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Abstract: With the rise of online/mobile transactions, the cost of cash-out has decreased and the
cost of detection has increased. In the world of online/mobile payment in IoT, merchants and credit
cards can be applied and approved online and used in the form of a QR code but not a physical
card or Point of Sale equipment, making it easy for these systems to be controlled by a group of
fraudsters. In mainland China, where the credit card transaction fee is, on average, lower than a
retail loan rate, the credit card cash-out option is attractive for people for an investment or business
operation, which, after investigation, can be considered unlawful if over a certain amount is used.
Because cash-out will incur fees for the merchants, while bringing money to the credit cards’ owners,
it is difficult to confirm, as nobody will declare or admit it. Furthermore, it is more difficult to
detect cash-out groups than individuals, because cash-out groups are more hidden, which leads to
bigger transaction amounts. We propose a new method for the detection of cash-out groups. First,
the seed cards are mined and the seed cards’ diffusion is then performed through the local graph
clustering algorithm (Approximate PageRank, APR). Second, a merchant association network in IoT
is constructed based on the suspicious cards, using the graph embedding algorithm (Node2Vec).
Third, we use the clustering algorithm (DBSCAN) to cluster the nodes in the Euclidean space, which
divides the merchants into groups. Finally, we design a method to classify the severity of the groups
to facilitate the following risk investigation. The proposed method covers 145 merchants from 195
known risky merchants in groups that acquire cash-out from four banks, which shows that this
method can identify most (74.4%) cash-out groups. In addition, the proposed method identifies a
further 178 cash-out merchants in the group within the same four acquirers, resulting in a total of
30,586 merchants. The results and framework are already adopted and absorbed into the design for a
cash-out group detection system in IoT by the Chinese payment processor.

Keywords: credit card transactions; cash-out group; Internet of Things (IoT); graph embedding;
partial graph clustering; clustering; mobile devices; abnormal detection

1. Introduction

Consumption using a credit card has become more and more popular, bringing
convenience, safety and speed to people’s daily lives. However, this also fosters the
abnormal behavior of cashing out funds from credit cards. Cash-out with credit cards in
this paper refers to a situation in which credit cardholders obtain cash through transactions
either face-to-face or online, mostly using mobile devices instead of an ATM or counter.
Specifically, the merchant receives the funds after transaction settlement by the acquirer
and pays the funds back to the credit cardholder, charging the handling fee. In mainland
China, the credit card transaction fee is, on average, lower than the retail loan rate, and it is
easier to have a credit card approved than a small retail loan. Thus, credit card cash-out
is attractive for investments or business operations, which are considered unlawful if
exceeding a certain amount.
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With the development of Internet of Things (IoT) in different areas, such as sensor
networks [1] and radiation constrained scheduling [2,3], etc., more and more scholars have
conducted research on new technologies in IoT combined with AI (artificial intelligence).
Blockchain-based risk blacklist sharing is under research, which could solve the prob-
lem of finding a balance between data sharing and data protection. A software-defined
blockchain architecture is proposed to realize the dynamic configurations for blockchains
in IoT [4]. Some scholars research data stream mining [5] and security and privacy of edge
computing [6–8]. Others propose a novel Wirelessly Powered Edge intelliGence (WPEG)
framework, which aims to achieve stable, robust, and sustainable edge intelligence by
energy harvesting (EH) methods [9]. It is recommended to use a fast payment based on
credit to enhance the efficiency of computing resources trading [10]. A scheme which
takes advantage of the merits of Android Pay and a refined certificateless signature cryp-
tosystem to simultaneously deliver transaction security and achieve payment efficiency in
practice under Internet of Things (IoT)-based network architectures is proposed [11]. In
IoT-based payment, payment devices and online merchants have closer relations than in
physical payment.

Generally, financial institutions use expert experience to set risk rules, to analyze
transaction data, and to filter suspicious credit cards or merchants in order to identify
fraud and abnormal behavior. This traditional method has shortcomings in terms of
detecting cash-out groups, as follows. (1) Expert experience can be easily explored by the
cash-out group chain and thus can be avoided in a targeted manner. (2) Expert rules are
effective at identifying cash-out cards or merchants with unchanged characteristics, but
are not effective at identifying out cash-out cards or merchants in groups without obvious
unchanged characteristics. (3) Expert experience often lags behind the fast-changing cash-
out modes, which are adjusted manually rather than automatically.

