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Abstract: Industry 4.0 is envisioned to transform the entire economical ecosystem by the inclusion of
new paradigms, such as cyber-physical systems or artificial intelligence, into the production systems
and solutions. One of the main benefits of this revolution is the increase in the production systems’
efficiency, thanks to real-time algorithms and automatic decision-making mechanisms. However,
at the software level, these innovative algorithms are very sensitive to the quality of received data.
Common malfunctions in sensor nodes, such as delays, numerical errors, corrupted data or inactivity
periods, may cause a critical problem if an inadequate decision is made based on those data. Many
systems remove this risk by seamlessly integrating the sensor nodes and the high-level components,
but this situation substantially reduces the impact of the Industry 4.0 paradigm and increases its
deployment cost. Therefore, new solutions that guarantee the interoperability of all sensors with
the software elements in Industry 4.0 solutions are needed. In this paper, we propose a solution
based on numerical algorithms following a predictor-corrector architecture. Using a combination of
techniques, such as Lagrange polynomial and Hermite interpolation, data series may be adapted
to the requirements of Industry 4.0 software algorithms. Series may be expanded, contracted or
completed using predicted samples, which are later updated and corrected using the real information
(if received). Results show the proposed solution works in real time, increases the quality of data
series in a relevant way and reduces the error probability in Industry 4.0 systems.
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1. Introduction

The strengthening of important global crises, such as the climatic crisis or the natural
resource crisis, makes essential a change in the productive schemes of all countries, but
especially in those with a relevant industrial sector [1]. The increase of efficiency in
all industrial production processes is the only solution to optimize the use of resources,
support the citizens’ wellbeing and strengthen social development [2]. Industry 4.0 is an
innovative paradigm referring to this new era [3].

In Industry 4.0, production systems and solutions implement mechanisms to make
flexible, automatic and real-time decisions [4] that guarantee the adaptation of production
processes to the variable behavior of economic, social and physical contexts [5]. With
this approach, the global efficiency of industry has proved to increase significantly [6].
Paradigms, such as cyber-physical systems [7] or artificial intelligence [8], are basic to
enable this new era, although all these monitoring mechanisms and decision-making
algorithms are supported by a common technology: sensor nodes [9].

Using the sensor data, high-level software modules may create models to represent
(and later predict) the production processes’ and industry context’s evolution, make real-
time business decisions and (even) trigger alarms about workers’ safety and wellbeing [10].
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Some of these activities are critical in industry, and a precise evaluation and stable, high-
quality, physical monitoring are essential to avoid fatal problems. At the software level,
algorithms commonly match these requirements. However, sensor nodes are much less
stable, and they present many random malfunctions [11].

Sensing platforms may be affected by human actions (including hits, blurs, misalign-
ments, etc.), numerical errors (especially in digital sensors measuring derivate variables,
such as the electrical power), hardware problems (such as overheating, aging, inactive
periods, etc.), embedded software issues (for example, memory congestion, blocking in-
structions, etc.) and communication malfunctions (such as variables delays, jitter, packet
losses, interferences, etc.), among many other potential impacts [12]. Although all these
malfunctions are not relevant if long-term analyses are performed (e.g., for statistical ap-
plications), they may cause a critical situation if an inadequate decision is made in real
time based on a low-quality data flow. Currently, the way in which this problem is com-
monly addressed is by considering a seamless integration of sensor nodes and high-level
software components [13], integrating calibration phases and algorithms for adjusting or
compensating effects, such as delays, jitter or numerical errors, etc.

Nevertheless, this seamless integration highly affects the social and economic impact
of the Industry 4.0 paradigm, as only some (or even only one) sensor technologies may be
employed in each application, as calibration models, compensation algorithms, etc. [14],
are totally dependent on the specific sensors and processing algorithms to be integrated.
This turns Industry 4.0 into a very rigid and close paradigm, more similar to a proprietary
solution than to a flexible, open approach. Thus, the adoption of the Industry 4.0 paradigm
may get very slow because of its high cost (caused by a lack of competitiveness in the
market) and its low interoperability.

To address this challenging situation, new solutions guaranteeing the interoperability
of all sensor nodes and sensor technologies with every possible software element and
processing algorithm in Industry 4.0 solutions are needed.

Therefore, in this paper, we propose a general solution to ensure the high quality
of data flows and their adaptation to the algorithms’ requirements, valid for all sensor
technologies and algorithms. It is a flexible and adaptable solution that may be integrated
in every Industry 4.0 system. The proposed solution is based on numerical algorithms
following a predictor-corrector architecture. Given a data flow to be curated and adapted,
first, using a combination of techniques, such as Lagrange polynomial and Hermite inter-
polation, a set of potential, curated data series is calculated. Later, the most probable series
is selected according to the statistical properties of the historical series. The original data
series may be expanded, contracted or completed using predicted samples, which are later
updated and corrected (second phase) using the real information (if received).

Contrary to other proposals (based, for example, on Gaussian distributions), this
scheme is not dependent on the sensor technology or the software modules to be integrated,
and it introduces (as shown in Section 4) a negligible delay, so real-time operation is not
affected (something essential in Industry 4.0 systems). As a result, the sensor platform may
interoperate with any high-level application, with no adaptation or calibration procedure.
The produced curated time series has enough quality to be integrated with any kind of
software module.

The structure of the paper is as follows: Section 2 presents the state-of-the-art on sensor
interoperability in Industry 4.0 scenarios. Section 3 describes the main proposal, including
the mathematical foundations. Section 4 includes an experimental validation analyzing
the performance of the proposed solution. Finally, Section 5 shows the conclusions and
future work.

2. State of the Art on Sensor Interoperability in Industry 4.0 Scenarios

In the last 10 years, the idea of “sensor interoperability” has been understood in many
ways [15]. From some approaches focused on hardware compatibility [16], to other views
related to the cyber-physical system revolution and focused on abstract and high-level
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issues, such as synchronization [17]. However, the most modern and accepted definition for
sensor interoperability was proposed by the Institute of Electrical and Electronic Engineers
(IEEE) [18]: “the ability of two or more systems or components to exchange information
and to use the information that has been exchanged”.

