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Abstract: Induction motors play a key role in the industrial sector. Thus, the correct diagnosis and
classification of faults on these machines are important, even in the initial stages of evolution. Such
analysis allows for increased productivity, avoids unexpected process interruptions, and prevents
damage to machines. Usually, fault diagnosis is carried out by analyzing the characteristic effects
caused by the faults. Thus, it is necessary to know and understand the behavior during the operation
of the faulty machine. In general, monitoring these characteristics is complex, as it is necessary to
acquire signals from the same motor with and without failures for comparison purposes. Whether
in an industrial environment or in laboratories, the experimental characterization of failures can
become unfeasible for several reasons. Thus, computer simulation of faulty motors digital twins can
be an important alternative for failure analysis, especially in large motors. From this perspective,
this paper presents and discusses several limitations found in the technical literature that can be
minimized with the implementation of digital twins. In addition, a 3D finite element model of an
induction motor with broken rotor bars is demonstrated, and motor current signature analysis is
used to verify the fault effects. Results are analyzed in the time and frequency domain. Additionally,
an artificial neural network of the multilayer perceptron type is used to classify the failure of broken
bars in the 3D model rotor.

Keywords: condition monitoring; digital twin; fault diagnosis; finite element method; non-destructive
testing methods; simulation 3D models; three-phase induction motor

1. Introduction

Among all types of electric motors available on the market, the most popular is
the three-phase induction [1,2]. After all, this equipment stands out compared to others
for having characteristics such as: high efficiency, simple construction, robustness, high
starting torque, low maintenance, and convenient power–volume ratio [3]. It is estimated
that around 40% of the world electricity production is consumed by these machines, which
are the largest energy consumers in the industrial sector (80%) [4,5].

Thus, three-phase induction motors (TIM) are considered reliable equipment that do
not fail frequently. However, it commonly operates exposed to unfavorable environmental
conditions, such as the presence of humidity and dust. Still other factors, such as power
quality problems and mechanical overload, corroborate the faults appearance in these
motors [6].

Incipient faults at TIM can be originated mechanically or electrically. Faults considered
mechanical are responsible for approximately 40% to 50% of the operation interruption and
are generally related to bearings, bearing wear, or still eccentricity [7]. The most common
electrical faults are problems in the stator winding, which represent about 37% of faults in
TIM, and the rotor bars breakage, which accounts for 10% of these occurrences [8]. These
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faults affect the motors reliable operation, which is strategically very important for the
essential provision services and for industrial processes flow continuity.

In the industrial environment, the sectors in charge of preserving the good functioning
of electric motors are under continuous pressure to reduce maintenance costs and prevent
unscheduled downtime. Therefore, the need for fault diagnosis in electrical machines is
crucial to avoid performance degradation, malfunction, and even irreversible damage.
This occurs especially in the case of large machines, where the costs and responsibilities
involved are much higher.

On that subject, it is possible to observe that, for some time now, several researchers
around the world have been dedicated to the failures study in TIM, their effects, causes,
and methodologies for their characterization. Regardless of the type, origin, or malfunction
cause, it is always possible to observe changes in the machine functional characteristics
and its operation. The most used characteristics for fault diagnosis include unbalanced
stator currents [9] and voltages [10], oscillations and torque reduction [11], overheating [12],
excessive vibration [13], audible noise [14], distortion of flux [15,16], and electromagnetic
field [17].

It is worth noting that each fault diagnosis strategy has its advantages and limitations,
some of which are considered invasive, as it is necessary to stop the machine operation
for the installation of sensors. Due to this inconvenience, non-invasive fault diagnosis
techniques, such as the motor current signature analysis (MCSA), have been highlighted in
the technical literature [18–23], according to the notes in the next section.

1.1. Fault Diagnosis Studies Review at TIM

As mentioned before, it is observed that early fault detection is a challenge for a series
of research works that scope is focused on the development of different analysis tools and
data acquisition methods. Thus, to detect induction motor faults, different techniques are
used, such as MCSA, thermal and vibration analysis, etc. Additionally, it is worth noting
that to obtain a reliable fault diagnosis, the TIM analysis requires a substantial amount of
data acquisition to characterize the machine functionality and the characteristics caused by
faults in their most diverse severity degrees.

