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Abstract: The agriculture sector is one of the backbones of many countries’ economies. Its processes
have been changing to enable technology adoption to increase productivity, quality, and sustainable
development. In this research, we present a scientific mapping of the adoption of precision techniques
and breakthrough technologies in agriculture, so-called Digital Agriculture. To do this, we used
4694 documents from the Web of Science database to perform a Bibliometric Performance and
Network Analysis of the literature using SciMAT software with the support of the PICOC protocol.
Our findings presented 22 strategic themes related to Digital Agriculture, such as Internet of Things
(IoT), Unmanned Aerial Vehicles (UAV) and Climate-smart Agriculture (CSA), among others. The
thematic network structure of the nine most important clusters (motor themes) was presented and
an in-depth discussion was performed. The thematic evolution map provides a broad perspective
of how the field has evolved over time from 1994 to 2020. In addition, our results discuss the main
challenges and opportunities for research and practice in the field of study. Our findings provide a
comprehensive overview of the main themes related to Digital Agriculture. These results show the
main subjects analyzed on this topic and provide a basis for insights for future research.

Keywords: precision agriculture; agriculture 4.0; digital agriculture; smart farming; industry 4.0;
sustainability; innovation; bibliometrics; science mapping

1. Introduction

The field and the concept itself of agriculture have dramatically changed and have
been profoundly revolutionized over time, with the introduction of new approaches and
concepts, such as those of Precision Agriculture (PA) and Agriculture 4.0 (A4.0). These have
given rise to so-called Digital Agriculture (DA). Around 10,000 years ago, humans began to
dedicate efforts to domesticating plants and animals, spreading seeds, planting seedlings,
and using animal force to plow the land [1]. This revolution that changed human life and
transformed hunter-gatherers into farmers is called the Neolithic Revolution or the First
Agricultural Revolution [2]. Although this revolution was a great leap for humankind—as
it allowed the cultivation of plants and guaranteed food for the population—the new
activities demanded more hours of work [2]. This dedication to agriculture generated
a surplus of food that multiplied the number of people and created elites who owned
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and controlled land and food [2]. Between the First Agricultural Revolution and the
prosperous and abundant society that we have today, thousands of years have passed, and
several transformations have occurred in the ways of production, and several difficulties
related to economic niches, malnutrition and wars over fields and cultures have arisen [2].
These significant disadvantages and shortcomings have led to new transformations and
revolutions in the field of agriculture [3].

In the 19th century, Agriculture 2.0, also known as the Second Agricultural Revolution,
changed farming by introducing ad hoc machinery, selective breeding, animal fertilizer,
crop rotation, reapers and tractors that contributed to shaping the first steps of modern
agriculture [1]. Food started to be produced faster in this frame, but farmers were hindered
by rust, pests, and soil depletion. New techniques and technologies have increased food
surplus and reduced the need for labor in agriculture, forcing the migration of workers
and the urbanization and the growth of cities [4,5]. This workforce allocation in towns was
an integral part of the industrial revolution, which stimulated the rise of manufacturing
industries [4].

To deal with the challenges of the Second Agricultural Revolution, Agriculture 3.0 or
the Third Agricultural Revolution emerged in the 20th and early 21st centuries. Between
1966 and 1985, the concept of the Green Revolution was introduced, especially in terms
of the use of advanced, cutting-edge technologies, such as biotechnology and genetic
engineering to generate genetically varieties, hybrid plants and animals [6,7], and this
provided a real breakthrough in agriculture. The third revolution was characterized by
the further introduction of new technologies, such as GNSS (Global Navigation Satellite
System) to monitor animals and crops, computers and devices for data management and
analysis of agricultural production-related information, robots, chemicals, fertilizers, and
irrigation systems to increase productivity and production quality [1]. These transforma-
tions greatly impacted the quality of agricultural production and the societal, economic,
and environmental pillars of sustainability [8].

The concept of PA emerged in 1980 and represented the adoption of precision tech-
niques and technologies used singly or in combination [9] to control field variability [10,11].
Despite the concept of PA appearing during the Third Agricultural Revolution, its tech-
niques and technologies were mainly exploited in the context of the Fourth Industrial
Revolution, driven by the Industry 4.0 concept [11]. A4.0 represents the use of technologies
such as the Internet of Things (IoT), Artificial Intelligence, big data, cloud computing,
and other smart systems and devices for managing crops and farms [11,12]. In this sense,
both terms are related to DA, which can be perceived as a major driver for changes and
evolution in sustainability, food security, efficiency, and productivity.

Despite the fact that these revolutions have, at least partially, solved food production
and security problems, the increase in population and the scarcity of resources are worri-
some challenges for modern agriculture. Nowadays, almost one billion people go to sleep
hungry every day [13]. The human population is expected to reach 9 billion by 2050 [11],
increasing food demand by up to 50% [14]. Most of these people are expected to live in
South Asia and sub-Saharan Africa, where more than 20% of the current population is
food insecure [15]. In addition, agriculture is responsible for consuming 70% of the world’s
drinking water [11]. Human consumption of resources has tripled in the last 50 years, and
the exploitation of resources is 30% greater than nature’s ability to regenerate [16]. From
this perspective, the challenges involved in producing more food with less environmental
impact are evident [17]. Given this backdrop, emerging technologies can enable sustainable
agricultural production, and the main challenges, in terms of either structural or perceived
obstacles and barriers, as well as the major opportunities of their technological adoption,
need to be explored.

Several studies have revised the changes and revolutions that have occurred in the
field of agriculture to understand the effects of technology adoption and its potential to deal
with challenges related to food production for the current and future generations. Kim et al.
(2019) and Raparelli and Bajocco (2019) [18,19] performed bibliometric analyses on the
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use of Unmanned Aerial Vehicles (UAV) in agriculture, and Terence and Purushothaman
(2020) and Navarro et al. (2020) [20,21] systematically reviewed the use of IoT in smart
farms. In addition, previously published studies explored the use of Machine Learning
(ML) techniques [22–24], geospatial technology [25], and big data for smart farming [26,27].
Extensive reviews show PA technologies’ state of the art [28] and the main factors that
influence technological adoption [29]. Although some reviews and overviews have already
been carried out, to the best of our knowledge, no study has investigated the complete
evolution of the field of study over time or discussed the digitalization process of agricul-
ture. The present paper addresses precisely this literature gap by highlighting the main
challenges and opportunities related to Digital Agriculture.

Due to the transformational potential of emerging technologies for agriculture overviewed
in the above-mentioned reviews, the present paper is devoted to offering a scientific map-
ping approach to identify strategic themes, the thematic evolution structure and the main
challenges and opportunities of Digital Agriculture. For this, the PICOC protocol (Popula-
tion, Intervention, Comparison, Outcome, and Context) was used to guide and ensure the
quality of this study. The SciMAT (Science Mapping Analysis Software Tool), developed by
Cobo et al. (2012) [30], was used for data treatment and generation of the strategic diagram
and the evolutionary map of the field of study.

The paper is organized as follows. Section 2 presents the research background.
Section 3 contains materials and methods. Results and discussions are presented in
Section 4. The main challenges and opportunities are presented in Section 5, and Section 6
presents the conclusions, limitations, and suggestions for further research.