In this context, two basic aspects are identified within the challenge of sensor interop-
erability: the interconnection technologies and the adaptation technologies [19]. The first
ones are focused on enabling the exchange of information, while the second ones aim to
allow the use of the exchanged data.

One of the basic contributions to interconnection technologies is interoperability stan-
dards and architectures. The Industrial Internet Reference Architecture (IIRA) [20] was
introduced in 2015 and provides a design process to integrate interoperability mechanisms
in industrial Internet systems. On the contrary, the reference architecture model for Indus-
try 4.0 [21] (also proposed in 2015) includes a set of guidelines to understand previously
existing generic interoperability standards in the context of Industry 4.0. Nevertheless, the
main topic investigated within this topic is cloud and edge architectures [22]. In cloud
architectures, the interoperability problem is decomposed into elemental problems that are
solved and executed in a distributed manner [23]. Although these architectures are very
flexible and can be employed in all kinds of Industry 4.0 scenarios [24], they implement a
star topology where all transactions must go through the cloud, which may cause bottle-
necks and congestion under some circumstances [25]. Contrary to these traditional cloud
architectures, the proposed solution may be adapted to different Industry 4.0 architectures.
It can be deployed in edge architectures, just distributing all the independent modules
among the different devices. But the proposed framework also allows several orchestrated
instances working in one unique scenario, as the statistical model does not need a global
understanding of the physical platform. Then, a mesh architecture can also be supported,
where bottlenecks and congestion are easier to manage.

Other and heterogenous interconnection technologies have been also reported. Some
proposals define models to fill the gap between low-level infrastructures and data an-
alytics components [26], while other schemes integrate semantic web components and
ontologies to connect cyber-physical systems and knowledge management modules [27].
Among all these solutions, digital twinning is the most promising approach [28]. Digital
twins are comprehensive digital representations of physical components [29], so they can
simulate the behavior of real underlying platforms through realistic models [30]. Using
these twins, different enhanced interconnection middleware (for example, based on pub-
lication/subscription networks) have been tested in several application scenarios [31].
Although these mechanisms successfully interconnect all layers in an Industry 4.0 sys-
tem, they cannot protect the high-level applications from errors or corrupted data in the
infrastructure. Adaptation technologies are then required.

Regarding adaptation schemes, although data management and processing are one
of the most popular, challenging and interesting topics currently [32], most reported
Industry 4.0 solutions in this area are focused on high-level applications: from fault
diagnosis [33], fault prediction [34] or prognosis [35] to semantic mechanisms [36] or data-
fusion approaches [34,37]. However, in all these proposals, sensing data are considered
to show the required quality, and no data curation or quality improvement mechanisms
are described.

One of the key challenges addressed in the context of adaptation technologies is sensor
reliability [38]. In autonomous systems, such as cyber-physical systems, problems, such
as lost-data packages and data collision, must be addressed [39]. In general, however,
proposed solutions are not focused on data curation but on analyzing how reliable the
received data are. Different models to estimate the sensor reliability at any time have
been reported: from the traditional, specific models for each sensor (typically motion
sensors) [40] and probabilistic graphs [41], to modern machine-learning frameworks [42]
or response filters [43] that operate with generic devices. The final objective of all these
models is to enrich the decision process based on the collected data. Although promising



Sensors 2021, 21, 7301 4 of 25

results have been reported, this approach needs the high-level, decision-making modules
to be adapted as well, so the Industry 4.0 implantation costs and barriers tend to be higher.
With the proposed solution in this paper, this challenge is addressed.

In semantic architectures, data adaptation is also critical. Different mechanisms to
adapt and transform the different semantic standards into any other data format may be
found [44]. Besides, ontologies to allow semantic data processing have been reported [45].
Contrary to the proposed solution, these schemes cannot be employed to protect the
Industry 4.0 system against corrupted data, malfunctions, etc.

On the other hand, data-curation mechanisms are not explicitly addressed, as a
seamless integration among hardware and software components [34,46] is the preferred
approach in the literature. Hard and complex calibration processes are usually consid-
ered [6] to make the processing algorithms aware of the sensor nodes’ biases. Besides,
computationally heavy schemes to compensate different effects (such as redundant data)
based on previous observations and offline processing may be found [47]. However, all
these proposals do not enable sensor interoperability (they are totally application-specific);
on the contrary, they make it difficult. Moreover, they are not flexible or dynamic solutions
and, of course, they cannot be executed in real time (essential requirements in Industry 4.0).

Only a few proposals on actual data curation have been reported. In this area, most
contributions are focused on outlier detection [11]. Using different techniques, datasets are
transformed, and anomalous data are removed. Techniques based on digital encoders [48],
machine learning [49], statistical indicators [50], performance indicators [16] or hybrid
approaches [51] have been described. Although these schemes are useful, they cannot
be employed in real time, and many other potential malfunctions, such as packet losses,
cannot be addressed through these solutions. On the other hand, mechanisms based on
signal-processing techniques may be found [15]. In these solutions, data are understood as
communication signals, and they are curated based on instruments, such as the complex
envelope. This approach may operate in real time and may correct and curate all kinds
of malfunctions; however, it only considers one criterion to propose a curated data series.
Thus, the error introduced by the curation algorithm is very variable, depending on how
similar the sensor data under curation to a communication signal is. In some Industry 4.0
scenarios, this error may be too high to be acceptable.

Finally, some generic proposals on data analysis may be employed to support data
curation in Industry 4.0. For example, algorithms to classify time series in an automatic
and more flexible manner [52] have been reported. If only two labels (valid and invalid) are
defined, this scheme could be employed for data curation. However, it cannot be employed
in real time, and it does not enable the correction of errors in data series.