1.1. Related Work

Since the 1980s, data mining technology has developed and more technicians have
applied this technology into the field of financial risk control. In credit card transaction
fraud detection, methods like SVM (support vector machines), neural network, and RF
(random forest) have emerged [12–17]. Although these methods have relatively good
results in terms of targeting suspicious credit card transactions, they cannot solve the
problem of abnormal detection of groups, rather than individuals. For cash-out groups, it
is difficult to confirm suspicious activity due to the cardholder and the conspired merchant
not actively declaring the behavior because it results profit for each side and no loss.
Therefore, supervised learning algorithms for fraudulent credit card cash-out detection [18]
requiring precise and overall labels of fraudulent transactions do not work well in cash-out
group detection.

At present, there are two main methods for detecting credit card fraud using ma-
chine learning algorithms in the industry: supervised learning and unsupervised learning.
The former trains the model based on fraud samples and normal samples, thus calling
for sufficient and updated positive and negative samples. The latter classifies abnormal
transactions into different categories of fraud using a clustering algorithm to put transac-
tions into groups. Both supervised learning and unsupervised learning could predict the
probability of credit card fraud. Sometimes, they are mixed in use.

Supervised learning: As the application of associated network technology has become
more widespread, it can effectively express the association between nodes in a graph. More
and more scholars and technicians have begun to try to detect credit card fraud based
on the natural bipartite graph formed by credit card transactions in merchants, and use
graph-based data mining algorithms. Some researchers [19] decomposed the credit card-
to-merchant bipartite graph into multiple subgraphs, and adopted a divide-and-conquer
strategy for fraud detection. Others [20] used the cardholder-merchant bipartite graph to
estimate the probability of each user being involved in credit card fraud or counterfeiting
in the framework of the Markov Random Field (MRF). Some scholars [21] added device
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information to the bipartite graph, considering two meta-paths, including cardholder–
cardholder and cardholder–merchant–cardholder, and designed a neural network with
an attention mechanism for learning the embedded representation of each node and pre-
dicting the probability of cardholder fraud. The above methods are essentially supervised
learning [22–26], and predict the fraud probability of nodes (cardholders or merchants)
through node attributes and related information between nodes.

Unsupervised learning: Without a confirmation label, it is a typical unsupervised
learning problem [27–31]. Some scholars [32] propose a model to analyze abnormal patterns
of transactions over the payment network, discovering four types, which are: high-risk
merchants, marketing promotion fraud card, cash redistribution network and group fraud.
Others [33] build a transaction graph network based on financial transaction data, and
establish a topological graph feature extraction framework and abnormal detection model.
Group detection of credit card cash-out is essentially an unsupervised problem. The
cash-out merchant group is more critical and hidden than the cash-out card group.

We creatively propose a weakly supervised learning method based on the association
network technology combining supervised learning and unsupervised learning. First, the
seed cards are mined through rule-based methods, and the seed cards’ diffusion is then
performed through the partial graph clustering algorithm (Approximate PageRank, APR),
which produces a batch of suspicious cards. Second, a merchant association network is
constructed based on the suspicious cards. The graph embedding algorithm (Node2Vec)
is used to represent and learn the merchant as nodes, in order to map the topological
association between the merchants into the vector space. Third, we use the clustering
algorithm (DBSCAN) to cluster the nodes in the Euclidean space, which divides the
merchants into groups. Finally, we design a method to classify the severity of the groups to
facilitate the following risk investigation.

1.2. Motivation

We target three tasks, as follows.

• To identify more cash-out groups who are more hidden than individuals, and often
cross multiple acquirers who provide the service to merchants.

• To propose a method for classifying groups into different priorities to facilitate further
investigation, providing explainable features.

• To support large scale data processing in order to enable implementation as
a real-time system.

1.3. Contributions

The main contributions of the paper are summarized as follows.

• In order to mitigate the insufficiency and incompleteness of cash-out risk rules, we
construct an association network between cards using a partial graph clustering
algorithm to spread the seed cards into a set of suspicious cards.

• We construct an association network between merchants through credit card transac-
tion data, using a graph embedding learning algorithm (Node2Vec) and clustering
algorithm (DBSCAN) to identify cash-out merchant groups.

• The merchant and credit card network reaches more than one million nodes repre-
senting merchants and more than six million edges showing the similarity of nodes,
covering hundreds of millions level transaction information.