2. Research Background

Different terms can be used (and have been used) to refer to the fields of PA and
A4.0 [31]. Some authors closely associate them, whereas, in the current work, we operate
a distinction between PA and A4.0. While PA is often related to issues of field variability
and specific analyses and technologies, such as application of agricultural inputs in areas
with the most significant productive potential (e.g., the use of georeferenced data for
the application of chemicals according to the needs of each area), A4.0 goes beyond the
analysis of field variability and aims to manage farms based on detailed knowledge of the
specific context and situation, to create a value chain that fully integrates, incorporates
and involves stakeholders, technologies and agricultural processes [11,31,32]. Due to the
variety of concepts, theoretical frameworks/approaches and interpretations related to the
technological adoption in agriculture, in this research, the term Digital Agriculture is used
to describe both concepts associated with digital transformation in agriculture without
considering the technological level.

2.1. Precision Agriculture

The PA concept represents the use of techniques and emerging technologies for crop
management, pest control and field improvement [11,33]. With PA, it is possible to increase
crop quality and crop productivity. Since 1980, with the introduction of sophisticated,
cutting-edge analyses, there has been a considerable increase in the use of technology in
agriculture. For instance, the global soybean production could be 32 million tons higher
if the PA were massively adopted [34]. Progressively, new techniques and technologies
were developed, with researchers and practitioners gradually exploring how to provide an
enhanced range of advantages for the primary sector [11].

Therefore, several studies have shown the importance of the adoption of PA for
reducing/minimizing environmental impacts while preserving food production [35–37].
For instance, the efficient analysis of phosphorus and potassium through PA technologies
contributes to agriculture being more sustainable [34]. PA research is also related to
the identification of management zones [38,39], analysis and management of soil and
plant nutrients [40–42], UAV applications for a proper capture and analysis of plantation
data [43,44], farmers’ perception [45] and others.
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Related to PA, there are several terms and concepts, ranging from Precision/Open
Field/Farming (PF) to Precision Horticulture (PH) (or controlled-environmental agriculture
(CEA) and Vertical Farming (VF)), Precision Animal Farming (PAF), including Precision
Aquaculture (Fisheries). These sectors are also very important in food production, being
“concentrated capital” and “economically and technologically manageable”. This reflects
the non-uniform, but multi-faceted and complex nature of the field of PA.

2.2. Agriculture 4.0

The concept of A4.0 emerged after the introduction and development of the concept of
Industry 4.0 in 2011 and seeks to use the same technologies used by factories of the future
to create a new level of agricultural production for ensuring food safety and protection
of the environment [11]. A4.0 represents the use of emerging technologies to develop a
value chain that successfully integrates organizations, farmers, customers, and all relevant
stakeholders in favor of economic, social, and environmental sustainability. Therefore, A4.0
is important for mitigating several global concerns related to productivity, profitability,
cost reduction and efficiency [11], including mitigating against climate change effects and
allocating agricultural resources in a reasonable and ethical way [35]. Given this, there
is an evident growing interest from the scholarly community towards the topic of digital
agriculture [46].

A4.0 seems to be a more comprehensive and broader concept than PA, as it seeks
to integrate all actors in agri-food production through a technological value chain. In
this perspective, A4.0 goes beyond local and specific analyses to include all agricultural
processes. Studies related to A4.0 address the development of decision support systems to
integrate all members of the production chain [1], responsible innovation [47], real-time
integration of IoT for agriculture [48], and the potential of A4.0 to address major societal
issues associated with environmental sustainability (e.g., carbon emissions and exploitation
of natural resources), social (e.g., impact on labor and food security) and economic sustain-
ability (e.g., productivity, costs and agriculture as a subsistence economy) [11,32,49–52],
among others.

3. Materials and Methods

We use the PICOC protocol and SciMAT software to perform a Bibliometric Perfor-
mance and Network Analysis (BPNA) to achieve our goal. PICOC ensured the robustness
and definition of the research criteria. At the same time, SciMAT helped identify the strate-
gic themes, the thematic evolution structure and the main challenges and opportunities in
the field of study.

3.1. PICOC Protocol

The PICOC protocol was used to define the research questions [53], the key terms
and variants [54], and the inclusion and exclusion criteria for the selection of papers
related to the field of study [55]. This method ensures the quality and reproducibility of
the research with the lowest bias from the researchers. In this study, the process of the
PICOC protocol was adapted, slightly modifying the search and analysis steps presented
by Bruzza et al. (2017) and Silva et al. (2020) [55,56]. Table 1 shows the attributes according
to the PICOC protocol.

With the support of the PICOC protocol, we defined three major research questions
(RQ1–3):

RQ1: What are the strategic themes related to Digital Agriculture?
RQ2: How has the thematic evolution of Digital Agriculture occurred over time?
RQ3: What are the main challenges and opportunities of Digital Agriculture?
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Table 1. Steps defined according to the PICOC protocol.

Attributes Description

Population (P) Define keywords, search terms and variants related to Digital Agriculture.

Intervention (I) Define the document’s inclusion and exclusion criteria.

Comparison (C) The approach was a BPNA.

Outcome (O) The outcomes are the strategic diagram and the evolution map of
Digital Agriculture.

Context (C) The future of Digital Agriculture is discussed through the main challenges
and opportunities.

3.2. Network Analysis and Dataset

The search string, database, inclusion and exclusion criteria and bibliometric software
used are present in Table 2. The documents identified through the execution of the PICOC
protocol were inserted into the SciMAT software for BPNA. The search terms used were
mentioned in previous research [11,57,58] to represent Digital Agriculture and cover more
relevant, related studies.

Table 2. Quality assessment criteria.

Quality Assessment Description

Search string
(“agriculture 4.0” OR “digital agriculture” OR “digital farming” OR

“smart agriculture” OR “smart farming” OR “precision agriculture” OR
“precision farming” OR “agri-food 4.0”)

Database ISI/Web of Science (WoS)

Inclusion and
exclusion criteria

Only documents with the search terms present in the title, abstract or
keywords

Related or applicable to digital agriculture
Only documents in English

No time restriction/filter

Bibliometric software Science Mapping Analysis Software Tool (SciMAT)