Various signal processing tools and intelligent systems can be successfully used
in different motor operating conditions for fault diagnosis [9–21]. The state-of-the-art
review previously presented reveals that most of the troubleshooting techniques addressed
demand the installation of sensors inside (invasive techniques) or around the motor to
obtain the parameter to be analyzed. This need may require operation interruption, which,
in most cases, is not acceptable. Additionally, the cost of sensors and their installation can
be so high that it becomes impracticable.

Among the fault diagnosis strategies mentioned, motor current signature analysis is
the most used methodology due to its different advantages, discussed in the following.

1.2. Motor Current Signature Analysis (MCSA)

MCSA uses the specific frequency components of the stator current spectrum, which
is called fault signatures, to detect faults in the TIM [18].

This technique allows that the monitoring, detection, and diagnosis of motor condi-
tions to be carried out during machine operation. Stator current can be obtained through
telemetry measuring devices or through protection devices that provide the measured value.

Additionally, there is the possibility to measure the current remotely and to transmit it
online, which means that the data for the current analysis technique is accessible during the
motor operation entire period in various supervisory systems. Furthermore, MCSA shows
itself as a versatile tool that can include parametric analysis methods, non-parametric
methods, and high resolution or subspace methods.

Several works in the current literature report the successful use of the MCSA technique
for diagnosing motor failures. In [22], the Shannon entropy index and a fuzzy logic system
are proposed to diagnose stator short-circuit faults. The proposed methodology is based
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on the MCSA, using the current monitored during the steady state of the induction motor
and considering different severity levels and different load conditions.

The research [23] brings forward a study of the use of transient current to analyze
the beginning of short-circuits between the induction motor stator windings turns. The
proposed methodology extracts the second component of motor starting current signals
transient envelope by principal component analysis.

In the study [24], a real-time detection scheme of incipient short-circuit failure be-
tween stator of induction machines turns powered by frequency inverter is presented. An
analysis based on discrete wavelet transform (DWT) is performed on the stator current and
support vector machine (SVM) learning algorithm is used for the accurate incipient fault
classification.

The paper [25] proposes an effective method of fault diagnosis using Teager–Kaiser
energy operator (TKEO) to detect broken rotor bars faults based on motor current signal
analysis. TKEO is applied to remove the main component of motor current for accurate
extraction of fault characteristics, especially for an induction motor operating with low
load and low slip.

A broken rotor bars fault classification model based on the stator current of induction
motors analysis is depicted in [26]. In this study, the principal component analysis (PCA)
method is used to reduce the signal size and to extract typical fault characteristics.

In [27], a technique to perform the MCSA with a reduced leakage of the fundamental
component is presented. This technique is based on rectified current signal spectral analysis.
Its spectrum is shown to contain the same fault harmonics as the original current signal
spectrum but at a much lower frequency and free from leakage of fundamental components.

The MCSA technique is used in [28] to monitor induction motor bearings. To improve
the monitoring performance, it is proposed to take advantage of more information available
in the current spectrum, incorporating the amplitude of a significant number of sidebands
around the first eleven harmonics, exponentially increasing the number of fault signatures.

Thus, most mechanical and electrical faults that can arise in an induction motor are
detectable by current analysis [22–28]. For these reasons, the current signature has become
a practical parameter for detecting squirrel cage motor faults.

1.3. Signal Processing for Fault Analysis and Its Limitations

Normally, the direct use of current signals in the time domain is not convenient in fault
diagnosis. They have a low signal-to-noise ratio and problems such as electromagnetic
interference. Thus, the use of data processing methods and/or intelligent algorithms based
on artificial neural networks (ANN) can be an alternative [29]. Neural networks of type
multilayer perceptron (MLP) have a prominent position among the possible tools used in
fault diagnosis. This is mainly due to perceptions that this tool is able not only to identify
the incipient failure, but also to estimate its severity. [30]. This network architecture can
automatically learn, based on experience, the primary representation of the raw signal
without requiring complex mathematical models, which makes its implementation simple
and accessible.

However, the effectiveness of these networks is directly linked to the availability of
a comprehensive database, containing signals from healthy and faulty motors operating
under different load conditions and fault severity [4].

In this context, it is highlighted that the creation of these databases is complex and can
often become a major obstacle. It is necessary to acquire signals from the same motor with
and without faults in different operating conditions. The sampling of these signals in an
industrial environment or in laboratories can become impractical for several reasons, such
as the need to carry out destructive tests, high financial cost of installing the test bench,
availability of equipment, sensors, and motors, and the high demand of time and human
resources to carry out all the necessary tests. Due to the aforementioned difficulties, it is
possible to observe that there are some databases that have been formed for years, with
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a slow and difficult evolution, which continue to be insufficient [31]. In most cases, it is
impossible to examine all types and conditions of failures physically and experimentally.