• We design a group severity rating system from the perspective of engineering appli-
cation, taking into account group aggregation and group severity, and verifying the
rationality of the rating system through a known dataset.

The rest of the paper is organized as follows. In Section 2, we present the system
model. Section 3 presents the results. Discussions are presented in Section 4, and Section 5
concludes the paper.
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2. System Model

We consider that there are a significant amount of data and merchant-to-merchant
networks are more difficult to detect. Therefore, we develop models covering the four
major parts in Figure 1. The model is different from the existing single algorithm-based
method, like supervised learning or unsupervised learning. The model firstly proposes the
combination of expert rule, graph embedding and unsupervised learning.
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2.1. Algorithm and Terms

Several algorithms are used in this paper, including Approximate PageRank (APR),
Node2Vec and DBSCAN. Table 1 provides a description of the terms used in this paper:

Table 1. List of terminology.

Terminology Description

Cards
Payment tool in the form of physical cards or virtual card

number stored in mobile devices, like payment
card tokenization

Seed cards A collection of cards captured by expert rules

Suspicious cards A collection of cards obtained after the spread of seed cards,
including seed cards

Shared cards A collection of cards that have transactions
between merchants

Merchant acquiring by bank Merchants with the acquirer which is a bank
Merchant acquiring by

non-bank
Merchants with the acquirer which is a third party

payment institution

Approximate PageRank (APR) [34,35] algorithm is a personalized ranking algorithm
based on the random walk model, but with made some improvements to the original
PageRank algorithm. Different from the original PageRank algorithm—which calculates
ranking as a whole—APR performs a random walk on the nodes of interest and a local
personalized ranking. Suppose p1, . . . , pN are nodes, M(p i) is the set of nodes relevant
with node Pi, L(p j) is the number supremum of the nodes relevant with node Pj.

When t = 0, the initial probability distribution is ∀1 ≤ i ≤ N, and then

PR(P i ; 0) =
1
N

(1)

With the time goes, the PR value in each step can be written as:

PR(P i ; t + 1) =
1− d

N
+d ∑

pj∈M(pi)

PR(p j , t)

L(p j)
(2)
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where d is the transition probability coefficient, d∈(0,1) and is a constant related with the
number of edges between nodes.

The APR algorithm starts from a given node or a set of seed nodes, walking in a
first-order random walk in the network, and continuously expanding outwards for eligible
communities for directional clustering, without consideration of the size of the whole
graph. Generally speaking, the higher the PR value, the higher the similarity between the
representative node and the seed node.

Node2Vec [36] is used to learn the continuous feature expression of network nodes,
mapping to low-dimensional feature space and preserving the neighborhood of nodes
in the network to the greatest extent. Node2vec proposes a biased random walk, using
two graph walk methods which are breadth first search (BFS) and depth first search (DFS)
in Figure 2. BFS tends to wander near the immediate neighbor nodes, which can reflect
the microscopic characteristics of a node’s neighbors; DFS tends to wander farther, which
can reflect the macroscopic characteristics of a node’s neighbors. By citing two hyper
parameters p and q to balance BFS and DFS, the random walk is guided in Equation (3),
where p represents the possibility of repeated wandering, and q represents the possibility
of visiting other nodes that are farther away from the node.

P(ci = x|ci−1 = v) =

{
αpq(t,x)×wvx

Z if (v, x) ∈ E
0 otherwise

(3)

αpq(t, x) =


1
p if dt,x= 0
1 if dt,x= 1
1
q if dt,x= 2

(4)

where dt,x represents the shortest distance from node t to node x, w is the edge weight.
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Density-Based Spatial Clustering of Applications with Noise (DBSCAN) [37] is a
density-based spatial clustering algorithm which defines clusters as the largest collection of
points connected by density. It can divide regions with sufficient density into clusters, and
can identify arbitrary shaped clusters in noisy spatial datasets. The basic idea is that for
each object in a class, the number of objects contained in the area of a given radius r cannot
be less than a given minimum number of min_points. The algorithm steps are as follows:

Step1.
Choose an unvisited point to start, and find all nearby points within r.
Step2.
If the number of nearby points is greater than or equal to min_points, the current point

is the core point, then, recursively, process all of the unmarked points in the cluster in the
same way, and identify all the data whose density can be reached from the point, forming
a cluster.