For bibliometric analysis and identification of strategic themes and the evolutionary
map of the field, we used the SciMAT software developed by Cobo et al. (2012) [30]. We
chose the SciMAT because it assists all stages of scientific mapping, from data preprocessing
to the generation of maps of the field of study [30,52,59,60]. In addition, the SciMAT
presents a robust preprocessing module, which ensures data quality [30]. With the support
of the SciMAT, we plotted a strategic diagram and the intellectual network structure of the
most important themes [61–63]. In addition, it was possible to generate an evolutionary
diagram that presented the most important themes of the field of study distributed over
time. Figure 1 illustrates an example of the strategic diagram (a), thematic network structure
(b), and thematic evolution structure (c), where the size of the clusters represents the
number of associated documents and the importance of the theme for the research field,
and the thickness of the lines represents the strength of the relationship between the
clusters [30,59,60]. The evolutionary map was created based on the equivalence index,
where the solid lines (Figure 1c) indicate that the clusters share the main theme (main
theme ∈ {thematic nexuses}). In contrast, dashed lines represent a connection between the
non-main elements (main theme /∈ {thematic nexuses}), and the absence of lines means that
the theme was discontinued from one period to the following period(s) [64].
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We used the ISI/Web of Science (WoS) for analysis as it is an indexed database with
a controlled quality of research [65]. The data were extracted from the database on 21
September 2020. Altogether, 4701 documents were exported from the Web of Science and
seven duplicate documents were removed. Afterwards, 14,700 keywords related to the doc-
uments were identified and inserted into the SciMAT preprocessing step. Keywords with
the same meaning were then grouped, such as ‘geostatistic’ and ‘geostatistics’, ‘internet of
things’ and ‘IoT’, and meaningless or generic words were removed, totaling 13,935 clusters
of words. After preprocessing, the data were inserted into the software in order to generate
the strategic diagram of the field of study and later subdivided into three subperiods
(1994–2011; 2012–2017; 2018–2020) to generate the evolutionary map. As the software does
not generate this division, we separated the subperiods considering the prior literature.
In this way, it was possible to identify from the first document published in the Web of
Science (published in 1994) that discusses precision techniques and the field’s evolution
until the emergence/introduction of Agriculture 4.0 in 2011 (1994–2011). The second sub-
period (2012–2017) reflects the evolution of agriculture after the emergence/introduction
of the Agriculture 4.0 concept and the use of new technologies in agriculture. Finally, the
third subperiod (2018–2020) presents the most relevant themes emerging as of today and
provides valuable insights into the future of the research field, since a huge amount of
papers were published in this last subperiod (as pictorially shown in Figure 2).
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After defining the subperiods, we generated the diagrams based on the keyword
co-occurrence matrix with the SciMAT to identify the most important themes and their
nodes with other clusters [66–68]. To determine the similarity between themes, data were
then normalized using the Equivalence Index [69] and clustered based on the Simple
Centers Algorithm (SCA) to create a network of relationships [70]. To make the diagrams,
we reduced the data on a frequency reduction of eight times. We defined a maximum and
minimum network of 12 and 3, respectively, to plot only the most important clusters of
the field of study (for more information, see Cobo et al. (2012) [30]). The clusters were
plotted on a two-dimensional diagram with four quadrants (Q1–4) (e.g., Figure 1a) whose
horizontal axis represents the centrality of the themes and their number of connections
with other themes, and the vertical axis represents the density of the connections between
clusters [11,13,59,60]. In other words, clusters with high centrality tend to co-occur with
many other themes, while clusters with high density have very dense co-occurrence links
with specific themes. This analysis highlights the correlational breadth between two or
more themes over time. The four quadrants are defined as follows:

• Motor themes (Q1): the upper right clusters are highly developed themes. The strong
centrality and density represent the high number of associated documents and the
many links between these themes and others. In this sense, motor clusters are the
most developed and important themes in the field of study and are related to many
other subjects/topics.

• Basic and transversal themes (Q2): clusters in the lower right quadrant are themes
that have many relationships with other themes but whose relationships are weak.
Despite these clusters’ great development and links with different themes, the low
density indicates little capacity to sustain over time.

• Emerging or declining themes (Q3): they represent clusters with few and weak links
with other themes, which may appear or disappear in the field of study. These
themes need in-depth qualitative analysis by researchers to identify whether they are
emerging or declining. Over time, these clusters may cease to be discussed or move to
other quadrants.

• Highly developed and isolated themes (Q4): the upper left quadrant comprises of low
centrality and high-density clusters. These clusters have few but strong links with
other themes. The strong centrality of these themes shows their ability to prevail over
time, to develop links with other clusters and, perhaps, to become motor themes.

The motor themes of the strategic diagram were explored to identify the relationships
with other themes. In this way, it was possible to identify technologies, techniques and
other widely discussed subjects/topics and the main challenges and opportunities of
Digital Agriculture.

As a last remark to the methodology adopted in the present study, we would like
to stress two major points. First, as also previously mentioned, to the best of our knowl-
edge, the present investigation is the first to perform a bibliometric analysis related to
the field of Digital Agriculture. As such, this study should be intended as being of an
exploratory nature, providing readers with a preliminary, though broad, comprehensive,
and detailed overview of the existing scholarly literature covering the research area of
Digital Agriculture. Therefore, we decided to focus on PA, not including other PA-related
terms as keywords, and we did not attempt to explore its multi-faceted, complex nature
and its sub-sectors (namely, PH, CEA, VF, PAF or Precision Aquaculture/Fisheries). These
aspects warrant further ad hoc reviews (either in the form of systematic overviews or
mapping/scoping reviews), based also on the findings of the present investigation.

4. Results

To explore in-depth the DA field, we conducted a BPNA, which assesses DA-related
scholarly performance in terms of productivity over time and main journals which pub-
lished DA-related studies, the strategic themes (Figure 3), the thematic network structures
of the motor themes (Figure 4), and the evolutionary map of the field (Figure 5). This
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thorough analysis enables us to understand the transformations in agricultural production
techniques and their impacts on sustainability, organizations, and society as they have been
explored in the existing scholarly literature, in terms of publishing trends.
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4.1. Bibliometric Performance Analysis of Digital Agriculture

In 1994, the term Precision Agriculture started to be widely discussed in studies
that evaluated the rate of application of inputs in crops [71], the spatial and temporal
variability of yields [72–74] and the potential of precision techniques for conserving natural
resources [75]. After the initial introduction and its subsequent use, the field of study
has continued to grow, and new concepts have emerged over time. In 2011, with the
emergence/introduction of Industry 4.0, the term Agriculture 4.0 came to have a broader
emphasis and scope for adopting digital technology in agriculture and representing the
creation of a value chain [11,32].

Figure 2 shows the number of studies published over time and highlights the impor-
tance and expansion of research. In 1994, only five articles related to Digital Agriculture
were published, in 2017, the number reached 374 articles, and 762 studies were published
in 2019. In 2020, the data collection date justified the decrease in publications (21 September
2020). The increase in the number of publications in recent years is warranted by the devel-
opment and maturity the field is reaching and achieving and by the number of researchers
who have made efforts to understand the impact of technology adoption in agriculture.
Different aspects of a field of study can be understood and quantified through bibliometric
analysis [76]. Uncovering critical elements, such as leading journals and the most pro-
ductive authors, can help young researchers to identify important journals and seminal
references in the field of study [77]. In this sense, Table 3 presents the journals and authors
that published the most studies related to Digital Agriculture indexed in Web of Science
from 1994 to 21 September 2020, based on the search string used. The most productive jour-
nal is the Computers and Electronics in Agriculture with 407 documents, followed by Precision
Agriculture (231) and Sensors (187). The authors with the greatest number of studies related
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to the theme are Sudduth, K.A. with 46 documents, Lopez-Granados, F. (36) and Shearer,
S.A. (31). It should be stressed that this list is just for guidance purposes and does not take
into account the type of papers published (original article versus review/overview).
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Table 3. Most productive journals and authors. It should be stressed that this list is just for guid-
ance purposes and does not take into account the type of papers published (original article versus
review/overview).