These factors are especially aggravated for higher horsepower motors. In addition to
being more expensive, it is often not possible to replace them quickly, due to high costs,
difficulty in maintenance, and because they are often manufactured to order and for a
specific application [3].

A possible alternative solution for this inconvenience is the creation of a dataset
through computer simulation of faulty machine models. These models can prove so
accurate in representing the characteristics and effects of faults in real motors that they are
called digital twins, as discussed below.

1.4. Digital Twins Modeling in Finite Elements

The application of computer simulation methods to robustly model faulty motors (e.g.,
digital twins) in order to create parameterized databases to identify the evolution of faults
in real machines, is a promising technique. In this regard, the finite element method (FEM)
stands out among the various computational modeling techniques, showing itself as an
adequate tool for the purpose. The main motivation for using FEM is that this simulation
type offers consistent results, considering the non-linear BH characteristics of the rotor
and stator core, the skin effect, the variation of constitutive parameters as a temperature
function, and the material dispersivity characteristics. These characteristics make FEM a
relevant tool for the design and robust modeling of electrical machines and therefore the
analysis and modeling of their faults for the diagnostic study of these induction motor
faults [2].

It is noteworthy that, in recent years, some authors have reported success in using
the FEM for modeling some types of faults. In [32,33], FEM is used together with other
tools to identify broken rotor bar faults. The work [32] evaluates the performance of a
strongly coupled two-dimensional (2D) magnetomechanical approach, available directly
in COMSOL commercial finite element analysis (FEA) software. This software is used for
simulating an induction machine in direct starting, with healthy and broken bar states. The
simulation time interval is sufficient to allow the detailed study of the variable frequency
components. Results produce, in addition to the usual electrical and magnetic quantities,
vibration components induced in the stator.

The paper [33] presents a method for detecting broken rotor bar in a squirrel cage
induction motor. The method is based on the stator transient current signal spectral
analysis during countercurrent braking (CCB). This type of broken rotor bar fault diagnosis
is independent of load conditions and can be performed even for an unloaded motor.
The existence of spectral components in the CCB signal is proven with the symmetric
components theory. The method is verified through FEA simulations.

The works [34–37] use different motor quantities and FEA to diagnose stator faults.
More specifically, a faulty induction motor modeling technique is depicted in [34]. Using
ANSYS Maxwell software, the FEM allows for detailed simulation (two to two turns
resolution) of insulation degradation in a stator slot. DWT is used to provide detection of
stator windings insulation deterioration.

The methodology presented in [35] uses the flux in the air gap of induction motors
for detection of turn–turn failure and faulty region identification. Some search coils (SCs)
are used to measure magnetic flux in various regions of the machine air gap. The induced
voltages in the SCs are used to assess the level of flux distribution symmetry along the
inner stator circumference. The proposed method is verified through FEM simulations
performed in Ansoft Maxwell software.

In [36], an offline method of short-circuit fault diagnosis between induction motors
stator turns is presented. The proposed method is based on impedance unbalance in
the stationary d-q plane. To show impedance unbalance, an induction motor model is
presented with a circuit loop and fault resistance. Using the fast fourier transform (FFT)
applied to the impedance components in the d-q plane, the second order impedance
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magnitudes are obtained. From these magnitudes, short-circuit fault and faulty phase can
be detected. To verify the proposed method, FEA is presented.

The effect of short-circuit fault location between stator turns on the parameters of the
squirrel cage induction machine model is studied in [37]. Two investigations are conducted.
The first is a FEA of four cases of fault location with equal severity in a machine phase.
The second is a theoretical and mathematical analysis, which the fault is modeled by a
step-down autotransformer in the faulty circuit. The results obtained with the FEM show
that different locations affect the motor parameters.

Amid a wide-ranging literature review on the use of FEM in the induction motor
faults diagnosis, the authors Liang, Ali, and Zhang [38] highlight that the method may
offer signals for the analysis of faulty motors.