Step3.
If the point is a noise point, temporarily mark it as a noise point and select another

data point.
Step4.
The cluster is fully expanded—that is, all points in the cluster have been visited—use

the same algorithm to deal with unvisited points.
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Repeat steps 2, 3, and 4 until all points are processed.

2.2. Data Preprocessing

Considering computation complexity, this step is intended to filter irrelevant data
with cash-out behavior from the original credit card transaction data, such as transactions
with very low amount or those which happened overseas, as these will generate a certain
noise for the identification of credit card cash-out groups.

Data filtering is used to improve data quality and to ensure the reliability of cash-
out group mining. After data preprocessing, approximately 10% to 15% of irrelevant
transactions will be excluded.

2.3. Suspicious Cards’ Generation

After data filtering, the cards and merchants are still both big scale with a minor
portion as cash-out groups. Thus, it is very difficult to identify cash groups from the
data. We try to identify suspicious cash-out cards with abnormal characteristics in order to
narrow the scope of analysis. Following this, only those merchants with suspicious cards
who are considered to be relevant would be analyzed prior, which can not only make full
use of the resources, but can also reduce noise interference to a certain extent.

2.3.1. Seed Cards Detection

Cash-out cards often have the following characteristics: (1) frequent transactions in a
short time period; (2) monthly periodic transactions; (3) consecutive transactions with a
similar or equal amount; (4) transactions within an abnormal time; and (5) transactions in
and out with a similar amount, alternatively. Through the above characteristics, we locate
cash-out cards as seed cards by expert rule from the massive transaction data.

2.3.2. Card-to-Card Network

Generally, cash-out cards would swipe back and forth among the multiple merchants
of which the cash-out group is composed, from a high efficiency perspective. Conversely,
cash-out merchants would be more hidden by mixing cash-out transactions and normal
transactions. However, some cards and seed cards are owned by the same merchants,
meaning that similar transactions would happen in the merchants. We call these cards
suspicious cards which are hidden and cannot easily be identified through expert rule.

Considering the huge scale of cards, it is unrealistic to analyze suspicious cards
through seed cards based on the shared merchants one by one. Local graph clustering
aims to explore the local area of the graph, starting from a given seed node and expanding
outward, looking for the community in which the seed node is located for directional
clustering, without considering the size of the whole graph. Based on this, the associa-
tion between seed cards and suspicious cards is created according to timely sequential
transactions at the same cash-out merchant, and thus a card-to-card association network
is constructed, as shown in Figure 3. The number of timely adjacent transactions at the
same merchant is used as the edge weight, while the card is used as the node within the
card-to-card association network. Since the time complexity of local graph clustering only
depends on the seed cards instead of the totality of cards for which there are data, it is
possible and efficient to identify suspicious cards. In Figure 3, the red nodes are seed cards
and the blue cards are suspicious cards which have been found.
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By comparing several common local graph clustering algorithms, such as approximate
PageRank (APR), HOSPLOC and MAPPR, we finally chose APR Algorithm 1, because it is
more efficiently than others, in terms of both space and time.

Algorithm 1. APR

ApproximatePR (s, α, ε):

1. Let p =
→
0 , and r = s

2. while r(u) ≥ εd(u) for some vertex u:
(a) Pick any vertex u where r(u) ≥ εd(u)
(b) push(u):
Let p’ = p and r’ = r, except for these changes:
p’(u) = p(u) + α r(u)
r’ (u) = (1-α)r(u)/2
For each vertex v such that (u, v) ∈ E:
r’ (v) = r(v) + (1-α)r(u)/(2d(u))
Update r = r’, p = p’
3. return p and r

2.4. Merchant Network
2.4.1. Merchant-to-Merchant Network

The suspicious cash-out cards narrow the scope of cash-out merchant group mining
into its associated merchants, and, as such, building the relationship between merchants
becomes another key. Under normal circumstances, there are many shared cash-out
credit cards among the cash-out merchants in a group. Therefore, based on the seed and
suspicious cards, the relationship between the merchants can be constructed, and the
correlation degree is considered using the following three methods:

• Method 1: Using the number of shared seed cards and suspicious cards among mer-
chants to measure the closeness of merchants is simple and intuitive, but different
cards may have very different transaction amounts. Thus, it cannot reflect the differ-
ence in transaction amount.

