling theorem, the data sets with sampling fre-
quencies of 460 MHz, 512 MHz and 1024 MHz were used to compare the effects of different
sampling frequencies on the performance of 1D DRSN. The results are shown in Figure 9.
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Figure 9. Average recognition rate with different sampling frequencies under (a) Gaussian noise, (b)
Laplacian noise, (c) Poisson noise, and (d) Cauchy noise.

As can be seen from Figure 9, the greater sampling frequency, the higher recognition
rate, in particular, the lower SNR, the more obvious improvement of accuracy. This is
because the larger the sampling frequency, the more information obtained, and the more
effective discriminant features the 1D DRSN can learn, but it also consumes more time and
computing resources.

The average accuracy and training time at different sampling frequencies are shown
in Table 9.
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Table 9. The average accuracy (%) and training time (s) of DRSN at different sampling frequencies.

Frequency 460 MHz 512 MHz 1024 MHz

Average accuracy 96.45 97.11 99.05
Time 405.63 409.50 417.22

5. Comparison between the Soft Thresholding Function and ReLU Function

In order to elaborate the mechanism of eliminating redundant features of soft thresh-
olding function, the soft thresholding function and ReLU function are compared and
analyzed in this section. Both of them can set the features of part of the interval to 0 and
delete useless features. As mentioned earlier, the gradient of the soft thresholding function
and ReLU is either 1 or 0, both of which are conducive to error back propagation. Com-
pared with ReLU, the advantage of the soft thresholding function is that the threshold can
be set flexibly, thereby more accurately deleting useless feature intervals while retaining
useful features. The soft thresholding function is expressed as follows:

y = sign(x) ·max(abs(x)− τ, 0) (18)

Considering the bias when training 1D DRSN model, when the bias is b = 0:
The ReLU function sets all negative features to 0, as shown in Figure 10, the red shaded

part indicates that the feature of the part is set to 0.
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Figure 10. ReLU function when b = 0.

Similarly, the soft thresholding function is shown as Figure 11 when the bias is b = 0,
the features in the interval [−τ, τ] are deleted, and the rest are retained and move to
the 0 by τ.
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When the bias b 6= 0, here, we analyze only the situation when b > 0 in consideration
of the length of the paper. When b > 0:

The ReLU function becomes y = max(x + b, 0), and the feature values are shifted up
by b; then the negative features are set to 0, as shown Figure 12:
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The soft thresholding function becomes y = sign(x + b) ·max(abs(x + b)− τ, 0). The
feature values are first shifted up by b, and then feature values in the threshold interval are
set to 0, as shown Figure 13:
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Next, we analyze the reason why soft thresholding function is better than ReLU
function as the activation function. The explanation is that the former can achieve the same
function as ReLU when given proper values of b and τ, but the converse is not. In fact,
in 1D DRSN, the bias b and threshold τ are both trainable parameters. Due to the data of
radar signals are finite, the feature values are distributed in a certain interval. When

b = τ and b > −1
2

min(x) (19)

the soft thresholding function is equivalent to the ReLU function with a bias of 0, as shown Figure 14:
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Figure 14. The soft threshold function when b = τ.

Similarly, the soft thresholding function is equivalent to the ReLU function with a
non-zero bias when the following equation is satisfied:

− τ − b < min(x) (20)

Instead, no matter how ReLU + bias combined, it cannot achieve the same functions as
the soft thresholding function. Therefore, the soft thresholding function has a more flexible
deletion interval than ReLU, which makes it more flexible and reliable when removing
useless features caused by noise, moreover, the 1D DRSN uses an attention mechanism to
adaptively set an appropriate threshold for each sample. Thus, the 1D DRSN is suitable
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for situations where the noise level of each sample is different. As a result, the 1D DRSN
achieves a better result in the recognition of noisy radar emitter signals.

6. Conclusions

In this study, we proposed a radar emitter signal recognition method based on 1D
DRSN and experimentally showed the following advantages of this method: (i) by using
the soft thresholding function with attention mechanism, a high recognition rate can be
achieved for different types of strong noise; and (ii) no professional knowledge of signal
processing or dimension conversion of data is needed, and the 1D DRSN can automatically
learn the features of the signal directly from the 1D data.

The 1D DRSN outperformed traditional deep learning methods, improving the av-
erage recognition rate by 6.18% and 1.00% compared with the 1D ConvNet and ResNet,
respectively. It shows that 1D DRSN can effectively improve the recognition rate of noisy
radar emitter signals.

Lastly, the mechanism of the soft thresholding function was analyzed, and the reason
why the soft thresholding function outperforms ReLU was discussed. The result suggested
that the soft thresholding function is suitable for the recognition of noisy highly noised
radar emitter signals.
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Appendix A

The recognition results in detail for Figure 6a–d are shown in Tables A1–A4, respectively.

Table A1. Recognition results of one-dimensional DRSN under Gaussian noise.
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Table A2. Recognition results of one-dimensional DRSN under Laplacian noise.
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