
sensors

Article

Memory-Based Pruning of Deep Neural Networks for IoT
Devices Applied to Flood Detection

Francisco Erivaldo Fernandes Junior 1,* , Luis Gustavo Nonato 2 , Caetano Mazzoni Ranieri 2

and Jó Ueyama 2

����������
�������

Citation: Fernandes Junior, F.E.;

Nonato, L.G.; Ranieri, C.M.; Ueyama,

J. Memory-Based Pruning of Deep

Neural Networks for IoT Devices

Applied to Flood Detection. Sensors

2021, 21, 7506. https://doi.org/

10.3390/s21227506

Academic Editor: Nunzio Cennamo

Received: 27 September 2021

Accepted: 5 November 2021

Published: 12 November 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2020 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 SIDIA R&D Institute, Manaus 69055-035, Brazil
2 Institute of Mathematical and Computer Sciences, University of São Paulo (USP), São Carlos 13566-590, Brazil;

gnonato@icmc.usp.br (L.G.N.); cmranieri@alumni.usp.br (C.M.R.); joueyama@icmc.usp.br (J.U.)
* Correspondence: francisco.junior@sidia.com

Abstract: Automatic flood detection may be an important component for triggering damage control
systems and minimizing the risk of social or economic impacts caused by flooding. Riverside images
from regular cameras are a widely available resource that can be used for tackling this problem.
Nevertheless, state-of-the-art neural networks, the most suitable approach for this type of computer
vision task, are usually resource-consuming, which poses a challenge for deploying these models
within low-capability Internet of Things (IoT) devices with unstable internet connections. In this
work, we propose a deep neural network (DNN) architecture pruning algorithm capable of finding a
pruned version of a given DNN within a user-specified memory footprint. Our results demonstrate
that our proposed algorithm can find a pruned DNN model with the specified memory footprint
with little to no degradation of its segmentation performance. Finally, we show that our algorithm
can be used in a memory-constraint wireless sensor network (WSN) employed to detect flooding
events of urban rivers, and the resulting pruned models have competitive results compared with the
original models.

Keywords: deep neural networks; semantic segmentation; random pruning; Internet of Things; flood
detection; user preference

1. Introduction

Flood risk is the probability that exposure to flooding will cause negative conse-
quences, ranging from economic losses to social and health issues [1]. When this risk is not
negligible, flood management solutions become of paramount importance, and different
types of technologies have been proposed for this aim [2]. Within this context, automatic
flood detection may be important to trigger alerts or damage control systems.

A method commonly applied to measure the water level of a river is the implantation
of gauges at different locations of its course [3–5]. Although well-established and suitable
for most situations, this solution is unable to detect uncommon events, such as extreme
flooding. Other approaches rely on satellite or airborne images [6,7], which can provide
good predictions when fed to state-of-the-art machine learning techniques. However,
data from these sources are not suitable for real-time predictions, since it depends on the
overpasses of satellites or other devices, which sometimes happens only as often as once or
twice a day.

An alternative is the placement of still cameras at the basin of a river [8]. Although
each particular camera has limited coverage, which means that multiple cameras at dif-
ferent locations may be needed to cover a broader area, this approach has low cost of
implementation and does not require a sophisticated infrastructure for deployment: a
set of low-end Internet of Things (IoT) devices may be sufficient for data gathering. In
Vandaele et al. [8], opportunistic data from a network of cameras placed throughout the
courses of two rivers were employed to detect flooding based on deep learning approaches

Sensors 2021, 21, 7506. https://doi.org/10.3390/s21227506 https://www.mdpi.com/journal/sensors

https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0003-2301-8820
https://orcid.org/0000-0002-8514-8033
https://orcid.org/0000-0001-5680-9085
https://orcid.org/0000-0002-5591-3750
https://doi.org/10.3390/s21227506
https://doi.org/10.3390/s21227506
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/s21227506
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s21227506?type=check_update&version=1

Sensors 2021, 21, 7506 2 of 18

for segmentation. Our work is developed within this same context, in which a wireless
sensor network (WSN) was employed to provide images from still cameras at the basins
of the rivers of the city of São Carlos, Brazil [9–13] and upload them to a cloud server for
flood prediction.

Although deep neural networks (DNN), particularly convolutional neural networks
(CNN), may provide predictions with high accuracy for image data in general, the resulting
models are usually large, with millions of parameters [14]. Therefore, there are require-
ments for computational resources to store the models and process the inferences, which
may not be met by IoT devices such as those within our WSN. In this scenario, the most
straightforward solution is to upload the images to a cloud server, which may perform
predictions as a microservice [15]. However, since many of the river cameras may be placed
in remote locations with an unstable internet connection, the uploads of data to the cloud
server may often fail, increasing the risk of not triggering damage control protocols during
important flood events.

A possible solution is to not only deploy the flood detection software in the cloud
server, but to also deploy a lighter version at the edge (i.e., within the nodes of the WSN),
which is challenging because the sensors themselves usually do not have enough memory
to run state-of-the-art DNN models. The present work addresses this issue by proposing
a DNN pruning algorithm [16] based on a randomised heuristic. The proposed pruning
algorithm can find a suitable pruned DNN model within a specified amount of memory
available in the target device by randomly removing convolutional filters in a model.

We applied the proposed algorithm to prune a semantic segmentation DNN model and
used this model in our WSN to perform flood detection from river images of still cameras.
It is important to notice that the pruning procedure is performed in a powerful workstation,
and once the pruned DNN model is found, it can be deployed on an IoT device. The
proposed algorithm allows an individual sensor to perform semantic segmentation even if
it cannot connect to its central server. It consists of iteratively eliminating convolutional
filters until the model reaches the specified amount of memory. Moreover, to speed up the
pruning procedure, once a convolutional filter has been removed from the DNN model, it
cannot be added back, a heuristic that reduces the searching space of possible combinations
of convolutional filters.

The algorithm was employed for pruning the DeepLabv3 DNN models [17], consid-
ered the best semantic segmentation models currently available, and the results show that
this strategy can find pruned models within the specified amount of memory with good
segmentation performance. Besides performing experiments with the dataset of riverside
images from Sao Carlos, the present work also consists of an additional set of experiments
using a public dataset, specifically, the PennFundan dataset, for pedestrian detection. This
was done as an additional test for the performance of the model in tasks other than river
segmentation. Results have shown that expressive reductions in the memory footprint of
the model were achieved at minimal cost regarding the Intersection over Union (IoU) in
the test set for both datasets.