• Method 2: Using the total transaction amount of shared seed and suspicious cards
among merchants improves the flaw caused by Method 1. However, there are differ-
ences in the scale of merchants. Large retail merchants have a large daily transaction
amount while small convenience shops have a smaller amount. The total transaction
amount may appear insignificant for large merchants, and the impact in terms of
merchant scale is to be considered.

• Method 3: Combined with the strength of Method 1 and Method 2, the number of
shared seed cards and suspicious cards and the ratio of amount with these cards to
the total amount with the merchants are considered.

After comparison, Method 3 is the best choice, as shown in Figure 4. In Figure 4, the
nodes represent merchants with shared seed and suspicious cards. Figure 4b has filtered
weakly related connections in the original merchant network in Figure 4a.
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2.4.2. Graph Embedding Learning and Clustering

To detect groups in a network through network topology, we chose the methods of
graph embedding learning and clustering together.

As a graph embedding learning algorithm, Node2vec is used to select the next wan-
dering node in the merchant network with the edge weight as the probability, carrying out
the embedded representation learning of the merchant network nodes, and mapping the
network topology relationship to the vector space. The merchants of the same group are
closely connected and related, and have similar expressions.

As clustering algorithm, DBSCAN is chosen which can effectively deal with noise
while K-means needs to manually specify the number of cluster centers and Mean-Shift [38]
depends on the choice of bandwidth. Table 2 compares the three clustering algorithms. The
merchants in the Euclidean space indicate that the nodes in the vector space are clustered
using traditional clustering algorithms, and each node is divided into different clusters.
Figure 5 shows that DBSCAN can better capture the abnormal groups on the edge, while
the other two algorithms could not differentiate abnormal merchants on the edge from
normal merchants in the middle with the same color.

Table 2. Comparison of three clustering algorithms.
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2.5. Group Description

In order to describe the group in more detail, we obtain basic information in different
aspects, such as the merchants in the group, cards in the group and the network structure,
in order to construct a portrait of the cash-out group.

2.5.1. Qualitative Description

Usually, classification of cash-out groups is necessary for understanding the groups.

• From the transaction amount scale perspective, the big, medium or small group could
be differentiated.

• From the characteristics of the shared cash-out cards (mostly seed cards), the big-
amount, QR-code based transaction, credit card balance for circular use may be the
typical types.

• From the type of the acquirer who provides the acquiring service to the merchants,
merchants acquiring by bank and merchants acquiring by non-bank are the two
different classes.

• For some groups, the above characteristics are combined, and these can be referred to
as a combined type.

2.5.2. Quantitative Description

To be more clear, quantitative methods are used to describe and rank the cash-out
groups. We assume two factors—closeness in group and scale in transaction—to reflect the
composite rank of the groups after mining.

• Closeness. Based on the network topology of the merchant nodes, it is possible to
calculate the average clustering coefficient C and the average amount of sharing in
the shared cash-out cards NumS, etc. We then normalize these to the linear weight,
measuring the closeness of the network connection.

Closeness = C×Weightc + NumS×Weightnums (5)

where weightc and weightnum are the weight value, with the default value is 60% and
40% separately.

• Scale. We use the total transaction amount Atotal, shared cards’ transaction amount
Ashared, and the number of shared cards NumC as three parameters to calculate the
scale of groups by normalization.

Scale = Atotal ×Weighta + Ashared ×Weightas + NumC×Weightnc (6)

where weighta, weightas and weightnc are the weight value, with the default value is
40%, 40% and 20% separately.

Rank calculation. After the calculation of closeness and scale, we divide the results into
three categories (A, B, C) separately according to a certain ratio, such as normal distribution,
from the high to the low. The rank is then produced by combining the categories of the two
factors, such as AA, AC, etc. AA refers to the group which needs to be investigated as the
highest priority, while CC means the lowest priority.

3. Results
3.1. Dataset and Evaluation Method

We use 6-month real transactions including IoT devices provided by a worldwide
payment processor headquartered in China. Each transaction includes the entire message
(shown in Table 3) after data protection of key data, like PAN (Primary Account Number),
Merchant code, and Mobile device information, etc. After data preprocessing, 3.28 billion
transactions are entered into the model. The graph has one million nodes and more than
six million edges in the experimental environment. It is clear that 195 known risky cash-out
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merchants in a group are in the dataset, because it is after investigation by police. In order
to verify the effectiveness of this model, the main work is as follows.

• We try to verify the effectiveness of the local graph clustering by comparing the results
with the suspicious cards and without the suspicious cards.