Most Productive Journals Doc. Most Productive Authors Doc.

Computers and Electronics in Agriculture 407 Sudduth, K.A. 46
Precision Agriculture 231 Lopez-Granados, F. 36

Sensors 187 Shearer, S.A. 31
Remote Sensing 171 Schmidhalter, U. 21

Applied Engineering in Agriculture 101 Ribeiro, A. 21
Transactions of Asabe 87 Bareth, G. 17

Biosystems Engineering 71 Miao, Y.X. 16
Geoderma 70 He, Y. 15
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4.2. Strategic Diagram

The Strategic Diagram (Figure 3) presents 22 clusters distributed in four quadrants
of the two-dimensional diagram, of which nine are motor themes (Q1), two are basic and
transversal themes (Q2), eight are emerging or declining themes (Q3), and three are highly
developed and isolated themes (Q4). The size of each cluster is proportional to the number
of associated documents. The horizontal axis represents the links from one cluster to others
(centrality), and the vertical axis demonstrates the strength of these links (density). The
table in Figure 3 shows the core documents, h-index, number of cites, centrality (C), and
density (D) of each theme.

The ‘UAV’ (Unmanned Aerial Vehicle) cluster contains the largest number of associ-
ated documents. It is the most expressive theme in terms of h-index, number of cites and
centrality, highlighting this cluster as one of the most discussed themes in the literature.
The cluster ‘CSA’ (Climate-smart Agriculture) also has expressive core documents. It
is the first ranked in terms of density, but its low centrality shows that the relationship
between CSA and other themes is still underexplored. Other clusters that stand out are
‘IoT’ (Internet of Things), ‘SPATIAL-VARIABILITY’, ‘GPS’ (Global Positioning System),
‘IMAGE-PROCESSING’, ‘NITROGEN’, ‘HYPERSPECTRAL’ and ‘YIELD-PREDICTION’
(Figure 3). These motor themes (Q1) are explored in depth through the thematic network
structures in the following subsection.

In addition, ‘NDVI’ (Normalized Difference Vegetation Index) and ‘SUSTAINABILITY’
appear to be basic and transversal themes (Figure 3) and represent the concern for the sus-
tainable development of agriculture. Other techniques appear related to crop management,
such as ‘WEED-CONTROL’, ‘CROP-MODEL’, ‘SOIL-TEXTURE’, ‘PHENOTYPING’, ‘SOIL-
COMPACTION’ and ‘WATER-PRODUCTIVITY’, and others are related to technologies,
such as ‘HYPERSPECTRAL-IMAGERY’, ‘SUPPORT-VECTOR-MACHINES’, ‘EM38′, and
‘AGRICULTURAL-ROBOTICS’. Although some clusters represent specific analyses and
techniques related to productivity and quality of agricultural production, the motor themes
highlight the transformation expected for food production in the coming years.

4.3. Motor Themes Related to Digital Agriculture

We explored the thematic network structure (Figure 4) of the motor themes presented
in the strategic diagram (Figure 3). This analysis highlights the relationships of a cluster
with others and provides an in-depth view of the field of research. The size of each cluster is
proportional to the number of associated documents, and the thickness of the lines denotes
the binding force between clusters.

4.3.1. Unmanned Aerial Vehicle (UAV)

The cluster ‘UAV’ presents significant importance in the strategic diagram (Figure 3)
due to its high degree of interactions with the other motor themes. The UAV corresponds
to a pilotless aircraft, i.e., a flying machine operated with no humans (passenger/pilot)
onboard [78]. Some previous literature reviews and meta-analysis explored the use of
UAVs in agriculture, as in research by Lelong et al. (2012) [79], Singh and Frazier (2018) [80],
Shahbazi et al. (2014) [81] and Eskandari et al. (2020) [82]. UAVs are low-cost and easy-
to-operate technologies in agriculture [83] that can be adopted for spraying in fields [84],
such as water precision irrigation. Given the technological advancement emerging in
different countries, UAVs have gained more and more space and importance for smart
farming [83,85]. Various sensors can be coupled to UAVs [85] associated with techniques,
such as photogrammetry, Structure from Motion (SfM), multi-spectral and hyper-spectral
images, and technologies, such as Machine Learning, LiDAR, and sensors, cameras and
other hardware and software that contribute to monitoring the crop. This seems to justify
the strong relationship between UAV and the subtheme ‘REMOTE-SENSING’, followed
by the subthemes ‘MACHINE-LEARNING’ and ‘VEGETATION-INDICES’ among others
(Figure 4a).
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Figure 4a shows the relationship between UAV and Unmanned Aircraft System (UAS),
while UAV focuses on the development and use of robots; UAS includes ground-based
controllers, communication systems, payloads, electro-optical systems, radar, and software
for aircraft vehicles. The sensors in the drones can generate vegetation indices, helping
to monitor crop growth diagnosis and grain yield prediction [86]; disaster detection in
environmental areas [87]; the existence of pests and pathogens in the crop; the analysis
of the health and stress status of the vegetation; and the assessment of soil fertility for
appropriate remote management and precise and reduced application of agrochemicals,
driving sustainable agriculture [85] and increased productivity. New, sophisticated, cutting-
edge techniques and approaches, such as machine learning, improve decision-making in the
field of precision and digital agriculture, assisting and facilitating tasks like the prediction
of nitrogen index of the crop through remote sensing from UAV [83,88]. Thus, farm-related
data and information can be easily collected through drones, such as images [89], and can
generate knowledge that machine learning techniques can process to make agriculture
more precise and digital. For instance, Zhang and Zhao (2019) [90] used images of coastal
soils captured through UAV to identify salinization levels and then proposed a method
to improve the monitoring and management of the soil for avoiding the negative impacts
of salinization on crop growth and production. Hence, this cluster highlights the central
role of UAV, which, together with other emerging technologies, generates precision in
agriculture and enables the interconnection among technologies for better decision-making,
allowing farms to be smart.

4.3.2. Climate-Smart Agriculture (CSA)

CSA (Figure 4b) is a concept related to the adoption of best agricultural production
practices and methods for reorienting agriculture for environmental protection, food secu-
rity and climate change issues [15,91]. The population increase, land and environmental
degradation, and the negative impacts of the food system on the climate require new
agricultural practices. Within this framework, CSA is an extremely necessary approach to
find win-win solutions for the sustainable development of agriculture [92]. Climate change
and the degradation of the planet’s biodiversity cause risks to the food supply, and the
vulnerability of people who have agriculture as their primary source of subsistence [15].
To deal with this, the resilient agriculture model proposed by CSA seeks to create adaptive
coherence between climate and agricultural practices [92]. To assist in the development
of CSA, farmers embrace technological innovations that could make agriculture more
sustainable. However, great governmental and academic incentives need to be dedicated
to assisting the agricultural sector in sustainable development [91,92].