Finally, the contributions of this work can be summarised as follows:

• We propose a heuristic that allows the reduction of the memory footprint of DNNs
applied in semantic segmentation tasks;

• We propose a pruning algorithm that finds DNN models with a user-specified amount
of memory, allowing their deployment on memory-constrained devices, such as IoT
and edge devices;

• We propose using DNNs in an IoT-based river flooding detection system, which
allows a city’s authorities and population to monitor and act during dangerous
thunderstorms.

The remainder of this work gives more details about the proposed DNN memory-
based pruning algorithm, and it is organised as follows. The background materials related
to DNN semantic segmentation and pruning are presented in Section 2. The proposed
pruning algorithm is defined in Section 3. We describe the methodology devised to validate

Sensors 2021, 21, 7506 3 of 18

our algorithm in Section 4. Next, the results obtained are presented in Section 5. Finally,
the conclusion and suggestions for future work are detailed in Section 6.

2. Background

This section presents the theoretical background used in our proposed algorithm. It
first explains semantic segmentation through deep neural network (DNN) models. Then, it
shows how we are using semantic segmentation to detect the level of urban rivers. Lastly,
it shows how to reduce the computational complexity of DNN models with convolutional
filter pruning.

2.1. DNN for Semantic Segmentation

Semantic segmentation is a computer vision technique where each pixel of a given
single image is assigned to one class or label [18]. In other words, semantic segmentation
allows us to know the location of objects and people in images. Its main difference from
instance segmentation is that it cannot locate individual instances of a specific object [18].
For example, if there are two mugs in a given image, semantic segmentation could be
used to find the mugs’ location in the image, but it could not find the number of mugs.
Furthermore, semantic segmentation tries to find the exact contour or boundaries of an
object in an image, while a similar technique called object detection only tries to find the
center location of the objects and put a rectangular box around them [18].

Recently, DNN models have become powerful enough to perform semantic segmenta-
tion. One of the most popular DNN topologies used in semantic segmentation resembles
an autoencoder [19]. In this sense, the first half of the DNN model is responsible for
downsampling the input image until it reaches a low dimensional latent representation. In
contrast, the other half performs the segmentation by upsampling this latent representation
to the original input image’s size. The downsampling operations are generally performed
using strided convolutions, while the upsampling operations are performed by transposed
convolutions [20], as illustrated in Figure 1. For example, for medical imaging diagnostics,
Ronneberger et al. [21] developed the U-Net to segment blood vessels and organs from a
diverse set of images. Likewise, the deconvolution network developed by Noh et al. [22] is
another example of a DNN used for segmentation, but this model is used with common
daily images instead of medical ones.

In
p
u
t

im
a
g
e

S
e
g
m

e
n
ta

te
d
 i
m

a
g
e

Downsampling

Strid
ed Convolutions

Upsampling

Transposed Convolutions

Figure 1. Example of a traditional DNN topology used for semantic segmentation.

Currently, semantic segmentation is so popular that even Microsoft has developed the
Common Object in Context (COCO) dataset [23], used as a benchmarking tool by many
researchers in the field. The DeepLabv3 DNN models developed by Chen et al. [17] are
among the state-of-the-art models in the COCO dataset. These models use residual neural
networks (ResNets) [24] in conjunction with atrous spatial pyramid pooling (ASPP), which

Sensors 2021, 21, 7506 4 of 18

consists of a set of convolution operations with different dilation sizes, as illustrated in
Figure 2.

Residual Neural Network

Backbone

1x1 Convolution

3x3 Convolution
12x12 Dilation

3x3 Convolution
24x24 Dilation

3x3 Convolution
36x36 Dilation

1x1 Convolution

Atrous Spatial Pyramid
Pooling (ASPP)

Image Pooling

3x3 Convolution 1x1 ConvolutionInputs Outputs

Size: 224x224x3 Size: 224x224xC

C - number of classes

Figure 2. DeepLabv3 neural network used for semantic segmentation.

2.2. Semantic Segmentation for River Level Detection

Because of its powerful segmentation capabilities, we are currently using the DeepLabv3
DNN model to aid in our task of detecting the water level of urban rivers. The DeepLabv3
is used to segment the water surface from a given image, which is then used to compute
the water level. We follow four steps to detect a river’s water level:

1. Video cameras installed at the riverbed collect images of the monitored rivers;
2. The DeepLabv3 DNN model is used to segment and identify the water surface in the

collected image;
3. Using a manually drawn reference line perpendicular to the water surface, we com-

pute the river water level;
4. If the water level in any monitored rivers reaches a manually set threshold, flooding

alerts are sent to the population.

Figure 3 illustrates the aforementioned procedure. The sensor network installed at
the river bedside can only perform all four steps when we employ a pruned version of
the DeepLabv3 DNN model. One example of how a river’s water level segmented (red
surface) by a DeepLabv3 model is shown in Figure 4. The green line is the reference line,
and the Euclidean distance between the red and blue dots in Figure 4 is used to compute the
river level.

Currently, because our sensors installed at the riverbed side do not have enough
computational power to run a DNN model, all collected images are sent through the
internet to a cloud server running a DeepLabv3 model. Our sensors have a Raspberry
Pi 3 Model B with only 1 GB of RAM available, which is not enough to run most DNN
models. Thus, the proposed work aims to enable the sensors to perform segmentations
locally independently of the internet’s availability.

2.3. Convolutional Filter Pruning

Convolutional filter pruning is a popular technique used to reduce the computational
and memory complexity of DNNs. Each convolutional layer’s parameters are represented
by a four-dimensional tensor of size given by O× D×W × H, where O is the number of
filters, while D, W, and H is the depth, width, and height, respectively, of each one of the O
filters. In this case, to reduce this layer’s computational complexity, one should eliminate
a K number of filters, 1 ≤ K ≤ O− 1. This procedure can be performed with any type
of convolutional layer from strided convolutions to transposed convolution operations.
The methodologies in [16,25–27] relies on filter removal to prune a DNN, but they used
different selection criteria to choose which filters to keep and which filters to eliminate.
These selection criteria range from the l0 norm to the entropy of each filter. However,

Sensors 2021, 21, 7506 5 of 18

some works show that randomized heuristics performs as well as pre-defined selection
criteria [28–30]. Thus, our proposed DNN memory-based pruning algorithm eliminates
convolutional filters at random, but it is controlled by a specified amount of memory to
deploy the model in a memory constraint device. The following section gives more details
about our algorithm.