• We introduce the cash-out merchant precision and the case hit rate as the evaluation index.
Precision refers to the percentage of the accurate cash-out merchants that the model
recognizes and that can be confirmed. The case hit rate refers to the percentage of the
number of cash-out merchants that the model covers within the known 195 merchants.

Table 3. The entire message format.

Number Data Element Description

1 Transaction mode Online/face-to-face
2 Card currency class Single/dual currency
3 Acquirer number
4 Issuer number
5 PAN hash value Primary Account Number
6 Date YYYY/MM/DD
7 Time
8 Transaction code Purchase/authorization completion
9 Transaction channel ATM/PoSComputer/mobile device, etc.
10 Interaction mode Magnetic stripe/chip/card not present
11 Transaction amount
12 Merchant type Department store/hotel/restaurant, etc.
13 Merchant name
14 Merchant number
15 Money settlement class T+0/T+1, etc.
16 Merchant info as device in IoT IP address, device name, etc.
17 Phone/PC info as device in IoT IP address, SEID, etc.
18 Response code

3.2. Platform Infrastructure

As we need to provide support which is large-scale and efficient, real-time updated
computing, storage and query, distributed system is used based on Hadoop, HIVE, HDFS,
Hbase. ArangoDB as graph database is used. We use six servers (16 Cpu, 64G storage),
eleven servers (8 Cpu, 32G storage) and three servers (4 Cpu, 8G storage). The data can
be updated on a daily basis. Taking ROI (return over investment) into consideration, we
update the data once a month because the cash-out group remains almost the same in a
month.

3.3. Experimental Results

We sets up a series of expert rules from a variety of cash-out modes, such as large
amount mode, periodic mode, abnormal mode, balance for circular use mode (balance
mode in short), and consecutive transactions with similar or equal amount balance mode
(equal amount mode in short). The meaning of the above five modes are as follows.

• Large amount mode: the credit card transaction amount is bigger than the average
amount normally used in the merchant.

• Periodic mode: the credit card transactions happen monthly, especially partly or
wholly close to a fixed date or a set of fixed dates, which is perhaps the latest repayment
date.

• Abnormal mode: any abnormal transaction in time or in frequency, etc.
• Balance for circular use mode: a certain skill making full use of the small balance

between money out and money in.
• Equal amount balance mode: the single or total transaction amount is same or similar.

The seed cards are selected from the above expert rules (Table 4).
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Table 4. Seed cards in typical cash-out modes.

Large Amount
Mode Periodic Mode Abnormal Mode Balance Mode Equal Amount Mode

Number of seed cards 105,406 1,032,691 79,773 31,554 120,295

3.3.1. The Effectiveness of Suspicious Cards

After the spread of seed cards based on the card-to-card association network, this
experiment identifies more groups. In the case of only using the seed cards, the model can
only find 344 groups, whereas when suspicious cards are added the model can find 414
groups. Figure 6a is a sub-graph of the card association network. The red represents the
seed cards selected by the rule, and the yellow is the suspicious cards. Though suspicious
cards are similar in behavior tp the seed cards, they cannot comply with the fixed parameter
of the expert rules. Thus suspicious cards are easily omitted by the rules and are identified
as normal cards.
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• Discover a new group

Considering that the occasional transaction of the seed card leads to the incorrect
association of normal merchant nodes, the connection between merchants with weak
correlations will be omitted when constructing a merchant network. Without using local
graph clustering, the number of seed cards involved in all merchants of group A is 19.
Due to the weak connection, these merchants are not treated as groups. After adding
the local graph clustering, the cash-out suspicious cards expand from 19 to 45, which
strengthens the connection between the group merchants which are recognized as groups,
as shown in Figure 6b.

• Expansion of merchants in existing groups

Group B has a total of 18 merchants after the spread of the seed cards. In this group,
the suspicious cards missed by the rules are similar to seed cards. The number of merchants
expands from 6 to 18, and the overall business effect has been greatly improved, as shown
in Figure 6c and Table 5.

Table 5. Comparison of three clustering algorithms.

Group B (Just Seed Cards) Group B (with Suspicious Cards)

Number of merchants 6 18
Number of cards 123 323

Transaction amount
(CNY million) 2.5 14
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3.3.2. Precision and Hit Rate

In our experiment, the merchant precision reaches 86% after confirmation and the
model covers 145 merchants from 195 known risky merchants in the dataset, which shows
that this method can mostly identify cash-out groups (Table 6).