1.5. Digital Twins and Neural Networks for Improving Fault Diagnosis Process

As mentioned in Section 1.3, up until now, it is possible to observe a considerable
effort to obtain data about TIM fault in their different degrees of severity, especially because
all employed data usually require destructive and time expensive tests [39–44]. The main
interest regarding this paper, and an almost unexplored issue in this research line, is the
use of FEM combined with neural networks to improve fault diagnosis algorithms. Digital
twins can provide substantial data gains in the training of these networks and a significant
contribution to the study of useful life prediction of induction motors.

In this regard, it is possible to highlight three main contributions:

• Robust 3D FEM Modeling and MCSA: In order to provide diagnostic evaluation of
the fault behavior, the use of simplified two-dimensional models does not consider
important characteristics, such as the effects of the stator coil heads, inter-bar current,
and the skew influence of the rotor bars that can considerably change the MCSA
(motor current signature analysis). It is important to mention that MCSA is considered
a crucial information for fault diagnosis analysis and to this research. This issue
justifies the use of robust 3D models (digital twins), unlike typical motor designs
simulations, where 2D simulations are normally acceptable.

• Automated Fault Diagnosis Algorithm: After obtaining the digital twin simulation
results, the MCSA from simulation model is used as an input for an automated fault
diagnosis algorithm, based on a multilayer perceptron (artificial neural networks).
The algorithm training was set up in real motor data, based in extensive test bench
results [39–44]. The main goal is to observe if the algorithm is able to adequately
classify if the motor is heathy or faulty.

• Digital Twin to provide network learning: During the current research, the algo-
rithm training was usually based on an extensive number of destructive test and
measurements to provide sufficient data for network learning. Further evaluations
must use digital twin simulations in order to deliver sufficient data to virtual net-
work learning. To our understanding, the use of measurement and simulation data
can be combined to provide synergy and a considerable improvement to the neural
network performance.

2. Numerical Modeling of TIM with Faults

An induction motor model, with typical parameters, was implemented in order to
verify the characteristics of broken rotor bars faults. As these faults cause asymmetry in
the motor, naturally, it can be imagined that it is needed to implement three-dimensional
(3D) FEM to be able to represent the faulty machines. Thus, a 3D model of a three-phase
induction motor was created with the following parameters: power of 3800 W (5 hp), Y
supply voltage of 380 V with 60 Hz frequency, four poles, nominal torque of 21 Nm, and
rated speed of 1727 rpm. The parameters used to create the model are based on an IP55
three-phase induction motor from the manufacturer WEG model W22. In addition, this
motor was chosen so that the simulation results were later classified by an artificial neural
network previously trained for these motor configurations.
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2.1. Simulations

The tool used to develop and simulate the models uses FEA. Through a magnetic
transient solver, the 3D magnetic fields problems in the time domain are solved. The stator
windings of motor are supplied by voltage sources that vary in function of time. Rotational
motion effects are included in the simulation [45].

As a boundary condition, the master/slave was chosen, since the model has symmetry
cuts. In this condition the magnetic field at the slave boundary is forced to match the
magnitude and direction (or the negative of the direction) of the magnetic field at the
master boundary. Symmetry planes are selected in periodic structures, where the magnetic
field is oblique to the boundary. The model stator conductors are considered stranded, so
they do not have eddy currents and are considered very fine filaments.

2.2. Simulations Hardware

The simulations were carried out using the structure available at the Electromagnetism
and Electromagnetic Compatibility Laboratory of the Federal University of Santa Catarina—
MagLab/UFSC. It can be used for numerical calculations of simulations that require
a greater computational effort, which is the case of FEM 3D models. This is a high-
performance computing (HPC) structure with an Intel processor Xeon Gold 6126 with
eight cores, 2.6 GHz, and 128 GB RAM memory. The use of HPC generates a simulation
time reduction in 3D FEM models, which enables the use of this technique to represent
motor failures.

2.3. Solver Parameters and Simulation Settings

For both simulations, healthy motor, and broken motor with rotor bars fault, the
following parameters were adjusted: stop time of 1.1 s and time step of 290 µs. These
parameters guarantee a sampling of approximately 57 points per cycle, considering a
frequency of 60 Hz. The time step and the number of segments in rotational band should
be synchronized according to rotor speed. Thus, at each calculation step, the rotor moves
in exactly one band segment. This procedure aims to reduce calculation noise and improve
the results accuracy.

2.4. Model Geometry and Mesh Details

Figure 1 shows the 3D FEM model simulated in this work. On the left side, it is
possible to observe geometric modeling details of the core and stator windings; on the right
side, the rotational band; and the boundary conditions are also presented.