1st Step: Image Collection

2nd Step: Water Surface Segmentation

3rd Step: River Level Detection

4th Step: Send Flash Flooding Alert

Video cameras installed
at the riverbed collects

images of the monitored rivers

A pruned DeepLabv3 DNN
model is used to segment

and identify the water
surface in the

collected image

Using a manually drawn
reference line perpendicular

to the water surface,
we compute the river

water level

If the water level in any
of the monitored rivers

reaches a manually
set threshold, flooding alerts

are sent to the population

On the other hand, our sensors
can perform all steps with a

pruned version of the
DeepLabv3 DNN model

Our sensors installed at the river bedside can only
perform the 1st step when we employ the original

DeepLabv3 DNN model

Figure 3. Overview of the proposed river flooding detection system.

Figure 4. River level detection aided by the DeepLabv3 DNN model.

3. Proposed DNN Memory-Based Pruning Algorithm

We developed a DNN architecture pruning algorithm in which the memory footprint
of a given DNN model is reduced by randomly eliminating convolutional filters. Binary
numbers represent each filter, where a ‘1’ is used for filters that will not be eliminated and
a ‘0’ for the ones that will be. Moreover, the pruning process is controlled by a user’s
chosen memory footprint. The overall pruning algorithm is presented in Algorithm 1, and

Sensors 2021, 21, 7506 6 of 18

it works by finding the best candidate from a set of N candidate solutions, all of them with
the specified memory footprint. Moreover, after the pruning procedure, each candidate
solution is evaluated on the input dataset to verify its segmentation performance. This
evaluation consists of a single epoch training session over the entire dataset to speed up
the algorithm. In our case, the best candidate solution is the one with the highest mean
Intersection-over-Union (IoU) [31] over all classes. The best candidate solution is then
retrained in the chosen dataset, with a fine-tuning process, to recover any segmentation
performance loss caused by the pruning procedure.

Algorithm 1: Overview of the pruning algorithm
Input :Pruning parameters: Number of candidate solutions (N), desired

memory footprint (mem), probability of removing a filter (p), learning
rate for memory evaluation (αmem). Training parameters: input dataset
(X), number of epochs for fine-tuning (e), learning rate for fine-tuning (α),
learning rate decay schedule step (s), learning rate decay (γ). Shared
parameters: original DNN model (DNN).

Output : Pruned DNN model with the desired memory footprint (prunedDNN).

1 for i = 1 to N do
2 Solution[i]←MemoryPruning(DNN, mem, p, αmem);
3 Solution[i].EvaluateSemanticSegmentation(X);
4 end
5 prunedDNN ← Solution[i] with highest mean Intersection-over-Union (IoU);
6 prunedDNN ← Fine-tuning(X, prunedDNN, e, α, s, γ);
7 return prunedDNN;

The Intersection-over-Union (IoU) is the most popular evaluation criteria for semantic
segmentation and object localization tasks [31]. It consists of the ratio between the inter-
section and the union areas between the annotated mask (i.e., ground truth) and the mask
segmented using the machine learning model (i.e., prediction). Because the intersection is
actually a subset of the union, the IoU might be a number in the [0, 1] interval. An IoU of 1
means perfect overlap between the ground truth and the output of the segmentation model,
while an IoU of zero means no overlap at all. More formally, the IoU can be defined as:

IoU =
|Y ∩ Ŷ|
|Y ∪ Ŷ|

=
Intersection

Union
, (1)

where Y represents the ground-truth segmentation and Ŷ is the predicted segmentation
from the DNN model. Figure 5 illustrates this metric.

Ground-truth

Prediction

Overlap

Figure 5. Intersection-over-Union (IoU) results from the ratio between the area of overlap between
the predicted mask and the ground truth (intersection), and the total area occupied by them (union).

The algorithm receives as inputs the following list of parameters:

• The chosen DNN model to be pruned (DNN);
• Four parameters related to the pruning process:

Sensors 2021, 21, 7506 7 of 18

– The number of candidate solutions (N) that the algorithm will generate;
– The desired memory footprint, in bytes, of all solutions (mem);
– The probability of randomly removing a single convolutional filter (pm);
– The learning rate used when evaluating the memory footprint of a candidate

solution (αmem);

• Five parameters related to the fine-tuning procedure:

– The chosen dataset used to train the pruned DNN model (X);
– The total number of epochs to retrain pruned DNN model (e);
– The initial learning rate (α);
– The number of epochs, or steps, the algorithm waits before reducing the learning

rate (s);
– The learning rate decay factor (γ).

The pruning procedure itself is shown in Algorithm 2. It mainly consists of the
elimination of convolutional filters until the candidate solution has reached the desired
memory footprint. It is also important to note that the algorithm never adds back a filter
that was eliminated. This strategy allows us to considerably reduce the searching space,
speeding up the process of finding pruned DNN models. A single run of the proposed
algorithm takes less than two hours to find a suitable pruned DNN model. Furthermore,
the process of removing convolutional filters is applied to all types of convolutional layers,
such as strided and transposed convolutions. The process of evaluating the memory
footprint of a candidate solution (the method EvaluateMemoryFootprint) is performed
with the help of the Deep Learning API we are employing. The memory is evaluated using
the CPU model, because many IoT devices lack a GPU component.

Algorithm 2: DNN memory-based pruning (MemoryPruning)
Input : Desired memory footprint (mem), probability of removing a filter (p),

learning rate for memory evaluation (αmem), original DNN model (DNN).
Output : A pruned candidate solution with the desired memory footprint

(Solution).