Contrary to all these previous proposals, the solution described in this paper may
operate in real time, as it only operates with a limited amount of data. It is flexible and
adaptable to all scenarios, as it does not depend on the sensor technology of software algo-
rithms to be employed. Besides, all kinds of malfunctions can be curated, and up to four
different potential curated data series are analyzed before selecting the most probable one.

3. Proposed Predictor-Corrector Solution

In this section, the proposed data duration mechanism, based on a predictor-corrector
approach, is presented. Section 3.1 describes the general statistical framework to calculate
and obtain the curated data series. Section 3.2 presents the different approaches to calculate
the actual curated data flows, even in real time. Section 3.3 describes the models to analyze
and estimate the different data malfunctions that may appear in Industry 4.0 solutions.
Finally, Section 3.4 presents the mechanisms to update the curated data series if real data
from Industry 4.0 is received in the future.

3.1. General Mathematical Framework and Curation Strategy

Given an Industry 4.0 platform T (1), a set of N different generic sensor nodes Si are
generating N independent data series yi[n]. These data series suffer different malfunctions,
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and they are received by high-level software modules as a different set of N data series
xi[n]. These malfunctions are represented as a collection of L different functions λl (2)
transforming the original series generated by the sensor nodes yi[n] into de the received
time series xi[n].

T = {Si, i = 1, . . . , N} (1)

xi[n] = λ1
◦

. . . .
◦
λl
◦

. . .
◦
λL(yi[n]) (2)

Although other sensing patterns could be applied in industrial scenarios, samples are
periodically generated and sent to the high-level software modules for real-time monitoring
and decision making. Samples in the Si sensor node are produced each Ti seconds (3).

xi[n] = xi(nTi) n ∈ N (3)

Statically, each data series xi[n] is a realization of a stochastic process φi (4), where Ω is
the universe of possible values ωk generated by the sensor node Si. This universe is a subset
of the field of real numbers R (5). This universe is discrete and strictly depends on the
hardware capabilities of the sensor node, and it is analyzed and reported by manufacturers.

φi(n, ωk ) = xi[n] ωk ∈ Ω (4)

Ω = {ωk k = 1, . . . , K} ⊂ R (5)

For each different time instant n0, the stochastic process φi transforms into a different
random variable Xi[ω] (6) with some specific statistical properties.

φi(n0, ω ) = Xi[ω] (6)

However, in Industry 4.0 scenarios, physical variables evolve much slower than the
sampling period Ti; i.e., the superior frequency of physical signals fmax is much lower than
the sampling frequency f i

s (7).

fmax �
1
Ti

= f i
s (7)

In this context, for any time instant n0, it is possible to define an open time interval
Bs around n0 with radix ε (8), where the random variables show equivalent statistical
properties for all time instants. Thus, we are assuming the stochastic process φi is locally
first-order stationary in Bs (9).

Bs = {n ∈ N : d(n, n0) < ε}

being d(n, n0) =
√
(n− n0)

2 the Euclidean distance in R
(8)

φi(n, ω ) = φi(n + nc, ω ) ∀ n, n + nc ∈ Bs (9)

Given a data series xi[n], if data in the time interval [n1, n2] should be curated, an
expanded time interval

[
ne

1, ne
2
]

(10) must be considered, so it contains the original interval
[n1, n2] where data must be curated, but it is included in the open time interval Bs (the
stochastic process must be stationary in the interval).

[n1, n2] ⊂ [ne
1, ne

2] ⊂ Bs (10)

This time interval [n1, n2] may refer to a past time period (11) (so we are performing
an offline data curation), but we can also perform a real-time data curation if the current
time instant n0 belongs to the time interval [n1, n2] under study (12). If operating in real
time, the proposed curation solution is employed as a prediction mechanism for calculating
future samples in advance. If offline data curation is performed, the algorithm may be
run as fast as possible, while in real-time data curation, the process is synchronized with
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the sampling period Ti, so one sample is curated at each time instant, although as many
samples as desired may be predicted with each new sampling period Ti.

n0 /∈ [n1, n2] : n0 < n1 (11)

n0 ∈ [n1, n2] : n1 ≤ n0 < n2 (12)

The problem of data curation is to find a new time series x∗i [n] in the interval [n1, n2],
so it represents in a more precise way (compared to the original time series xi[n]) the real
situation of the Industry 4.0 system, represented by time series yi[n]. As many random
effects impact this study, a probabilistic approach is the most adequate, so this condition
transforms in a comparison between two different probabilities, p∗i and pi (13). Hereinafter,
P(·) is the probability function, calculating the probability of a predicate to be true.

p∗i > pi

p∗i = P
(
x∗i [n] = yi[n] ∀n ∈ [n1, n2]

)
= P

(
x∗i [n]

)
pi = P(xi[n] = yi[n] ∀n ∈ [n1, n2]) = P(xi[n])

(13)

Figure 1 shows the proposed algorithm to find that time series x∗i [n], fulfilling the
previous conditions (13), if it exists.
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As can be seen (in the initial prediction phase), first, a set of C suitable candidates X to
be that curated time series x∗i [n] are calculated (14).

X = {Xc c = 1, . . . , C} (14)
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To calculate those candidates, different techniques are employed, based on interpola-
tion mechanisms. In particular, five different techniques are considered: Newton’s divided
differences, Hermite interpolation, splines, Taylor interpolation and Lagrange polynomial.
The purpose of this approach is to guarantee the curated time series x∗i [n] is continuous
and coherent with samples outside the curation interval [n1, n2]. Using the previously
curated data in the expanded interval

[
ne

1, ne
2
]
, a collection of possible curated time series

x∗i [n] are calculated, considering all samples define a continuous function. For each one
of these candidates Xc, then, it is applied the statistical theory (Bayes’ theorem) to obtain
probability p∗i . If, for any candidate, the curation condition (13) is met, that candidate Xc is
selected as the curated time series x∗i [n]. On the contrary, and depending on how different
probabilities p∗i and pi are, the time series may remain as is, or the curate data series may be
obtained as a combination of the most probable candidates and the original data flow xi[n].