This high-density motor theme is related to sustainable agriculture, which shows its
strong relationship with climate-related themes (e.g., ‘CLIMATE-CHANGE-ADAPTATION’
‘CLIMATE-CHANGE’), environmental preservation (e.g., ‘CONSERVATION-AGRICULTURE’
‘AGROFORESTRY’), organizations (e.g., ‘SMALLHOLDER FARMERS’) and discussions
related to agricultural resilience, food security and the main challenges for organizations, es-
pecially for smallholders. Previous systematic reviews explored the role of CSA [91,93–95].
Related research discusses technological adoption [96], farmers’ adaptation to resilient
agriculture [97], innovative economic models [98], emerging ways to increase the resilience
of smallholder farmers [99], and the impact of CSA on food security [100], among other
issues associated with resilient agriculture.

4.3.3. Internet of Things (IoT)

The cluster ‘IoT’ (Figure 4c) has a high degree of interactions with the subtheme
‘WIRELESS-SENSOR-NETWORKS’, followed by ‘BIG-DATA’, ‘ARTIFICIAL-INTELLIGENCE’,
‘CLOUD-COMPUTING’ and others. Internet of Things can be defined as a grouping of
technologies and infrastructures that, wirelessly connected, enable data mining from inter-
connected objects, as well as the monitoring and correct management of data [11,101]. It
allows remote access and control of objects [102]. Thus, IoT has been achieving a promi-
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nent role in agriculture. Both the quality and quantity of production in the agricultural
industry have been maximized through IoT [103], such as crop yield and efficiency [104].
IoT technologies, such as smart sensor networks, cameras, weather stations and smart-
phone applications, can improve crop data collection and decision-making for smart farm
management [105].

There are many ways of adopting IoT in agriculture. Some authors have explored
previous literature to understand IoT’s role, opportunities and challenges in agricul-
ture [106–108]. Jin et al. (2020) [109] proposed a predictor based on IoT to accurately
predict/forecast temperature and humidity in fields, allowing anticipated planning and
control for sustainable precision agriculture. Jayaraman et al. (2016) [105] proposed an IoT
platform capable of expanding data collection on soil, irrigation, fertilization and environ-
mental conditions, generating relationships among data for forecasting crop performance
and boosting smart farming. Relating IoT to blockchain, Hussain (2019) [110] developed a
model capable of helping in the migration from traditional to smart agriculture. Tekiner-
dogan (2018) [3] used IoT to create a portable agricultural sensor network system, which
collects data (temperature, light intensity, and soil moisture content) utilizing sensors and
a microcontroller to generate databases that can be used through Big Data based analytics
for better crop management. These IoT actions can be further enhanced and maximized
when combined with artificial intelligence-based technologies, which facilitate the man-
agement of data collected from different objects and sources in the field [102]. In addition,
connectivity on Digital Agriculture through IoT becomes efficient and effective when based
on cloud computing [111]. Thus, regardless of the applications, IoT actions in agriculture
require investments in cloud computing to facilitate the collection, storage, access, and
management of integrated data. Therefore, this cluster emphasizes the importance of IoT
as a link among different technologies, tools, equipment, and machines that jointly improve
precision agriculture and, consequently, lead to digital agriculture.

4.3.4. Spatial Variability

The cluster ‘SPATIAL VARIABILITY’ (Figure 4d) is a motor theme that presents strong
interactions with geostatistics and management zones and contributes to monitoring soil
properties at agricultural sites. The analysis of the spatial variability of soil attributes was
one of the first precision techniques associated with crop management and helps farmers
to know chemical and physical characteristics of the soil through sampling and analysis
that identify soil variations such as nutrients, fertility, salinity, electrical conductivity, pH,
organic matter, phosphorus, and other important variables/parameters. Geostatistics
techniques such as kriging, variogram analysis and interpolation reveal the heterogeneity
of the soil. These analyses allow us to understand intrinsic factors, such as soil formation
and relief, substances, organisms and climate, and extrinsic factors, such as management
practices, and fertilization rate, among others.

Therefore, this cluster is linked with increasing efficiency and crop productivity. The
analysis of spatial variability is, indeed, a key factor for increasing food production [112]
and farmers’ economic revenues [113]. The mapping of soil heterogeneity has contributed
to enhance soil data and to make geostatistics become a fundamental tool in agricultural
management [114]. Some studies show that farmers visualize the information of DA made
by georeferenced analysis [115]. Despite its advantages, spatial variability analyses often
have high costs that make it difficult for small farmers to use them. Future research needs
to explore the improvement of these techniques to increase the expansion of its use.

4.3.5. Global Positioning System (GPS)

Through georeferencing, GPS was one of the first big steps towards Digital Agri-
culture. The cluster ‘GPS’ (Figure 4e) is a motor theme that presents strong interactions
with the subtheme Geographic Information Systems (GIS). Other subthemes, such as
‘YIELD-MONITOR’, ‘YIELD-MAPPING’ and ‘VARIABLE-RATE TECHNOLOGY’, also
have prominent links with this cluster. Thus, the integration of GPS with other smart
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technologies, such as GIS and remote sensing, can boost farming productivity and cost
efficiency [116]. GPS corresponds to a navigation system that, using satellites, identifies
an object’s exact position and velocity around the world and can guide directions [117].
Agricultural activities, such as seeding and plowing, can only be precisely conducted using
vehicle navigation accuracy [118].

In previous research, Si et al. [118] proposed a method to enhance the accuracy of
the steering angle of agricultural vehicles by combining GPS with the low-cost Micro-
electromechanical System (MEMS), which improves DA. Palaniswami et al. [119] argue
that the joint adoption of GPS and GIS technologies can improve sugarcane cultivation
in coastal lowland ecosystems, making production more precise and sustainable. Khosro
(2018) [120] developed a strawberry yield-monitoring picking cart, equipped with a real-
time kinematic global positioning system (RTK GPS), different types of sensors, a micro-
controller, and an inertial measurement unit to improve the synchronization of the carts
with robots in harvesting and creating yield mapping of strawberry productivity. Com-
monly, yield mapping on farms is performed using GPS and variable-rate technology for
boosting planters’ performance [121]. In addition, Thrikawakaa et al. [122] demonstrate
that applying variable-rate technology through GPS in agricultural vehicles improves the
water content in fields and reduces the application of fertilizers. In addition, previous
literature reviews introduce the conceptualization and potential of GPS (for more informa-
tion see, Rivero et al., 2021 [123]; Peng et al. (2017) [124]). Thus, this cluster highlights the
role of GPS as a leading technology capable of improving DA’s effectiveness through its
interconnecting capacity with other smart technologies. Emerging technologies combined
with scientific knowledge make it possible to use the strategic geographical location of
agricultural production, helping to make precise and targeted decisions.

4.3.6. Image Processing

The cluster ‘IMAGE PROCESSING’ (Figure 4f) presents strong linkages with agricul-
tural management tools (e.g., ‘MACHINE VISION’ and ‘COMPUTER VISION’) that provide
data for the farmer’s decision-making. Previous literature reviews explored advanced con-
trol strategies and image processing techniques in Digital Agriculture (see Ngugi et al.
(2021) [125], Syeda et al. (2021) [126], and Sohail et al. (2020) [127]). Zhao et al. [128] used
machine vision to exploit color images to detect immature green citrus. The use of video pro-
cessing (i.e., machine vision) also was analyzed by Sabzi et al. [129] to classify potato plants
and three types of weed. In this regard, machine vision was also revised by Wang et al. [130],
combined with image processing as relevant tools for ‘WEED DETECTION’.