1 Solution← DNN;
2 Solution.EvaluateMemoryFootprint(αmem);
3 while Solution.MemoryFootprint > mem do
4 foreach Active Convolutional Filter in Solution do
5 if RandomNumberGenerator() ≤ p then
6 Remove convolutional filter;
7 end
8 end
9 Solution.EvaluateMemoryFootprint(αmem)

10 end
11 return Solution;

At the end of the whole process, a pruned DNN model (prunedDNN) is returned, and
it can be deployed at the user’s chosen memory constraint device. We believe that our algo-
rithm’s straightforwardness will allow it to be used by a range of researchers from different
fields of studies. The results presented in the following sections demonstrate that this
simple strategy is capable of finding pruned DNN models with competitive performance.

4. Experimental Design

The experimental design used to validate the proposed DNN memory-based pruning
algorithm is presented in this section:

1. We discuss the DNN models in which we tested our algorithm;
2. We present the two semantic segmentation datasets that we chose to use;
3. We show the algorithm parameters used for our tests.

Sensors 2021, 21, 7506 8 of 18

All results we present in this work were obtained using the PyTorch 1.7.1 DeepLearn-
ing API on Python 3.8 running on a Desktop PC equipped with an Nvidia RTX 3070 GPU,
AMD Ryzen 7 3700X, and 32 GB of RAM.

4.1. Chosen DNN Architectures for Pruning

We have chosen to prune the DeepLabv3 DNN models because they are used in our
IoT flood detection system. The DeepLabv3 models are composed of two main compo-
nents, as illustrated in Figure 2: the backbone and the atrous spatial pyramid pooling
(ASPP). In general, the backbone is composed of a residual neural network (ResNet) [24]
responsible for most of the segmentation work, and it has a topology of downsampling
and upsampling similar to Figure 1. On the other hand, the ASPP mainly comprises paral-
lel dilated convolution operations, and it is responsible for improving the segmentation
done by the backbone. However, the ASPP is only responsible for a small fraction of the
memory footprint of a DeepLabv3 model. The ASPP contributes only to around 130 MB
of the memory footprint. Hence, we are only pruning the backbone. Specifically, we are
pruning the models with ResNets containing 50 layer (ResNet50) and 101 layer (ResNet101)
backbones. Furthermore, we used DeepLabv3 models pre-trained on the Microsoft COCO
2017 dataset [23] and performed transfer learning [32] on our chosen datasets.

4.2. Chosen Semantic Segmentation Datasets

The DeepLabv3 DNN models previously mentioned were tested with two datasets:
our custom dataset used for flood detection and the Penn–Fudan dataset for pedestrian
detection. Our custom dataset, which we called São Carlos Rivers, is a collection of river
images collected in São Carlos, SP, Brazil. Our dataset is comprised of 968 training images
and 30 test images taken from two different rivers with different water levels, camera
viewpoints, and lighting conditions. We manually annotated the water surface, or water
blade, for each image. Moreover, all images of this dataset contain only two classes: wa-
ter blade or background. Figure 6 shows some sample images from our custom dataset.
The Penn–Fudan dataset was created by Wang et al. [33], and it has a total of 170 im-
ages of various pedestrians. We randomly divided the dataset into 136 images used for
training and 34 used for testing. This dataset also contains only two classes: pedestrians
and background.

Input images Segmented images

Figure 6. Sample images from our São Carlos Rivers dataset.

Sensors 2021, 21, 7506 9 of 18

We present the memory footprint and test IoU on both datasets of the original
DeepLabv3 models in Table 1. The original DeepLabv3 model with a ResNet50 backbone
has a memory footprint of 1.12× 109 bytes, while the model with a ResNet101 backbone
has a footprint of 1.94× 109 bytes. The original ResNet50 backbone obtained a test IoU of
0.9404 and 0.6992 on the São Carlos Rivers and Penn–Fudan datasets, respectively. Sim-
ilarly, the original ResNet101 backbone obtained a test IoU of 0.9412 and 0.6779 on the
São Carlos Rivers and Penn–Fudan datasets. Table 1 presents the original models’ results
without pruning; thus, we compare the following section results with those from Table 1.

Table 1. Memory footprint and test IoU of the original DeepLabv3 models.

DeepLabv3
Backbone Dataset Original Memory

Footprint Test IoU

ResNet50
São Carlos Rivers

1.12× 109 bytes
0.9404

Penn–Fudan 0.6992

ResNet101
São Carlos Rivers

1.94× 109 bytes
0.9412

Penn–Fudan 0.6779

4.3. Algorithm Parameters

All results presented in the following section were obtained using the parameters
shown in Table 2. We have specified two amounts of memory footprint: 1.07× 109 and
5.37× 108 bytes. These memory footprints are around 1 GB and 512 MB of memory, which
is more than enough to run the DeepLabv3 DNNs on our IoT devices. Moreover, to obtain
statistically significant results, we used 30 candidate solutions for each run of the algorithm
and a total of 30 independent runs of the proposed algorithm.

Table 2. Parameters used to evaluate the proposed algorithm.

Pruning Parameters

Number of candidate solutions (N) 30

Desired memory footprint (mem) in bytes
1.07× 109

and
5.37× 108

Probability of removing a filter (p) 0.1
Learning rate for memory evaluation (αmem) 10−4

Training Parameters

Number of epochs for fine-tuning (e) 100
Learning rate for fine-tuning (α) 10−5

Learning rate decay schedule step (s) 7
Learning rate decay (γ) 0.5

5. Experimental Results

This section details the obtained results using our proposed algorithm with our chosen
DNN architectures, semantic segmentation datasets, and guidelines to help deploy the
proposed algorithm on real hardware. It is important to note that the results are from a set
of 30 independent runs.

Sensors 2021, 21, 7506 10 of 18

5.1. Results

As we specified in the previous section, we evaluated the proposed algorithm on two
different DeepLabv3 backbones with two different datasets using two different memory
footprints: 1 GB and 512 MB footprints. Hence, there are a total of eight sets of results, as
summarized in Table 3. To help with the results’ organization, we first present the ones for
the chosen 1 GB memory footprint, followed by the 512 MB memory footprint.

Table 3. Best Results obtained with the proposed pruning algorithm.