If a real-time data curation is performed, new information about the curation interval
[n1, n2] is received at each sampling period Ti. In that case, a correction phase is carried
out. In this phase, the new sample is compared to the predicted one, and (depending
on how different they are) different actions are taken to correct the curated time series
initially calculated.

To solve this problem, both probabilities p∗i and pi must be obtained.
Probability pi represents the fact that the received data xi[n] are exactly those data

generated by the sensor nodes yi[n]. In other words, no malfunction (of any kind) has
occurred in the interval [n1, n2]. In our model, that means functions λl are the identity
function all of them (15). As all the malfunctions are physically independent, they are
also statistically independent, and the joint probability may be rewritten as a product of
unidimensional probabilities (16). Section 3.3 analyzes how to evaluate those probabilities
for each one of the considered malfunctions.

pi = P
(

xi[n] = λ1
◦

. . . .
◦
λl
◦

. . .
◦
λL(yi[n]) = yi[n]

)
= P(λl = IΩ ∀ l = 1, . . . , L) (15)

pi =
L

∏
l=1

P(xi[n] = λl(yi[n]) = yi[n]) =
L

∏
l=1

P(λl = IΩ) (16)

On the other hand, probability p∗i is more complicated to calculate, and the Bayes’
theorem is employed (17).

p∗i =
P
(

x∗i [n]
∣∣ xi[n] ∀ n ∈

[
ne

1, ne
2
])

P
(

xi[n] ∀ n ∈
[
ne

1, ne
2
] ∣∣ x∗i [n]

)P(xi[n] ∀ n ∈ [ne
1, ne

2] ) =
pcont

pmal
prx (17)

To apply this theorem, three different probabilities, pcont, pmal and prx, must be ob-
tained. Probability pmal is the probability of functions λl (representing the malfunctions)
to transform data series x∗i [n] into series xi[n] in the interval [n1, n2]. As said before, this
probability may be written as a product of L different unidimensional probabilities (18).
Section 3.3 analyzes how to evaluate those probabilities for each one of the considered
malfunctions.

pmal = P
(
λl
(

x∗i [n]
)
= xi[n] ∀ l = 1, . . . , L n ∈ [n1, n2]

)
=

L
∏
l=1

P
(
λl
(
x∗i [n]

)
= xi[n]

)
(18)

Probability prx is the probability of receiving the sequence xi[n] in the interval
[
ne

1, ne
2
]
.

That variable may be easily calculated using the probability function of the random variable
(and stochastic process) φi(n, ω ) in the time interval Bs (19). In this case, once again, we
are considering samples are independent events, so the join probability may be rewritten
as a product.

prx = φi(n, xi[n] ∀n ∈ [ne
1, ne

2]) = ∏
∀n∈ [ne

1, ne
2]

φi(n, xi[n] ) (19)
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Finally, probability pcont is the probability of the Industry 4.0 system’s evolution to
follow a continuous and coherent flow. In this case, we are evaluating how probable is the
data series x∗i [n] to show certain values in the interval [n1, n2], considering the other data
received in the expanded time interval

[
ne

1, ne
2
]
. As the stochastic process is stationary in

the interval Bs, the probability distribution g0
i the interval [n1, n2] and distribution ge

i in the
expanded time interval

[
ne

1, ne
2
]

must be identical. As both distributions become different,
the probability of series x∗i [n] to be the best candidate for the curated series is reduced.

To calculate how different these two distributions are, we are employing the traditional
function scalar product and the Lebesgue integral (20). However, in this case, as the
universe under study is discrete, the Lebesgue integral may be approximated by a common
sum. Thus, and considering the distance function induced by the function scalar product,
we can calculate the distance dg between distributions g0

i and ge
i (21). Finally, to calculate

the probability pcont, we must apply a function transforming values in the interval [0, ∞)
in the interval [0, 1] (22).

〈g0
i , ge

i 〉 =
∫

Ω
g0

i · ge
i dω ≈ ∑

Ω
g0

i · ge
i (20)

dg = d
(

g0
i , ge

i

)
=
√

g0
i ,−ge

i , g0
i ,−ge

i =

√
∑
Ω

(
g0

i − ge
i
)2 (21)

pcont = 1− e−dg (22)

Then, to enable the calculation of probabilities pcont and pcont, we have to model the
probability distribution of the stochastic process φi within the interval Bs.

We are now defining the operator C(·, ·) within the universe Ω (23). Basically, this
operator indicates the number of elements in the universe that are between two provided
values; that is, card{·} the standard cardinality operator. This operator is coherent as Ω is a
subset of the field of the real number where a strict order relation is defined. This operator
is a positive operator as the target set is the set of natural numbers N ∪ {0}.

C : Ω × Ω → N ∪ {0}
C(ω1, ω2) = card{ωk : ω1 ≤ ωk < ω2}

(23)

Now, we are assuming the stochastic process φi is also locally ergodic in Bs. Thus,
and according to the Birkhoff ergodic theorem, the additions Am of the composite function
C ◦ φi

(
restricted to Bs, φi | Bs

)
converge “almost surely” to the statistical expected value

of the composite function C ◦ IΩ (24), where IΩ is the identity function in the universe Ω.

Am =
m
∑

r=0

(
C ◦

(
φi | Bs

)m)
Am
m → E[C ◦ IΩ ]

(24)

Now, we are considering a partition ΠΩ of the universe Ω, composed of ∆ different
subsets πi (25). All subsets πi have the same measure `i, understood as the Lebesgue
measure (26).