Sensors 2021, 21, x FOR PEER REVIEW 7 of 14 
 

 

  

(a) (b) 

Figure 1. (a) 3D induction motor model; (b) details of stator, rotational band, and boundary condi-
tions. 

The geometry data considered for both models are presented in Table 1. Using these 
parameters, the model was designed, and its parts were characterized with constitutive 
materials. It is noteworthy that the non-linearities found in the materials were considered, 
which effectively affect the machines behavior. The modeling takes into account the stack-
ing factor of the stator and rotor core lamination. Additionally, the model presented in 
this study considers the effects of the motor operating temperature on the rotor short-
circuit bars and rings. 

Table 1. Model geometry data. 

Item Stator Rotor 
Outer Diameter 175 mm 120.3 mm 
Inner Diameter 121 mm 38 mm 

Length 150 mm 150 mm 
Number of Slots 36 26 
End Ring Width - 6 mm 
End Ring Height - 17 mm 

Even with the availability of HPC to carry out the simulations, 3D FEM are very com-
plex and require great computational effort, demanding long periods to complete the cal-
culations. Thus, to reduce the simulation time, the model was simplified into two sym-
metry axes in the XY and XZ planes, so only 1/4 of the model was simulated. Comparative 
tests have been performed with complete model, and it was verified that the results in 
steady state are equivalent. The maximum error is 3.77%, and the average error is 1.52% 
for the healthy model. In addition, for the broken bars fault model, the maximum error is 
3.93%, and the average error is 1.55%. These results show that the simplifying assump-
tions do not compromise the model accuracy and are a good trade off to reduce simulation 
time. 

The bars breakage was reproduced by inserting vacuum objects in the center of the 
bars, as can be seen in Figure 2a. It is noteworthy, in the figure in question, that the bars 
in orange color are the bars with faults, and the red elements indicated by the arrows 
represent the breaks. 

Figure 1. (a) 3D induction motor model; (b) details of stator, rotational band, and boundary conditions.



Sensors 2021, 21, 7833 7 of 14

The geometry data considered for both models are presented in Table 1. Using these
parameters, the model was designed, and its parts were characterized with constitutive
materials. It is noteworthy that the non-linearities found in the materials were considered,
which effectively affect the machines behavior. The modeling takes into account the
stacking factor of the stator and rotor core lamination. Additionally, the model presented in
this study considers the effects of the motor operating temperature on the rotor short-circuit
bars and rings.

Table 1. Model geometry data.

Item Stator Rotor

Outer Diameter 175 mm 120.3 mm
Inner Diameter 121 mm 38 mm

Length 150 mm 150 mm
Number of Slots 36 26
End Ring Width - 6 mm
End Ring Height - 17 mm

Even with the availability of HPC to carry out the simulations, 3D FEM are very
complex and require great computational effort, demanding long periods to complete
the calculations. Thus, to reduce the simulation time, the model was simplified into
two symmetry axes in the XY and XZ planes, so only 1/4 of the model was simulated.
Comparative tests have been performed with complete model, and it was verified that the
results in steady state are equivalent. The maximum error is 3.77%, and the average error
is 1.52% for the healthy model. In addition, for the broken bars fault model, the maximum
error is 3.93%, and the average error is 1.55%. These results show that the simplifying
assumptions do not compromise the model accuracy and are a good trade off to reduce
simulation time.

The bars breakage was reproduced by inserting vacuum objects in the center of the
bars, as can be seen in Figure 2a. It is noteworthy, in the figure in question, that the bars
in orange color are the bars with faults, and the red elements indicated by the arrows
represent the breaks.
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These vacuum elements interrupt current flowing through the bars, reproducing the
bar breakage effects on a real rotor. Additionally, the insertion these elements allows
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specific mesh features to be added to create a denser mesh in place. In this way, it is
possible to obtain more accurate field calculations and better represent the effects caused
by the fault. Additionally, to obtain a finer mesh in the air gap, vacuum cylinders can be
added to serve as a reference in the mesh creation process. Finite element mesh details can
be seen in Figure 2b. The generated meshes have approximately 945 thousand (healthy
motor) and 990 thousand tetrahedrons (broken bars). A significant difference in the number
of elements between the meshes can be observed, mainly because the model with faults
needs more elements at the bars breaking points.