Machine learning algorithms also are linked with image processing and can assist
‘DEEP LEARNING’ in agriculture [131]. ‘ARTIFICIAL-NEURAL-NETWORKS’ is an ex-
ample of the Artificial Intelligence method [132] to create new forms to solve complex
agricultural problems based on big data. Through image processing, several outputs
can be processed by machine learning and can be shown in apps for smartphones and
computers [133].

4.3.7. Nitrogen

The cluster ‘NITROGEN’ (Figure 4g), like the ‘HYPERSPECTRAL’ and ‘YIELD PRE-
DICTION’ clusters, has no stronger relations with some themes than the other clusters. As
an important nutrient for agricultural production, this cluster is related to crop management
(e.g., ‘MAIZE’ and ‘POTATO’), and fertilizers (e.g., ‘PHOSPHORUS’ and ‘POTASSIUM’).
The link between ‘NITROGEN’ and these themes comprises several fields of studies, such
as nitrogen deficiency [134], nutrient management [135,136], nutrient loss [137], nutrient
efficiency [138], and nutrient monitoring [139]. Therefore, the technical agronomic back-
drop is preeminent in this cluster. In addition, this theme is strongly linked to efficiency in
applying nitrogen and other applications of variable-rate technology [135,136,140].
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4.3.8. Hyperspectral

Several technologies are being developed and tested to analyze plants, soil and crop
variables, such as optical sensors, three-dimensional (3D) imaging, fluorescence imaging,
thermography, multispectral and hyperspectral imaging [141]. The ‘HYPERSPECTRAL’
cluster (Figure 4h) shows that these analyses are standing out in agriculture, mainly because
hyperspectral imaging is a more advanced technique than traditional multispectral imaging
and allows the identification of more details of the target features [142]. Hyperspectral
images are used as an efficient alternative for collecting and processing data and creating
an electromagnetic spectrum of agricultural fields, being a valuable tool for monitoring,
analyzing, and providing more accurate detection of spatio-temporal variations in crop
physiological and morphological characteristics [142,143], such as soil attributes and soil
degradation. Some previous research explored the use of multispectral and hyperspectral
techniques in the field of Digital Agriculture, focusing on high-resolution applications, and
plant disease detection, among others [142,144,145].

Despite their great potential, hyperspectral images are still little used outside the
academic context, but this is changing through low-cost and mini-sized airborne hyper-
spectral technologies that are being used by farmers [142]. This difficulty occurs due to
the complexity of technologies and algorithms, and the need to store and transfer data
collected by hyperspectral analysis devices [146]. The significance of the ‘HYPERSPEC-
TRAL’ cluster shows the volume of analyzes performed using maps and images of crops.
The clusters associated with this theme demonstrate analyses related to vegetation in-
dexes and characteristics (e.g., ‘VEGETATION-INDEX’, ‘CHLOROPHYLL-CONTEXT’,
‘CHLOROPHYLL-FLUORESCENCE’ and ‘LEAF-AREA-INDEX’). Previous research used
hyperspectral remote sensing to enable measurement of grapevine drought stress [147],
identification of pests and diseases [148], and assessment of seed germination [149].

4.3.9. Yield Prediction

Yield prediction is historically used in agriculture for farmers to plan inputs, labor,
profitability and other issues related to agricultural productivity. The cluster ‘YIELD-
PREDICTION’ (Figure 4i) in Digital Agriculture represents the evolution of predictive
analysis on crop yields, which in the past was carried out by the knowledge of farmers,
and is now carried out with emerging technologies [98]. In this way, preharvest crop yield
prediction helps farmers to make better and faster decisions related to planting, fertilization,
irrigation, pruning and the harvesting of plantations [150]. It also contributes to the entire
supply and consumption chain, and allows the projection of future scenarios for food
production [151].

This cluster appears related to be related to few themes, but we can highlight ‘MOD-
ELING’, ‘IMAGE-ANALYSIS’ and ‘NEURAL-NETWORKS’ that are used to map and
model crop data and information for future predictions. Previous research related to crop
yield prediction used different techniques and technologies to collect and analyze data,
such as Neural Network Techniques [100], Unmanned Aerial System Imagery [152], Air-
borne Optical Sensors [153], Artificial Neural Networks [154], Machine Learning [155–157],
Hyperspectral Imagery and Ensemble Learning [158], among others.

4.4. Thematic Evolution Structure

The evolutionary map presents the themes that have stood out over time. The map
was divided into three subperiods to show the most important themes according to the
evolution of the field of study. The first subperiod presents the main themes studied since
the first mention of the term PA in 1994 in the ISI/Web of Science until the emergence
of the Agriculture 4.0 concept in 2011. The second subperiod covers the years 2012 to
2017 and highlights the terms widely discussed since the appearance of A4.0. The last
subperiod (2018–2020) highlights the most current and relevant themes in the literature in
the previous years. Figure 5 shows the evolutionary map of the field of study, the size of
the clusters is proportional to the number of associated documents, while the thickness
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of the lines represents the relationship between the themes. Continuous lines represent
conceptual nexus and dashed lines have non-conceptual nexus.

4.4.1. First Subperiod (1994–2011)

In this subperiod (1994–2011) (Figure 5), we identified the first studies that mentioned
Digital Agriculture through discussions about the use of technologies to increase produc-
tivity, deal with environmental variability and environmental conservation of agribusi-
ness [71–75]. This subperiod contains studies that used hyperspectral maps to analyze veg-
etation indices [159,160], imaging techniques [161] and geostatistical analysis [162]. Besides,
Figure 5 shows that technologies started to be explored at this time, such as ‘GPS’, ‘HYPER-
SPECTRAL’ images, and specific analyses of soil and plants, such as ‘SOIL-FERTILITY’,
‘NITROGEN’, ‘ELECTROMAGNETIC-INDUCTION’, ‘PH’, ‘SOIL-COMPACTION’ and
‘SOIL-TEXTURE’. These themes show that few technologies were discussed and most of the
themes were associated with crop variability. These themes prove that the discussions re-
lated to Digital Agriculture mainly represent the use of technologies such as georeferencing
to analyze variability associated with soil and plants.

In this subperiod, the first discussions on agroecosystems were developed [163] to
create strategies to mitigate against environmental damage. It is important to note that
this subperiod was one of the most important for discussions related to sustainability, as
research was paving the way for other in-depth studies aimed at exploring the development
of resilient agriculture and the sustainable development of agribusiness. In addition,
many studies in this subperiod predicted that Digital Agriculture would be the future of
agribusiness [164–169].