ΠΩ = {πi i = 1, . . . , ∆}

ΠΩ =
∆⋃

i=1
πi

(25)

`i = `(πi) = bi − ai
being πi = (ai, bi) ⊂ Bs ⊂ R (26)

If we restrict the previous operator C(·, ·) to any subset πi, C |πi
and evaluate this

operator in the limits (ai, bi) of this set πi, the statistical expected value of the composite
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function C |πi
◦ Iπi is “almost surely” identical to the expression for the Laplace rule

employed to calculate the probability of an event (27).

Am
m = 1

m

m
∑

r=0

(
C |πi

◦
(

φi | Bs ,πi

)m)
=

= 1
m card{xi[n] : n ∈ Bs

∧
ai ≤ xi[n] < bi} → E

[
C |πi

◦ Iπi

] (27)

In this case, the event under study is the fact a sensor node generates a sample
belonging to πi in the time interval Bs. In conclusion, we are studying the probability
distribution of the stochastic process φi in the interval Bs.

We are now defining a function f (·) associating the mean point σi of every subset πi
with the additions Am (28). In other words, through the additions Am, we are generating a
discrete probability function f (·), which “almost surely” converges to the actual probability
distribution of the stochastic process φi in the interval Bs and the points σi (29).

f (σi) = f
(
`i
2

)
=

Am

m
=

1
m

card
{

xi[n] : n ∈ Bs
∧

ai ≤ xi[n] < bi

}
(28)

f (σi) → φi | Bs ,πi
(n0,σi) (29)

To calculate the probability distributions g0
i and ge

i , the same process as described
before may be employed, but considering the proper time interval and a new universe Σ
composed by points σi (30). Probabilty prx can be directly obtained using function f (σi).

Σ = {σi i = 1, . . . , ∆} (30)

3.2. Candidates to Curated Time Series: Calculation

The first step to improve the quality of the time series xi[n] produced by sensor nodes
Si in Industry 4.0 systems is to find the candidate series X to be the curated flow we
are looking for. Initially, any series Xc could be a candidate, and probability p∗i will be
the indicator to select the final curated series x∗i [n]. However, this approach is almost
impossible to implement in practice, as the universe of time series in the curation interval
[n1, n2] is infinite. Moreover, as this is not a free mathematical problem, some physical
restrictions inherit from the Industry 4.0 system we are modeling must be considered.

First, sensor nodes have an operational range [xmin, xmax], which introduces a hard
restriction: no candidate Xc with samples in the exterior of the interval [xmin, xmax] is in
the final curated series x∗i [n] (31).

Xc [n] /∈ [xmin, xmax] n ∈ [ne
1, ne

2] ⇒ Xc [n] 6= x∗i [n] n ∈ [ne
1, ne

2] (31)

Second, Industry 4.0 systems monitor physical processes, which are continuous and
smooth (as natural variables), so no gaps or abrupt changes may appear in the curated
time series. In this context, curated series x∗i [n] in the interval [n1, n2] must be continuous
and coherent with time series in the surrounds of this interval, i.e., in the expanded time
interval

[
ne

1, ne
2
]
. In that way, analytic function describing the evolution of the Industry 4.0

system in the curation interval [n1, n2] must also be able to describe the system evolution
in the expanded interval

[
ne

1, ne
2
]
. To apply this restriction, the best way to calculate the

candidates Xc is using interpolation techniques.
Different interpolation techniques may generate different candidates Xc, so in this

work, we are considering the most powerful, popular and well-behaved interpolation solu-
tions: Newton’s divided differences, Hermite interpolation, splines, Taylor interpolation
and Lagrange polynomial.

These techniques are evaluated using the E points xi
ext[n] which belong to the ex-

panded interval
[
ne

1, ne
2
]
, but they are not included in the curation interval [n1, n2] (as
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data in the curation interval may be wrong and introduce false information in our algo-
rithm) (32).

xi
ext[n] =

{
xi

ext

[
next

j

]
j = 1, . . . , E

}
= xi[n] : n ∈

{[
ne

1, ne
2
]
∩ [n1, n2]

}
=

=
{

next
j j = 1, . . . , E

} (32)

Candidate X1 [n] is obtained using the Newton’s divided differences technique. In
this case, as the independent variable is the discrete time n, traditional expressions for
Newton’s interpolation are slightly modified. Specifically, given the E points in xi

ext[n],
candidate X1 [n] is a polynomial with order E− 1 (33). Coefficients (named as divided
differences) may be easily calculated using simple mathematical operations, which reduces
the computational time, enabling a real-time operation (34).

X1 [n] = δ0 +
E

∑
z=1

δz·
z

∏
r=1

(
n− next

r
)

(33)

δ0 = xi
ext
[
next

1
]

δ1 =
xi

ext[next
2 ]−δ0

next
2 −next

1

δ2 =

xi
ext[next

3 ]−δ0
next

3 −next
2

−δ1

next
3 −next

1

δ3 =

xi
ext[next

3 ]−δ0
next

3 −next
2

−δ1

next
3 −next

1
−δ2

next
4 −next

1
. . .

(34)

Candidate X2 [n] is calculated through the Lagrange polynomial interpolation algo-
rithm. In this case, the candidate is just a linear combination of data in sequence xi

ext[n]
(35). Besides, in this case, the order β of the interpolation polynomial may be selected (if it
is lower than E, number of points in xi

ext[n]). In general, polynomial with orders above six
are not suitable (because they present unnatural fluctuations), but this parameter is free to
be selected according to the Industry 4.0 system under study.

X2 [n] =
β

∑
z=1

xi
ext
[
next

z
] β

∏
r=1 r 6=z

n− next
r

next
z − next

r
β < E (35)

The third candidate X3 [n] is obtained using the Hermite interpolation theory. In this
case, besides the sequence xi

ext[n], it is also necessary to know the value of the first order

derivative
.

xi
ext[n] in the points next

j . When managing discrete-time sequences, this may
be easily calculated using first-order finite differences. In general, we are using a central
difference (36), as it presents a much lower error. However, if either time point next

j−1 or
time point next

j+1 do not exit, we can employ the forward difference (37) or the backward
difference (38) respectively (and although a higher numerical error is introduced).