3. Results

This section presents some results obtained from the simulation of the 3D finite
element model implemented according to the characteristics described in the previous
section. Results were obtained from the motor simulation operating under two conditions,
namely: healthy and fault of 1-1 broken diametrically opposite rotor bars.

3.1. Time Domain Analysis

Initially, the fault characteristics of broken bars are analyzed in the time domain. For
that, Figure 3 presents the three-phase current simulation of the healthy and 1-1 broken-bar
motor models plotted in the time domain.
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From the observation of the curves in Figure 3, it is possible to notice changes in the
motor current signal in the time domain when there are broken bars. The faulty model
curves show deformations and oscillations that were not observed in the currents of the
healthy model. These oscillations are typical of broken bar faults and are reflected in the
motor speed and torque signal. Thus, as discussed above, without the application of any
analysis technique, it is difficult to confirm the effects caused by faults in time-domain
signals. This fact demonstrates the need to use signal processing methods.

3.2. Frequency Domain Analysis

FFT of the signals was calculated to observe the current frequency response. It is
noteworthy that, for the calculation of the Fourier transform, the motor start transient
was discarded. Only the steady state signal was used. Thus, it is possible to use the
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MCSA to characterize the failure signatures. The currents in the frequency domain of
the same phase, from the simulation of healthy TIM and with rotor failure, are shown in
Figure 4. It is verified that, as described in [10,15,18,22,23,29,33,38,46–48], the left sideband
amplitude of the main frequency component of the faulty model was higher compared to
the healthy one.
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Considering that the slip of the motor in question for such operating conditions is
4.28%, the increase in amplitude occurred in the region of the rotor fault frequency. More
specifically, the amplitude at the 55 Hz frequency had a significant increase, showing itself
as a broken-bar fault signature.

Thus, it was possible to verify the typical broken-bar faults signature in the stator
current signal, which have already been previously reported by many papers in technical
literature [10,15,18,22,23,29,33,38,46–48].

3.3. Motor Classification with Artificial Neural Networks (ANN)

In order to complement the results analysis obtained using the 3D FEM model, the
simulated current response was submitted to an artificial neural network. This network is
a multilayer perceptron type, and it has been trained with healthy motor current signals
and with broken bars in the time domain. Signals used as ANN inputs are represented
by vectors with 25 elements that represent the three-phase current waveforms. Then,
the normalization of that signal is performed by the maximum value and then the data
is presented to the network. Recently, studies such as [39–44] used the aforementioned
methodology and obtained promising results that support the use of the procedure.

3.3.1. Network Training and Validation

For the ANN training, data from the healthy motor and with broken bars operating
directly connected to the grid, with different voltage imbalance conditions in the supply
and with variation in the load torque, were used. Considering these conditions, there is a
total of 220 samples, 110 for the healthy motor and 110 for the motor with broken bars.

The pre-processed data were divided into two groups, training and validation. In
the tests, the k-fold cross-validation method was used with 10 subsets for training and
validation. The original dataset is randomly divided into k subsets. One of the subsets is
sorted to test and validate the network model, and the remaining k−1 subsets are used
to train the network. The cross-validation process is repeated k times with each of the k
subsets. After completing the cross-validation process, the errors accuracy is calculated
providing a reliable measure of the classifier model capacity.
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In the MLP network training process, backpropagation was used as the learning
algorithm. The learning rate parameter was set to 0.3, the momentum term is 0.2, and
the number of epochs for convergence is equal to 500. These parameters were defined
empirically considering the MLP classifier performance as a number function of inputs
and neurons in the intermediate layer.

Different network configurations were tested by varying the hidden layer neurons
number, with 10, 13, 16, 22, and 25 neurons. The configuration with 19 neurons in the
hidden layer showed the best results. Thus, the network used in this work has 25 inputs
empirically defined with a single hidden layer. It is composed of 19 artificial neurons,
which use hyperbolic tangent as activation function, and 2 neurons in the output layer that
consider a linear activation function.

Table 2 shows the parameters and accuracy of this network. It is possible to observe
that the network presented 100% accuracy in the cross validation, correctly classifying all
samples of the healthy motor and with broken bars.

Table 2. Parameters and accuracy of the neural network.

Parameter Result

Inputs 25
Accuracy (%) 100

Building time (s) 1.36
Kappa statistic 1

Kappa statistic can be defined as a measure of association used to describe or test
the degree of agreement, or reliability and accuracy, in the classification. This index is
calculated based on the data in the confusion matrix, more specifically, on the amounts of
false positives and false negatives presented in the classification results. This measure has
a maximum value of “1”, so the network has full agreement [49].