DeepLabv3
Backbone Dataset Best

Test IoU

Memory
Footprint
(in Bytes)

Percentual Decrease
in Memory Footprint

Desired Memory Footprint: 1.07× 109 bytes or 1 GB

ResNet50
São Carlos Rivers 0.9539 1.01× 109 9.82%

Penn–Fudan 0.7199 1.02× 109 8.93%

ResNet101
São Carlos Rivers 0.9505 1.07× 109 44.85%

Penn–Fudan 0.6964 1.07× 109 44.85%

Desired Memory Footprint: 5.37× 108 bytes or 512 MB

ResNet50
São Carlos Rivers 0.9374 5.06× 108 54.82%

Penn–Fudan 0.6734 5.34× 108 52.32%

ResNet101
São Carlos Rivers 0.8988 5.31× 108 72.63%

Penn–Fudan 0.5482 5.29× 108 72.73%

The quantitative results of using 1 GB as the specified memory footprint of the pruned
solutions in our algorithm are presented in the first four rows of Table 3 and Figures 7–10.
For the ResNet50 Backbone, the best test Intersection-over-Union (IoU) values obtained
were equal to 0.9539 and 0.7199 for the São Carlos Rivers and Penn–Fudan datasets,
respectively. Additionally, these two candidate solutions had a memory footprint of
1.01 × 109 and 1.02 × 109 bytes, respectively. In the case of the ResNet101 backbone,
the best test IoU values were equal to 0.9505 and 0.6964 for the São Carlos Rivers and
Penn–Fudan datasets, respectively. Additionally, these candidate solutions had a memory
footprint of 1.07× 109 bytes.

Mean IoU

0.946

0.948

0.950

0.952

0.954

Memory Footprint in Bytes
1.0050

1.0075

1.0100

1.0125

1.0150

1.0175

1.0200

1.0225

1e9

DeepLabv3 - ResNet50 - SaoCarlos

Figure 7. Boxplot results for the São Carlos Rivers dataset using the ResNet50 backbone and 1 GB of
desired memory footprint.

Sensors 2021, 21, 7506 11 of 18

Figure 8. Boxplot results for the Penn–Fudan dataset using the ResNet50 backbone and 1 GB of desired
memory footprint.

Mean IoU

0.930

0.935

0.940

0.945

0.950

Memory Footprint in Bytes
0.98

1.00

1.02

1.04

1.06

1e9

DeepLabv3 - ResNet101 - SaoCarlos

Figure 9. Boxplot results for the São Carlos Rivers dataset using the ResNet101 backbone and 1 GB of
desired memory footprint.

Figure 10. Boxplot results for the Penn–Fudan dataset using the ResNet101 backbone and 1 GB of
desired memory footprint.

Sensors 2021, 21, 7506 12 of 18

The results of using 512 MB as the desired memory footprint are presented in the last
four rows of Table 3 and Figures 11–14. For DeepLabv3 using ResNet50 as a backbone, the
test IoU values were equal to 0.9374 and 0.6734 for the São Carlos Rivers and Penn–Fudan
datasets, respectively. With ResNet101 as a backbone, the IoU values on the test sets were
equal to 0.8988 and 0.5482 on the São Carlos Rivers and Penn–Fudan datasets. Concerning the
memory footprint of the best candidate solutions, the models using the ResNet50 backbone
were pruned to a memory footprint of 5.06× 108 and 5.34× 108 bytes on both datasets.
Likewise, the models using the ResNet101 backbone had a memory footprint of 5.31× 108

and 5.29× 108 bytes, respectively.

Figure 11. Boxplot results for the São Carlos Rivers dataset using the ResNet50 Bhckbone and 512 MB
of desired memory footprint.

Figure 12. Boxplot results for the Penn–Fudan dataset using the ResNet50 backbone and 512 MB of
desired memory footprint.

Sensors 2021, 21, 7506 13 of 18

Mean IoU

0.60

0.65

0.70

0.75

0.80

0.85

0.90

Memory Footprint in Bytes
4.95

5.00

5.05

5.10

5.15

5.20

5.25

5.30

5.35

1e8

DeepLabv3 - ResNet101 - SaoCarlos

Figure 13. Boxplot results for the São Carlos Rivers dataset using the ResNet101 backbone and 512 MB
of desired memory footprint.

Figure 14. Boxplot results for the Penn–Fudan dataset using the ResNet101 backbone and 512 MB of
desired memory footprint.

5.2. Discussion

From the results presented previously, we can see that the proposed pruning strategy
can successfully find DNN models with the desired memory footprint. Furthermore, from
30 independent runs, our algorithm’s candidate solutions had memory footprints below
the specified footprint size.

Concerning the performance of the pruned DNN solutions, from Table 3, we can
see that the pruned models with 1 GB of memory footprint perform better regarding
segmentation than the models with 512 MB of memory footprint. We can observe that this
comes from the fact that a memory footprint of 1 GB is equal to a decrease of 4.46% and
44.85% for the ResNet50 and ResNet101 backbones, while 512 MB corresponds to a 52.05%
and 72.32% decrease, respectively, meaning that with 1 GB of memory footprint fewer
convolutional filters are eliminated than with 512 MB. However, this result also comes
from the fact that we are using the same fine-tuning parameters for all candidate solutions
from both datasets. To prove this statement, we retrained the best ResNet101 model with a
512 MB memory footprint on the São Carlos Rivers dataset to verify if we could recover

Sensors 2021, 21, 7506 14 of 18

some of its segmentation performance. This new training session was performed for
200 epochs, an initial learning rate of 10−6, and a learning rate decay schedule of 20 epochs.
As a result of this retraining session, illustrated in Figure 15, the model reached a test
IoU equal to 0.9189 from the previous 0.8988, which is significantly closer to the original
model’s performance of 0.9404, but with a reduction in memory footprint of 72.63%.

0 25 50 75 100 125 150 175 200
Epochs

0.0018

0.0019

0.0020

0.0021

0.0022

Lo
ss

Training Loss

Training IoU

Test IoU

0.900

0.905

0.910

0.915

0.920

0.925

0.930

0.935

0.940

In
te

rs
e
ct

io
n
 o

v
e
r

U
n
io

n
 (

Io
U

)

Final Test IoU: 0.9189

Figure 15. Retraining results of the best ResNet101 model with 512 MB of memory footprint on the
São Carlos Rivers dataset.