.
xi

ext

[
next

j

]
=

xi
ext

[
next

j+1

]
− xi

ext

[
next

j−1

]
next

j+1 − next
j−1

(36)

.
xi

ext

[
next

j

]
=

xi
ext

[
next

j+1

]
− xi

ext

[
next

j

]
next

j+1 − next
j

j < 1 (37)
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.
xi

ext

[
next

j

]
=

xi
ext

[
next

j

]
− xi

ext
[
next

i−1
]

next
j − next

j−1
j > E (38)

If both time instants next
j−1 and next

j+1 do not exist, the first-order derivative cannot be
calculated for instant next

j . In that case, that point next
j is not considered to calculate the

candidate sequence X3 [n].
Given the Lagrange polynomial Lr [n] (39), and its first order derivative

.
Lr [n], the

Hermite interpolated sequence may be calculated through an osculating polynomial (40).
This approach generates high-quality candidates, which may integrate large amount of
points with a reduced computational cost.

Lr [n] =
E

∏
z=1 r 6=z

n− next
z

next
r − next

z
(39)

X3 [n] =
E
∑

r=1
xi

ext
[
next

r
]
·Hr[n] +

E
∑

r=1

.
xi

ext
[
next

r
]
·Ĥr[n]

Hr[n] =
(

1− 2
(
n− next

r
) .
Lr [n]

)
·L2

r [n]

Ĥr[n] =
(
n− next

r
)
·L2

r [n]

(40)

Candidate X4 [n] is based on Taylor’s interpolation. Formally, this approach only
requires one sample at the time instant next

taylor, so it is a very good candidate for the initial
moments of the Industry 4.0 system operation, when collected data are very limited. In
practice, however, this method requires the use of different successive r-th derivatives
(z)︷︸︸︷

xext
i [n]. They can be easily obtained using the central, forward or backward differences

we already described (36)–(38), but this needs some additional samples. In this approach,
the order β of the interpolation polynomial can be also selected. Therefore, in general,
for a given order β, this method needs between β + 1 and β + 2 samples. As said before,
polynomial with orders above six show some unnatural variations. On the other hand, for
very low values of β, the numerical error is also high. A balance between both factors must
be reached.

In this context, candidate X4 [n] may be easily obtained (41).

X4 [n] =
β

∑
z=1

(z)︷︸︸︷
xext

i
[
next

taylor

]
z!

(
n− next

taylor

)z
β < E (41)

Finally, candidate X5 [n] is obtained through splines. Using the splines technique,
candidate is just a segmented polynomial (42).

X5 [n] =



X1
5 [n] n ∈

[
next

1 , next
2
)

. . .
X

j
5 [n] n ∈

[
next

j , next
j+1

)
. . .

XE−1
5 [n] n ∈

[
next

E−1, next
E
)

(42)

This polynomial may have different orders (from one to three), but it is well-known
that cubic splines is the solution generating the best candidates [53] (they are smooth,
contrary to linear splines, and they adapt to a larger range of system behaviors). For
each pair of time instants next

j , next
j+1 a new cubic polynomial Xj

4 [n] is defined (43). In this

polynomial Xj
5 [n], variables µj are unknown and are calculated through the continuity and
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smoothness conditions (44). In this proposal, we are using natural splines, so for any point

next
j where it is impossible to calculate the first-order derivative

.

X
j
5 [n] or the second-order

derivative
..

X
j
5 [n], these values are considered null (zero).

X
j
5 [n] =

µj

6
(

next
j+1−next

j

)(next
j+1 − n

)3
+

µj+1

6
(

next
j+1−next

j

)(n− next
j

)3

+

(
xi

ext

[
next

j+1

]
next

j+1−next
j

+
µj+1

(
next

j+1−next
j

)
6

)
·
(

n− next
j

)
+

(
xi

ext

[
next

j

]
next

j+1−next
j
−

µj

(
next

j+1−next
j

)
6

)
·
(

next
j+1 − n

)
(43)

X
j
5

[
next

j

]
= X

j+1
5

[
next

j

]
j = 1, . . . , E− 1

.

X
j
5

[
next

j

]
=

.

X
j+1
5

[
next

j

]
j = 1, . . . , E− 1

..

X
j
5

[
next

j

]
=

..

X
j+1
5

[
next

j

]
j = 1, . . . , E− 1

(44)

This final candidate is more computationally costly to calculate, as we are introducing
a system of linear equations that must be solved to obtain the final expression for the candi-
date. However, this method creates high-quality, curated data series (with a reduced error),
and (currently) linear equations are easily solved using numerical methods (especially in
strong cloud infrastructures or Industry 4.0 software platforms).

3.3. Malfunction Modeling

The calculation of probabilities pi and pmal is directly associated to functions λl ,
which model the data malfunctions in the Industry 4.0 platform. In this proposal, four
different malfunctions are addressed: jitter (including inactivity periods in hardware
nodes), communication delays, numerical errors in microprocessors and electromagnetic
interferences (including data losses and transmissions errors). As said before, to calculate
pi, we must consider the probability of all these functions λl to be the identity function
IΩ (null effect), while probability pmal is obtained considering (for each candidate) the
situation when λl(Xc [n] ) = xi[n].