3.3.2. Digital Twin Diagnosis Process

After the validation of the network, it can be used to classify the results obtained from
the 3D FEM model presented in this work. For this, current signals in the time domain are
used. A half-period of each of the three-phase currents is randomly selected and discretized
with 25 points, and the amplitude of each point is considered. Then, each half cycle is
normalized by the peak value.

Thus, there are two data samples, one referring to the healthy model and the other
to the model with broken bars. These samples were presented to the neural network to
be classified into two possible groups, healthy or faulty. The complete block diagram
developed to automatically classify and diagnose the digital twin performance is presented
in Figure 5. It takes into account not only the FEM modeling and simulation, but also the
fault diagnosis process and ANN outputs.

Table 3 presents the parameters and accuracy of ANN in classifying simulation data
from the 3D FEM model.

It can be seen in the results presented in Table 3 that the MLP network managed
to correctly classify the two conditions presented. It should be noted that the data were
unprecedented for the network; that is, the samples tested did not participate in the
ANN training process. Even so, the network achieved 100% accuracy with full agreement
(kappa = 1). Thus, it can be verified that the FEM 3-D model presented is capable of
representing broken rotor bars failures. These results suggest the possibility of using digital
twins for the formation of motor failure databases through computational simulation.
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4. Discussion

Due to the wide applicability of the induction motor in the most diverse sectors of the
economy and the need for its reliable operation, the early failures diagnosis is essential to
avoid unexpected stops and losses. In this context, the FEM has stood out as an alternative
to traditional methods for creating databases with faulty motor signals.

This research indicates, through a literature review, the possibility of using the FEM to
create digital twins of faulty motors in order to diagnose failures. In this regard, it presented
the implementation of 3D models healthy and with faults of a three-phase induction
motor. Healthy and faulty motor simulations of 1-1 broken diametrically opposite bars
were performed.

Through the results obtained from these models, the presence of fault signatures of
broken rotor bars in the stator current signal was verified. For this purpose, time and
frequency domain analyzes of the 3D FEM model current signals were performed. An
increase in the amplitude of the broken-bar fault frequency can be observed, located in the
left sideband of the fundamental frequency of the current signal. In addition, an artificial
neural network of the multilayer perceptron type is used to classify faults with broken bars
in the motor through the 3D FEM model current signals.

Thus, the results achieved indicate the possibility of creating accurate 3D models of
motors (digital twins) in order to study and understand the characteristics of faults through
current, torque, speed, electromagnetic field, and flux. These quantities can be used to
create faulty motor databases and later be analyzed by data processing methods and/or
intelligent algorithms for fault diagnosis.

Furthermore, it should be noted that the simulation strategy presented makes it
possible to analyze the most diverse types and severity of failures, which are often not prac-
ticable experimentally due to the need for destructive tests, high financial cost with bench,
equipment, sensors, and motors and need for availability of time and human resources.

In summary, the development of digital twins (precise models) of machines would
be very useful for examining the operational characteristics of faulty machines. The use
of digital twins reduces the need for destructive testing, as well as being used to validate
new techniques for fault diagnosis or training and condition monitoring systems testing
based on artificial intelligence, such as artificial neural networks. Thus, the high costs
associated with machines, experimental benches, and destructive tests would be greatly



Sensors 2021, 21, 7833 12 of 14

reduced, especially in the case of large machines with failures that can hardly be tested in
the laboratory. The economy and all the impact of the use of digital twins could be more
observed in industry and in power generation, since this is where the biggest machines
are found.

5. Conclusions

The results presented in this research indicate the possibility of creating faulty induc-
tion motor digital twins. It was possible to verify the typical characteristics and failures
signatures through time and frequency domain analyses. An artificial neural network of
the multilayer perceptron type correctly classified faults of broken bars in the rotor of the
3D FEM model. So, in this paper, we prove that digital data results can be recognizable by
artificial neural networks using automated diagnosis algorithms in order to adequately
classify a healthy or broken-bar motor model. Thus, the authors suggest that the research
advance towards the use of digital twins in FEM to create a parametrized database of
healthy and faulty motors, not only for different levels of severity, but also for different
load conditions. Thus, it will be possible to train fault diagnosis systems with simulation
data in order to identify faults in real motors, featuring an alternative non-destructive
training method.
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