4.4.2. Second Subperiod (2012–2017)

The second subperiod (2012–2017) (Figure 5) was characterized by a greater number
of documents associated with the consolidated PA motor themes and with emerging A4.0
ones, as new technologies started to be discussed as the application of UAV [170], wireless
sensor networks and NDVI. The presence of clusters still related to the first subperiod, such
as ‘NITROGEN’, ‘HYPERSPECTRAL’ and ‘GPS’, demonstrates that some themes have
remained strong over time. In addition, new themes emerged, such as ‘GEOSTATISTICS’
with a significant number of documents, and ‘SUSTAINABLE-INTENSIFICATION’ and
‘CSA’ associated with the development of resilient and sustainable agriculture, demonstrat-
ing the further expansion and growth of the field of study [171–173].

Between 2012 and 2017, the term A4.0 gained space and came to be widely discussed
in the literature to portray the creation of a digital value chain in agriculture. Although
many terms are discussed in this subperiod, few of them stand out in the volume of
associated documents and interrelationships with themes from other subperiods. Only
the ‘GEOSTATISTICS’ cluster has a strong relationship with the ‘SPATIAL-VARIABILITY’
clusters of the first and third subperiods, highlighting the high potential of geostatistics
for analyzing crop variability. In addition, ‘CSA’ has evolved to become one of the main
themes of the third subperiod. It is important to note that some themes have evolved over
time; however, the small size of most clusters shows that the field of study was still under
development.

4.4.3. Third Subperiod (2018–2020)

The third subperiod (2018–2020) (Figure 5) presents the most recent themes related to
Digital Agriculture. Three clusters stand out with a large volume of associated documents.
They are ‘IoT’, ‘UAV’ and ‘CSA’, which indicates that the use of emerging technologies and
sustainable development are currently the most important concerns of researchers in the
primary sector. The ‘IoT’ and ‘UAV’ clusters show the potential and adaptability of small
sensors for any agricultural scenario, whether in large crops or in mountainous areas that
are difficult to cultivate [11], while the ‘CSA’ cluster shows that concern for the sustainable
development of agriculture continues to grow and is characterized as one of the most
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important discussions in the arena of smart agriculture [97,100]. In addition, discussions
related to deep learning and machine vision represent major technological adoptions in the
field of agriculture, and themes like ‘APPARENT-ELECTRICAL-CONDUCTIVITY’ [174],
‘WATER-BALANCE’ [175] and ‘PROXIMAL-SOIL-SENSING’ [176] show that the concern
with analyses of plants and soil remains extremely important for the digital transformation
of agriculture.

A broad look allows us to see the evolution of the field of study and the main themes
discussed over time. The third subperiod also produces insights on future trends, because
some themes stand out from the others and are anticipated to remain of paramount impor-
tance. Besides, other themes have emerged only in the last subperiod and may represent
emerging themes that can be further explored in depth in the coming years. The growth
in the number of documents in the field of study (Figure 2) and discussions associated
with technological adoption in agriculture (Figure 4) demonstrate the commitment of
researchers to the development of the primary sector and its importance for the sustainable
development of society and organizations.

5. Challenges and Opportunities
5.1. Main Challenges

Discussions related to UAV, spatial variability, yield prediction and crop model
(Figure 3) show that there are many challenges associated with the adoption of emerging
technologies in agriculture, such as variations in soil, climate, sustainability, cultivated
species and producer size. Government investments, export volume, agricultural and
consumer culture are also factors that directly impact the way food is grown and pro-
duced, and the innovative efforts and investments dedicated to production. Developed
and emerging economies have different types of governmental investment for agricultural
production, and some are developing projects aimed at the digital transformation of agri-
culture in countries, like China [177], Brazil [178], Mexico [179], Thailand [180,181] and
others. Despite the investment of many countries in digital agriculture, the transforma-
tion is still in its infancy compared to the technological adoption in the manufacturing
and service sectors. Technologies widely used in other sectors such as big data, Machine
Learning, blockchain, simulation/mathematical modeling and augmented reality are still
little explored in agriculture. Figure 3 shows that only Internet of Things and UAV are
prominent technologies in the arena of agriculture.

Among the main challenges of digital technology, technological adoption is among the
characteristics and peculiarities of emerging technologies, which are often complex for the
low level of technical knowledge of smallholder farmers [45]. The most significant volume
of agricultural production is from developing countries, and most of these farmers are
small producers with low levels of education. Under these circumstances, even language
can become a barrier to technological innovation, since most technologies are developed
in English, a language not spoken by small producers in developing countries [31]. This
barrier for small producers favors large agribusiness companies that have workers trained
to use technologies and apply them to increase large-scale production quality. In addition,
there is a major digital infrastructure problem in many developing countries, which are
gradually developing ways to bring digital devices and applications at low cost to small
producers to increase profitability and production quality. This concern is evident in the
relationship between smallholder farmers and CSA (Figure 4b), which also appears to be
related to discussions of gender and female management in agriculture.

The motor theme of the field of study, the Internet of Things, appears related to
security and blockchain (Figure 4c), highlighting that technological advances bring also
complex data security and privacy issues. Concerns about information, confidentiality
and data integrity are major challenges that concern farmers [182]. In highly technological
scenarios, these concerns increase the efforts of researchers and practitioners in the search
for better encryption and security techniques to reduce the risks of cyber-attacks and ensure
data security and privacy [183]. According to Zhang et al. (2020) [184], farmers are highly
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concerned about data security and the physical requirements for equipment and practical
tools for data protection and distributed systems for agricultural management. Hussein
(2019) [183] reviews the requirement of the computational infrastructure necessary for
cloud storage to be effective and secure. This and other studies highlight the concern
with agile software development, data security, confidentiality, and reliability to guarantee
fair competition, differential privacy, economic development, sustainable innovation, and
social entrepreneurship in agriculture.

In this sense, two major strands of challenges can be considered: the first strand is
about technical challenges, such as the mastery and the adaptation of technological tools
to direct them in the best possible way for optimal gains. These challenges are evident
through technologies that are subthemes of thematic network structures, such as Machine
Learning and Deep Learning, drones, cloud computing, big data, blockchain, Artificial
Intelligence, artificial neural networks, computer vision, and others (Figure 4). The second
strand is related to sustainability issues, such as the continuous world population growth
and global warming (mainly due to the greenhouse effect, or gas emissions) and their
harmful effects on agriculture [185]. Discussions related to these challenges are represented
by subthemes, such as food security, conservation agriculture, climate change adaptation,
agroforestry, vegetation indices, resilience, and mitigation.

Moreover, it is crucial to keep in mind that, although many authors discuss the
technological potential for promoting sustainable development, other authors discuss
the paradox of sustainability [186] by raising questions about the contradictions between
economic growth and sustainable development that mainly negatively affect the low-
income populations [187]. In the same perspective, the technological paradox regards the
lack of evidence about technological benefits in terms of productivity and sustainability of
organizations and society [188]. These controversies between authors show that discussions
about these paradoxes in agriculture are not yet sufficiently developed and addressed, and
that future research should explore this topic in-depth [52].