Jitter J (ξ) is probably the most harmful malfunction among all the ones considered
in this proposal. Jitter is the maximum fluctuation in the communication delays, transmis-
sion periods or clock synchronization that causes samples xi[n] to be randomly ordered
compared to the original ones in yi[n] (45). Jitter is represented by a function τjitter[k] taking
values in the interval [0, ξk ], where ξk is a realization (different for each value of k) of a
random variable J (ξ) taking values in a continuous universe: the field of positive real
numbers (46). Because of jitter, no samples may be received for long periods, while in other
moments, large amounts of samples may be received and interfere.

xi[n] = λ1(yi[n] ) = ∑
∀ k : n=k−τjitter [k]

yi
[
k− τjitter[k]

]
(45)

τjitter[k] ∈ [0, ξk ]

P(ξk) = J (ξk) ξk ∈ R
⋃
{0}

(46)

Total jitter J (ξ) in Industry 4.0 systems is, actually, the composition of two different
and independent sources: random jitter Jrandom(ξ) and deterministic jitter Jdeter(ξ) (47).
Operator ∗ represents the convolution.

Deterministic jitter is caused by three different additive effects (well-known and
modeled through deterministic expressions): fluctuations in the clock periods and edges,
variations in the data packet length and sleep periods in the sensor nodes or the communi-
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cation channels [54]. Although these three effects are deterministic, they are also dependent
on random variables, such as the clock-duty cycle and frequency, the packet length, and
the duration of the blocking, respectively. In conclusion, deterministic jitter Jdeter(ξ) is a
Gaussian distribution, according to the central limit theorem (48) with mean value mdet
and standard deviation sdet.

J (ξ) = Jdeter(ξ) ∗ Jrandom(ξ) (47)

Jdeter(ξ) =
1

sdet
√

2π
e
− (ξ−mdet)

2

2s2
det (48)

On the other hand, many other random and uncontrolled effects, such as thermal
oscillations, flicker or shot noise, may result in levels of jitter that cannot be predicted
or calculated in any way. This is known as random jitter Jrandom(ξ) and, according to
the central limit theorem, is also a Gaussian distribution (49) with mean value mran and
standard deviation sran.

Jrandom(ξ) =
1

sran
√

2π
e
− (ξ−mran)2

2s2
ran (49)

The convolution of these two Gaussian distributions is a third Gaussian distribution
(50). The mean value m and the standard deviation s depend on the scenario and Industry
4.0 system, but most modern 5G solutions establish the mean value m around 1 millisecond
and the standard deviation s is one magnitude order lower. These values are aligned with
the expected performance for ultra-reliable low latency communications (URLLC) in 5G
networks and scenarios [55].

J (ξ) =
1

√
2π
√

s2
ran + s2

det

e
− (ξ−mran−mdet)

2

2(s2
ran+s2

det) =
1

s
√

2π
e−

(ξ−m)2

2s2 (50)

Communication delays D(ξ) are not as harmful as jitter as they are a linear trans-
formation (51), but they may cause delayed decisions and other similar problems. As all
malfunctions, delays are a random effect, and they are described by a random variable
taking values in a continuous universe: the field of positive real numbers (51).

In this case, we are decomposing the total delay D(ξ) in three different contributions
(52): delay in the output queue (sensor node) Dout(ξ), transmission delay Dtran(ξ), and
delay in the input queue (software module) Din(ξ).

xi[n] = λ2(yi[n] ) = yi[n− ξ]

P(ξ) = D(ξ) ξ ∈ R
⋃
{0}

(51)

D(ξ) = Dout(ξ) +Dtran(ξ) +Din(ξ) (52)

Both delays associated with queues are formally identical. The traffic theory allows
obtaining the probability distribution for both components Dout(ξ) and Din(ξ). In both
cases, we are using a Poisson model M/M/1/P (in Kendall notation), where the sample
generation rate ψ and the serving rate η follow a Poisson distribution, Ψ is the mean sample
generation rate, Θ is the mean serving time and Γ is the time period taken as reference
(typically one hour). P is the number of samples allowed in the system (53).

If we assume a FIFO (first in, first out) managing strategy for both queues in our model,
we can define a Markov chain for describing the queues state. In that situation, the traffic
theory and statistical laws define the queueing delay as an exponential distribution (54).

ψ(z) = (Ψ· Γ)z

z! exp(−Ψ· Γ)

η(z) = (Θ· Γ)z

z! exp(−Θ· Γ)
(53)
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Dout(ξ) ∼ Din(ξ) =

(
ψ

η

)η·ξ 1− ψ
η

1−
(

ψ
η

)P+1 (54)

Regarding the transmission delay Dtran(ξ), several different random and unknown
variables affect the final value: data packet length, channel capacity, physical configuration
of the scenario, etc. Therefore, and considering the central limit theorem, the probability
distribution of the transmission delay is a Gaussian function with mean value md and
standard deviation sd (55).

Dtran(ξ) =
1

sd
√

2π
e
− (ξ−md)

2

2s2
d (55)

Numerical errors in microprocessors are caused by the limited precision of hardware
components. Basically, these errors are associated with two different modules: the analog-
to-digital converter (ADC) and the arithmetic combinational modules. In the ADC, because
of the quantification process, samples are irreversibly modified. Because of the arithmetic
combinational modules, operations with large numbers may be truncated to the maximum
number admissible in the microprocessor, ρmax.

In any case, the numerical error N (ξ) is an additive effect (56), composed of two
different sub-effects: the ADC error NADC(ξ) and the arithmetic error Nari(ξ) (57). In this
case, random variable N (ξ) takes values in the universe of real numbers (56).

xi[n] = λ3(yi[n] ) = yi[n] + ξ

P(ξ) = N (ξ) ξ ∈ R
(56)

N (ξ) = Nari(ξ) +NADC(ξ) (57)

Regarding the quantification error in the ADC, we are assuming the sensor node is
configured according to the manufacturer’s restrictions, and the analog signal yi(t) being
digitalized is limited in amplitude to the operation rage

[
−YADC

max , YADC
max

]
of the ADC

device. In this context, given an ADC device with u intervals with an amplitude of Σ units
(58), the error will be restricted to the interval

[
−Σ

2 , Σ
2

]
(the maximum error appears when

the sample is exactly in the middle of an ADC interval) (59). All values within the proposed
interval have the same probability, so the distribution is uniform (60).