Additionally, we tested the segmentation performance of the DeepLabv3 with ResNet50
backbone pruned to have a memory footprint of 512 MB (the model in the fifth row on
Table 3), a reduction of 53% compared with the original model, with an image of the
river we are monitoring in São Carlos city. Figure 16 presents the segmentation results for
this model. We can see that, even though we eliminated 53% of the memory footprint of
this DNN model, it can still perform a highly accurate segmentation compared with the
original model. The segmentation in Figure 15 shows that our proposed DNN architecture
pruning algorithm can reduce the memory footprint of DNN models while maintaining
their performance.

Input Image
Segmented Image using the Original
DeepLabv3 with ResNet50 Backbone

Segmented Image using the Pruned
DeepLabv3 with ResNet50 Backbone

with 512MB of Memory Footprint

Figure 16. Semantic segmentation results of the pruned DeepLabv3 with ResNet50 backbone model
with 512 MB of memory footprint.

Sensors 2021, 21, 7506 15 of 18

Lastly, we also compared the proposed algorithm with two peer competitors ones.
In this case, to make our results comparable with those from our peers, we used our
algorithm to reduce the model’s number of floating-point operations (FLOPs) instead
of the memory footprint. Specifically, we compared our results with those reported by
Li et al. in [16] and Ding et al. in [34] on the CIFAR10 dataset for a multi-label classification
task, using the VGG16, ResNet56, and ResNet110 DNN models. We also target the highest
pruning rate reached by these peer competitors’ algorithms. For the VGG16 model, we
target a decrease of 81.39% on the number of FLOPs. Likewise, for the ResNet56 and the
ResNet110, we target a decrease of 66.88% and 38.6%, respectively. Table 4 presents our
pruning results compared with those from Li et al. [16] and Ding et al. [34], and it shows
that our algorithm was capable of reducing the number of FLOPs to the specified amount
while maintaining a competitive classification performance, with a difference of less than
1% on the test set. These results show that our randomized pruning strategy is competitive
with those based on complex selection criteria.

Table 4. Pruning results from peer competitors using the CIFAR10 dataset.

Approach DNN Model % FLOPs Pruned Test Error

Li et al. [16]
VGG16 34.2% 6.60%

ResNet56 27.6% 6.94%
ResNet110 38.6% 6.70%

Ding et al. [34] VGG16 81.39% 7.56%
ResNet56 66.88% 9.43%

Ours
VGG16 81.69% 8.28%

ResNet56 68.79% 10.43%
ResNet110 39.91% 7.13%

5.3. Deployment Guidelines

If one would like to deploy the proposed river flooding detection system and the
memory-based DNN pruning algorithm on real hardware, it is essential to follow these guide-
lines:

1. The river flooding detection system requires some flat surface orthogonal to the river’s
water blade for use as a reference;

2. It is necessary to determine how much memory the IoT or edge device can spare to
run a DNN model. In our case, because our sensor has a total memory of 1 GB, a
DNN with 512 MB of memory footprint is ideal, keeping the other 512 MB of memory
to other tasks;

3. The proposed memory-based pruning algorithm must run in a powerful workstation
equipped with a powerful GPU;

4. Once a suitable pruned DNN has been found and trained in the problem at hand, this
model can be directly deployed in the IoT or Edge device to perform its detection tasks.

Furthermore, it is important to note that the proposed algorithm uses the supervised
training paradigm. Thus, the pruning procedure must be repeated if one wants to use new
data to retrain the DNN model. However, once a suitable pruned DNN model is found, it
can be deployed at the edge device without the need to use a powerful workstation.

6. Conclusions and Future Work

In order to manage flood risk, different solutions may be deployed in an environment
which may require that flooding must be detected automatically. A type of data that can be
made readily available are live images from cameras placed at the basins of a river. Since
this type of application is critical in the sense that a false negative may prevent a damage
control solution from being triggered, it is undesirable for the flood detector to depend
on volatile infrastructure components, such as mobile internet connection. One solution

Sensors 2021, 21, 7506 16 of 18

to tackle this issue is deploying the detection mechanism in the edge (i.e., within the IoT
device), which may be challenging when dealing with the resource-greedy neural networks
usually employed for computer vision tasks.

In the present work, we propose a DNN architecture pruning algorithm intended
to reduce a given DNN model’s memory footprint. Our pruning strategy consists of the
elimination of convolutional filters of each convolutional layer. Different from others’ work,
our algorithm does not require the use of any filter metric, such as the average percentage of
zeros or the entropy. The proposed algorithm also does not rely on the use of an evolution-
ary framework. It can find viable pruned solutions by randomly eliminating convolutional
filters and choosing a candidate solution with the highest segmentation performance.

Our proposed pruning algorithm was tested with two semantic segmentation datasets.
One of these datasets is from our wireless sensor network (WSN), which monitors urban
river flooding events in São Carlos, SP, Brazil. The algorithm was set up to prune DNN
models to have two memory footprints: 1 GB and 512 MB. We consider these values to
be adequate to deploy DNN models on memory-constraint devices, such as those used
in our WSN. In that sense, memory-constraint devices, such as those used in Internet of
Things (IoT) applications, can take advantage of the excellent learning capabilities of DNN
models. Furthermore, our results show that the pruned models still have a competitive
segmentation performance compared to the original models. In some cases, the pruned
models’ performance surpassed the original models, showing that our proposed algorithm
is adequate to prune DNN models to be applied to IoT applications.

For future works, our first step is to upgrade our sensor network to employ the
pruned DNN models on each node, allowing the flooding detection to work both through
the internet and locally in case of problems with the sensors‘ connection. Then, we will
apply the proposed pruning algorithm with DNN models used for different tasks, such
as object detection and classification, and use the knowledge from this work to develop
an algorithm capable of partitioning a DNN model to run on multiple nodes of an IoT
sensor network when pruning a model is not feasible. We are also working on our river
flooding algorithm itself to make it compatible with a variety of natural streams, such as
rivers without concrete flooding walls.