5.2. Opportunities for Research and Practice

The primary sector is crucial for human survival and is full of challenges. In this
scenario, the technological potential can be exploited to meet the food needs of the human
population without damaging the environment [52]. The number of studies associated with
sustainable agriculture shows that technological adoption can develop resilient agriculture
that integrates the various (economic, environmental, and societal) pillars. Previous re-
search related to the motor theme of CSA explored the adaptation of agricultural methods
to develop adaptive agriculture for plantations, landscapes and forests while addressing
climate issues and food security [91,92]. Regenerative and circular agriculture explores
ways to avoid using chemicals and to rather utilize methods to develop natural pro-
cesses to protect the soil, the environment, and people through the production of healthier
foods [189]. Figure 4 highlights this through subthemes, such as food security, soil fertility
and related properties/topics. These subthemes also help us identify the main crops where
the technology is being implemented and discussed in the literature, such as sugarcane,
cotton, potatoes, maize, and grape (viticulture). Thus, the formulation and adoption of
new technologies based on the circular economy principles (reduce, reuse, recycle) can
boost the sustainability, digitalization, and integration of agriculture with other links of the
agribusiness value chains, a promising opportunity for further advancement of the field.

Advances in agricultural production are crucial for increasing production and im-
proving logistics performance and traceability of agricultural data in the coming years [52].
Although big machines favor agricultural monopolies, small technologies, such as sensors,
actuators, and drones can be developed at a lower cost and with features to assist small
farmers in collecting and analyzing crop variability data [11]. Other technologies, such
as smart grids can assist in the development of integrated energy networks that facilitate
the management of crops at lower costs [190]. Digital Agriculture depends on techno-
logical progress, and a viable path for future research concerns strategic foresight [191]
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and analysis of innovation capabilities [192,193] to assist in the development of techno-
logical innovations in smart agriculture. Our results are presented in the evolutionary
map (Figure 5) with the emergence of themes such as thermal imaging, red edge, spraying
equipment, NDVI, and technology adoption.

Digital Agriculture can promote and foster changes, revolutions, transformations, and
gains, both for society and sustainability, as well as for economic agents through the im-
provements in scale and efficiency of the digitization of agriculture. Within this framework,
if drones and IoT are more connected to companies and businesses, CSA has an important
impact on inclusive and sustainable agriculture. The existing scholarly literature presents
several techniques and technological solutions aimed at ensuring environmental protection
and economic and social sustainability (see Figure 5, e.g., hyperspectral, thermal imaging,
spatial variability, proximal soil sensing, and CSA, among others), which represent both
technological and sustainable revolutions in the primary sector. This may motivate a cycle
of sustainable production and consumption to transform the planet and society. According
to Ofori and El-Gayar (2020) [31], the main drivers for technological adoption in agribusi-
ness are related to governance, policies, trade opportunities, effects on human capital,
employment opportunities and environmental protection. In this perspective, traditional
agriculture is no longer sufficient to meet the demand for food, quality, sustainability
and safety of the environment, and a new paradigm is needed, namely the technological
paradigm [194].

To create a technological and sustainable culture, agriculture depends on the en-
gagement of various members of society, such as universities, farmers, companies, the
community and the government. In this sense, the topic of creation of an innovation
ecosystem has been little explored in the literature and presents an opportunity for future
research. The participation of universities is crucial for developing technologies and re-
search aimed at modeling and developing methods and techniques that assist farmers in
managing agricultural processes. Governmental programs and financing can help in the
digital transformation of agriculture in developing countries, promoting the production
and consumption of sustainable products, less waste and awareness of recycling. In this
perspective, innovation ecosystems can be explored in-depth for the digital and sustainable
transformation of the primary sector. The adoption of new technologies enables the trans-
formation of value chains into digital ecosystems, potentially integrating organizations and
stakeholders, benefiting each participant in the ecosystem [195]. As in industries, in agri-
culture, value ecosystems can directly impact economic performance and business agility.
To do this, national innovation systems can assist in transferring knowledge between
industries and universities [196,197], facilitating the development of digital innovation.

In addition, the number of startups focused on agribusiness is growing, and they are
developing technologies at a lower cost that meet the needs of small and medium farmers.
All of this can help, in particular, small producers, who are responsible for a large portion of
the world’s population’s food production, and who are affected the most by the challenges
of agricultural revolutions. Technologies, such as big data, facilitate the collection and
analysis of large volumes of data, and IoT, through its small sensors and actuators, can
be used in any type of setting/environment. In addition, cybersecurity can be exploited
to address farmers’ fear of data protection and security. Altogether these approaches can
facilitate the digital transformation of agriculture in different scenarios and for different
sizes of agricultural producers.

6. Conclusions

In this research, we presented the strategic themes and the scientific evolution struc-
ture of Digital Agriculture. With the PICOC protocol and the SciMAT software it was
possible to map and identify the strategic themes of the field of study, which are mainly
associated with technologies and sustainable development, such as IoT, UAV, GPS, spatial
variability, and CSA. In addition, the evolution map divides the literature into three subpe-
riods of time, listing the most important themes at each stage of development of digital
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transformation in agriculture. The main challenges associated with digital technological
adoption were identified, mainly related to the complexity of technologies, agricultural
culture and adaptation, data security/safety/integrity and environmental issues [198,199].
In addition, we identified the main opportunities of technological adoption and research
in agribusiness that are strongly related to creating a technological and smart value chain
to increase the productivity, quality, and profitability of agricultural production, while
promoting and ensuring economic, societal, and environmental sustainability. Thus, we be-
lieve to have covered a major gap in the existing scholarly literature related to the evolution
of the digitalization of agriculture and its strategic themes over time.

Limitations and Further Research

Despite its contribution, methodological rigor and high-quality, as well as trans-
parency, and reproducibility, this research has limitations that should be properly acknowl-
edged. This study explored only documents from the Web of Science database, and we
analyzed only the thematic structures of the motor themes, and as such other themes
should be addressed in future works. It is important to keep in mind that agriculture
directly impacts socioeconomic conditions and environmental sustainability. Thus, a more
comprehensive qualitative analysis could be realized in terms of the implications of Digital
Agriculture for sustainability and societal development. The role of emerging technologies
to promote food security and the impact of food production on society and organizations
need to be explored. Future research can explore in-depth agricultural management prac-
tices focused on CSA, sustainable and lean agriculture to identify and analyze sustainable
production paths. In addition, scenarios and frameworks for smart agriculture imple-
mentation should be explored. Future research could map the field of study, focusing
on specific techniques, applications, and technologies such as Big Data, Artificial Intelli-
gence, blockchain, Internet of Things, autonomous robots, NDVI, yield prediction, image
processing, etc. Future studies could explore each theme and subtheme not covered in
this research to discover hidden and emerging themes in the field of study, such as those
related to subsectors of PA, like PH, CEA, VF, PAF and Precision Aquaculture/Fisheries.
Moreover, further additional analyses could be performed, stratifying findings based on
the specific study design of the investigation (original research, overview/review, etc.)
and gradating/assessing its strength of evidence. Innovation ecosystems need also to be
examined by involving organizations, government, and universities to integrate and digi-
tize processes. Future works can also explore technological and sustainability paradoxes
to identify the real potential of technologies in agriculture and the challenges related to
their contradictions to better understand whether human decisions about food production
are moving in the right direction or are causing an ecological collapse unrecoverable on
the planet.
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