Table 6. Model effect of this model.

Number of Merchants in the Groups by Model 21,695

Number of merchants in the groups after confirmation 18,658
Merchant precision 86%

Number of merchants in a known case 195
Number of merchants in a known case recognized by model 145

the case hit rate 74.4%

In addition, 178 other group merchants in four groups are firstly discovered and
verified as cash-out merchants belonging to the same acquirers with 195 known risky
merchants. Compared with traditional financial rules and a supervised learning algorithm,
this model can more comprehensively identify groups of cash-out merchants. Comparing
the expert rule, GBDT algorithm and this model, this model is superior in terms of both
precision and in group recognition (Table 7). The existing experienced expert rules are
provided by the worldwide payment processor. The GBDT algorithm with confirmed
cash-out groups as negative samples is used.

Table 7. Comparison of model effect.

Expert Rule GBDT This Model

Merchant
precision 62.3% 78.4% 86%

Group recognition None None Hit rate 74.4%, and 4 groups newly
revealed including 178 merchants *

* There are 30,586 merchants totally acquiring using four banks as acquirers.

3.3.3. Types of Merchant Network

For each rank type, typical groups are selected for analysis and to display, and the
results are shown in Figure 7. Figure 7a shows a merchant group ranking AA, with the
closest nodes and the most density. Figure 7b shows a merchant group ranking AB, with
the most closeness between nodes but not very high density. Figure 7c shows a merchant
group ranking AC, with a single node having one edge with the other. Figure 7d shows a
merchant group ranking BA, with very close and dense relations between partial sections,
but not the whole nodes. Figure 7e shows a merchant group ranking BB, with good
closeness but common shared edges, and the scale value in Equation (6) is low although
multiple edges exist in the subgraph. Figure 7f shows a merchant group ranking BC, with a
high scale value in Equation (6) which cannot be seen in the subgraph. Finally, Figure 7g–i
correspond to a merchant group ranking CA, CB and CC.
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3.3.4. Group Evolution Analysis

As time passes, the characteristics of the group’s cash-out behavior will also change.
The life cycle of some groups may only exist for a few months, while some groups may
always have illegal practices, and their scale may even continue to grow. Therefore, a time
series analysis of the characteristics of the group portraits is carried out.

In Figure 8, a certain group structure has varied from February to April in 2020. The
group has expanded and the blue nodes are new, while the red nodes are the same as the
previous month.
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4. Discussion
4.1. Rank Description

According to our rank calculation method, we ranked the 145 merchants recognized
by the model in the dataset (Table 8). It can be seen that nearly half of the merchants belong
to the group of AA rank, and no merchant is in the group of CC, which further verifies the
rationality of the group classification method.

Table 8. The rank distribution of the groups hit by the model.

Rank Number of Groups Percentage of
Groups

Number of
Merchants

Proportion of
Merchants

AA 4 28.6% 72 49.7%
BA 1 7.1% 38 26.2%
BB 6 42.9% 20 13.8%
BC 1 7.1% 1 2.2%
CB 2 14.3% 14 9.7%
CC 0 0 0 0

Total 14 100% 145 100%

4.2. Consideration of Future Research

In the future, the graph network, including suspicious card diffusion and weight of
the edge between merchant nodes, could be improved. In addition, graph neural networks
(GNN) can be introduced for embedded representation learning of merchant nodes in the
network. In terms of the confirmation of more group labels, the group classification and
grading rank method can be optimized.

5. Conclusions

We present a model scheme for the mining of cash-out groups. The model proposes to
use the technology of the associated network to link the originally independent merchants
to build the associated network between merchants, so as to express the close relationship
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between the merchants more clearly. We use the graph embedding technology for each
merchant learning to obtain a unique embedded representation, thereby mapping the
merchant structure in the non-Euclidean space to the Euclidean space. In the vector space,
clustering algorithms are used to locate each merchant in a specific community. In the
network, the more closely connected the merchants are, the more similar the embedded
representation. On this basis, the framework of this model portrays the characteristics of
the group according to the transaction behavior, and enriches the characteristics of different
groups. The IoT information is fully made use of.

On a certain 6-month real transaction dataset, the model accurately captures a major
known case and covers 145 merchants from 195 known risky merchants in the dataset. In
addition, it identifies four new groups, including 178 merchants, showing significant effects.
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