Author Contributions: Conceptualization, Methodology, Software, Validation, Formal analysis,
Investigation, Data Curation, Writing–Original Draft, Visualization, F.E.F.J.; Validation, Formal
analysis, Writing—Review & Editing, L.G.N.; Writing—review & editing, C.M.R.; Supervision,
Project administration, Funding acquisition, J.U. All authors have read and agreed to the published
version of the manuscript.

Funding: This research was funded by the São Paulo Research Foundation (FAPESP), grants #2020/05426-
0 and #2013/07375-0, the Brazilian National Council for Scientific and Technological Development
(CNPq), grant #303552/2017-4, and the Samsung Eletrônica da Amazônia LTD. under the Brazilian
Informatics Law #8387/91. The views expressed are those of the authors and do not reflect the
official policy or position of the São Paulo Research Foundation, the Brazilian National Council for
Scientific and Technological Development, the Samsung Eletrônica da Amazônia LTD., or the SIDIA
R&D Institute.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data presented in this study are openly available in GitHub at
https://github.com/feferna/UserBasedMemoryPruningDNN (accessed on 20 September 2021).

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Lane, S.N. Natural flood management. Wiley Interdiscip. Rev. Water 2017, 4, e1211. [CrossRef]
2. Sood, S.K.; Sandhu, R.; Singla, K.; Chang, V. IoT, big data and HPC based smart flood management framework. Sustain. Comput.

Inform. Syst. 2018, 20, 102–117. [CrossRef]

https://github.com/feferna/UserBasedMemoryPruningDNN
https://github.com/feferna/UserBasedMemoryPruningDNN
http://doi.org/10.1002/wat2.1211
http://dx.doi.org/10.1016/j.suscom.2017.12.001

Sensors 2021, 21, 7506 17 of 18

3. Bischiniotis, K.; van den Hurk, B.; Zsoter, E.; de Perez, E.C.; Grillakis, M.; Aerts, J.C.J.H. Evaluation of a global ensemble flood
prediction system in Peru. Hydrol. Sci. J. 2019, 64, 1171–1189. [CrossRef]

4. Gude, V.; Corns, S.; Long, S. Flood Prediction and Uncertainty Estimation Using Deep Learning. Water 2020, 12, 884. [CrossRef]
5. Faulkner, D.; Warren, S.; Spencer, P.; Sharkey, P. Can we still predict the future from the past? Implementing non-stationary flood

frequency analysis in the UK. J. Flood Risk Manag. 2020, 13, e12582. [CrossRef]
6. Raj, J.R.; Charless, I.; Latheef, M.A.; Srinivasulu, S. Identifying the Flooded Area Using Deep Learning Model. In Proceedings of

the 2021 2nd International Conference on Intelligent Engineering and Management, ICIEM 2021, London, UK, 28–30 April 2021;
Institute of Electrical and Electronics Engineers Inc.: London, UK, 2021; pp. 582–586. [CrossRef]

7. Kamilaris, A.; Prenafeta-Boldú, F.X. Disaster Monitoring using Unmanned Aerial Vehicles and Deep Learning. In Proceedings
of the Disaster Management for Resilience and Public Safety Workshop, Proceedings of EnviroInfo 2017, Luxembourg, 13–15
September 2017.

8. Vandaele, R.; Dance, S.L.; Ojha, V. Deep learning for automated river-level monitoring through river-camera images: An approach
based on water segmentation and transfer learning. Hydrol. Earth Syst. Sci. 2021, 25, 4435–4453. [CrossRef]

9. Hughes, D.; Ueyama, J.; Mendiondo, E.; Matthys, N.; Horré, W.; Michiels, S.; Huygens, C.; Joosen, W.; Man, K.L.; Guan, S.U.
A middleware platform to support river monitoring using wireless sensor networks. J. Braz. Comput. Soc. 2011, 17, 85–102.
[CrossRef]

10. Ortigossa, E.S.; Dias, F.; Ueyama, J.; Nonato, L.G. Using digital image processing to estimate the depth of urban streams.
In Proceedings of the Workshop of Undergraduate Works in Conjunction with Conference on Graphics, Patterns and Images
(SIBGRAPI), Bahia, Brazil, 26–29 August 2015.

11. Furquim, G.; Pessin, G.; Gomes, P.H.; Mendiondo, E.M.; Ueyama, J. A Distributed Approach to Flood Prediction Using a WSN
and ML: A Comparative Study of ML Techniques in a WSN Deployed in Brazil. In Intelligent Data Engineering and Automated
Learning—IDEAL 2015; Jackowski, K., Burduk, R., Walkowiak, K., Wozniak, M., Yin, H., Eds.; Lecture Notes in Computer Science;
Springer International Publishing: Cham, Switzerland, 2015; Volume 9375, pp. 485–492. [CrossRef]

12. Ueyama, J.; Faiçal, B.S.; Mano, L.Y.; Bayer, G.; Pessin, G.; Gomes, P.H. Enhancing reliability in Wireless Sensor Networks for
adaptive river monitoring systems: Reflections on their long-term deployment in Brazil. Comput. Environ. Urban Syst. 2017,
65, 41–52. [CrossRef]

13. Furquim, G.; Filho, G.; Jalali, R.; Pessin, G.; Pazzi, R.; Ueyama, J. How to Improve Fault Tolerance in Disaster Predictions: A Case
Study about Flash Floods Using IoT, ML and Real Data. Sensors 2018, 18, 907. [PubMed]

14. Sandler, M.; Howard, A.; Zhu, M.; Zhmoginov, A.; Chen, L.C. Mobilenetv2: Inverted residuals and linear bottlenecks. In Pro-
ceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018;
pp. 4510–4520.

15. Lakshmanan, V.; Robinson, S.; Munn, M. Machine Learning Design Patterns; O’Reilly Media: Sebastopol, CA, USA, 2020.
16. Li, H.; Kadav, A.; Durdanovic, I.; Samet, H.; Graf, H.P. Pruning Filters for Efficient ConvNets. International Conference on

Learning Representations, Toulon, France, 24–26 April 2017.
17. Chen, L.C.; Papandreou, G.; Schroff, F.; Adam, H. Rethinking Atrous Convolution for Semantic Image Segmentation. arXiv 2017,

arXiv:1706.05587.
18. Hao, S.; Zhou, Y.; Guo, Y. A Brief Survey on Semantic Segmentation with Deep Learning. Neurocomputing 2020, 406, 302–321.

[CrossRef]
19. Goodfellow, I.; Bengio, Y.; Courville, A. Deep Learning; Adaptive Computation and Machine Learning; The MIT Press: Cambridge,

MA, USA, 2016.
20. Dumoulin, V.; Visin, F. A guide to convolution arithmetic for deep learning. arXiv 2018, arXiv:1603.07285.
21. Ronneberger, O.; Fischer, P.; Brox, T. U-Net: Convolutional Networks for Biomedical Image Segmentation. In Medical Image

Computing and Computer-Assisted Intervention—MICCAI 2015; Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F., Eds.; Lecture
Notes in Computer Science; Springer International Publishing: Cham, Switzerland, 2015; Volume 9351, pp. 234–241. [CrossRef]

22. Noh, H.; Hong, S.; Han, B. Learning Deconvolution Network for Semantic Segmentation. In Proceedings of the 2015 IEEE
International Conference on Computer Vision (ICCV), Santiago, Chile, 7–13 December 2015; pp. 1520–1528. [CrossRef]

23. Lin, T.Y.; Maire, M.; Belongie, S.; Hays, J.; Perona, P.; Ramanan, D.; Dollár, P.; Zitnick, C.L. Microsoft COCO: Common Objects in
Context. In Computer Vision—ECCV 2014; Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T., Eds.; Lecture Notes in Computer Science;
Springer International Publishing: Cham, Switzerland, 2014; Volume 8693, pp. 740–755. [CrossRef]

24. He, K.; Zhang, X.; Ren, S.; Sun, J. Deep Residual Learning for Image Recognition. arXiv 2015, arXiv:1512.03385.
25. Molchanov, P.; Tyree, S.; Karras, T.; Aila, T.; Kautz, J. Pruning Convolutional Neural Networks for Resource Efficient Inference.

arXiv 2016, arXiv:1611.06440.
26. Luo, J.H.; Wu, J.; Lin, W. ThiNet: A Filter Level Pruning Method for Deep Neural Network Compression. In Proceedings of the

2017 IEEE International Conference on Computer Vision (ICCV), Venice, Italy, 22–29 October 2017; pp. 5068–5076. [CrossRef]
27. Luo, J.H.; Wu, J. An Entropy-based Pruning Method for CNN Compression. arXiv 2017, arXiv:1706.05791.
28. Fernandes, F.E.; Yen, G.G. Automatic Searching and Pruning of Deep Neural Networks for Medical Imaging Diagnostic. IEEE

Trans. Neural Netw. Learn. Syst. 2020, Early Access, 1–11. [CrossRef]
29. Fernandes, F.E., Jr.; Yen, G.G. Pruning Deep Convolutional Neural Networks Architectures with Evolution Strategy. Inf. Sci.

2021, 552, 29–47. [CrossRef]

http://dx.doi.org/10.1080/02626667.2019.1617868
http://dx.doi.org/10.3390/w12030884
http://dx.doi.org/10.1111/jfr3.12582
http://dx.doi.org/10.1109/ICIEM51511.2021.9445356
http://dx.doi.org/10.5194/hess-25-4435-2021
http://dx.doi.org/10.1007/s13173-011-0029-3
http://dx.doi.org/10.1007/978-3-319-24834-9_56
http://dx.doi.org/10.1016/j.compenvurbsys.2017.05.001
http://www.ncbi.nlm.nih.gov/pubmed/29562657
http://dx.doi.org/10.1016/j.neucom.2019.11.118
http://dx.doi.org/10.1007/978-3-319-24574-4_28
http://dx.doi.org/10.1109/ICCV.2015.178
http://dx.doi.org/10.1007/978-3-319-10602-1_48
http://dx.doi.org/10.1109/ICCV.2017.541
http://dx.doi.org/10.1109/TNNLS.2020.3027308
http://dx.doi.org/10.1016/j.ins.2020.11.009

Sensors 2021, 21, 7506 18 of 18

30. Mittal, D.; Bhardwaj, S.; Khapra, M.M.; Ravindran, B. Studying the plasticity in deep convolutional neural networks using
random pruning. Mach. Vis. Appl. 2019, 30, 203–216. [CrossRef]

31. Rezatofighi, H.; Tsoi, N.; Gwak, J.; Sadeghian, A.; Reid, I.; Savarese, S. Generalized Intersection Over Union: A Metric and a Loss
for Bounding Box Regression. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR),
Long Beach, CA, USA, 16–20 June 2019.

32. Yosinski, J.; Clune, J.; Bengio, Y.; Lipson, H. How transferable are features in deep neural networks? In Advances in Neural
Information Processing Systems; Ghahramani, Z., Welling, M., Cortes, C., Lawrence, N., Weinberger, K.Q., Eds.; Curran Associates,
Inc.: Red Hook, NY, USA, 2014; Volume 27, pp. 3320–3328.

33. Wang, L.; Shi, J.; Song, G.; Shen, I.F. Object Detection Combining Recognition and Segmentation. In Computer Vision—ACCV 2007;
Yagi, Y., Kang, S.B., Kweon, I.S., Zha, H., Eds.; Lecture Notes in Computer Science; Springer: Berlin/Heidelberg, Germany, 2007;
Volume 4843, pp. 189–199. [CrossRef]

34. Ding, X.; Ding, G.; Han, J.; Tang, S. Auto-Balanced Filter Pruning for Efficient Convolutional Neural Networks. In Proceedings of
the AAAI Conference on Artificial Intelligence, New Orleans, LA, USA, 2–7 February 2018.

http://dx.doi.org/10.1007/s00138-018-01001-9
http://dx.doi.org/10.1007/978-3-540-76386-4_17

	Introduction
	Background
	DNN for Semantic Segmentation
	Semantic Segmentation for River Level Detection
	Convolutional Filter Pruning

	Proposed DNN Memory-Based Pruning Algorithm
	Experimental Design
	Chosen DNN Architectures for Pruning
	Chosen Semantic Segmentation Datasets
	Algorithm Parameters

	Experimental Results
	Results
	Discussion
	Deployment Guidelines

	Conclusions and Future Work
	References