Σ =
YADC

max
u

(58)

NADC(ξ) : ξ ∈
[
−Σ

2
,

Σ
2

]
(59)

NADC(ξ) =
1
Σ
∀ ξ (60)

On the other hand, errors caused by the limited precision of arithmetic devices,Nari(ξ),
may take any value as there is no superior limit. However, all these values do not have
the same probability, as lower errors are much more probable than higher errors (input
parameters are also limited and system designers usually also consider this problem in
their code). In particular, we are proposing the arithmetic error follows an exponential
distribution (61). If we assume the maximum number the microprocessor can represent
is ρmax, the worst situation to happen (where arithmetic error is highest) is the addition
of two parameters with this maximum value ρmax. The result, then, presents a maximum
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error of ρmax units. Thus, the mean value for our exponential distribution is ρmax (and the
distribution gets totally defined).

Nari(ξ) =
1

ρmax
·e−

ξ
ρmax (61)

Finally, electromagnetic interferences are responsible for two main problems: sample
losses and data corruption. At the data level, electromagnetic interferences show as a bit
error rate (BER). If, because of BER, the number of corrupted bits in a sample xi[n] is above
a limit γlim, the sample is corrupted and is rejected and not received. If the number of
corrupted bits is below that limit γlim, the sample xi[n] is corrupted by an additive effect
but is still received (62). Hereinafter, we are considering Λ as the length (in bits) of samples.
This is a random variable with a uniform distribution in the interval [0, Λmax].

xi[n] = λ4(yi[n] ) =

{
null i f BER·Λ > γlim

xi[n] + ξ i f BER·Λ < γlim
(62)

P(Λ) =
1

Λmax
(63)

The calculation of the additive distortion ξ is also based on the length of samples Λ (in
bits). The error, then, must be included in the interval

[
−
(
2Λ − 1

)
, 2Λ − 1

]
, the maximum

value that can be represented using Λ bits. Errors have the same probability in all bits, so
the probability distribution of distortion values ξ is uniform.

P(ξ) = 1
2Λ+1

ξ ∈
[
−
(
2Λ − 1

)
, 2Λ − 1

] (64)

Finally, we must calculate the value of BER using the level of electromagnetic in-
terferences. Given the signal power per bit Eb and the power of interferences N0, the
signal theory establishes the BER is obtained through the complementary error function
er f c(·) (65).

BER =
1
2

er f c

(√
Eb
N0

)
=

2√
π

∫ ∞√
Eb
N0

e−t2
dt (65)

3.4. Final Data Generation and Correction Step

After calculating probabilities p∗i and pi and selecting the candidate Xc [n] associated
to the higher probability p∗i among all five calculated candidates, different situations may
occur. First, if offline data curation is being performed, no new information is expected
after the performed calculations. Then, results are final. However, three possibilities
are considered:

• If probability p∗i is clearly higher than pi, candidate Xc [n] associated to this probability
p∗i is selected as the curated data series x∗i [n] and initially received information xi[n]
is deleted. In this proposal, we are considering a difference higher than 10% (66) as
the limit to take this action.

p∗i
pi
≥ 1.1 (66)

• On the contrary, if probability pi is clearly higher than probability p∗i (67), all candi-
dates are rejected and initially received data flow xi[n] is accepted as the curated data
series x∗i [n]. pi

p∗i
≥ 1.1 (67)

• If neither probability p∗i nor pi is clearly higher than the other (68), the final curate data
series x∗i [n] cannot be concluded to be the candidate Xc [n] or the originally received
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data xi[n]. Thus, the curated data series x∗i [n] is obtained as the arithmetic average of
both series (69).

0.9 <
pi
p∗i

< 1.1 (68)

x∗i [n] =
1
2
(xi[n] +Xc [n]) n ∈ [n1, n2] (69)

Second, if real-time data curation is being performed, there will be a future time instant
n f ut, belonging to the expanded interval

[
ne

1, ne
2
]
, whose associated sample xi

[
n f ut

]
is not

available at the time instant n0 when the curated series is obtained, but it is received in the
future. This new information may affect the previous calculation x∗old

i [n], then a correction
phase is considered to update the previous results.

First, the new sample xi

[
n f ut

]
is compared to the previously obtained curated sample

x∗old
i

[
n f ut

]
. Then, if the difference is high enough (above 10%) (70), all the curation process

is redone considering the new information.

xi

[
n f ut

]
x∗old

i

[
n f ut

] ≥ 1.1 ∨
xi

[
n f ut

]
x∗old

i

[
n f ut

] ≤ 0.9 (70)

However, if the difference between samples xi

[
n f ut

]
and x∗old

i

[
n f ut

]
is not relevant,

to reduce the global computational cost of the proposed solution, the corrected curated
data series x∗i

[
n f ut

]
is obtained as the arithmetic average of old curated sample x∗old

i

[
n f ut

]
and the new information xi

[
n f ut

]
(71).

x∗i
[
n f ut

]
=

1
2

(
x∗old

i

[
n f ut

]
+ xi

[
n f ut

])
(71)

Table 1 summarizes the most relevant symbols and variables considered in the pro-
posed predictor-corrector scheme.

Table 1. Most relevant symbols and variables.

Parameter Meaning Parameter Meaning

T Industry 4.0 platform Si Sensor node
N Number of data flows λl Malfunction function
L Number of malfunctions xi[n] Original data series
Ω Universe of values for data series f i

s Sampling frequency
n0 Current time instant ne

1 Limit in the expanded time interval
x∗i [n] Curated time series pmal Probability of malfunction
Xc Candidate to curated data series dg Distance between distributions
prx Probability of data in reception yi[n] Real data generated by physical sensors
C Number of candidates pi Probability of original data
IΩ Identity function Bs Stationary time interval

ΠΩ
Partition of the universe

Ω ∆ Number of elements in a partition

4. Experimental Validation and Results

To evaluate the performance and usability of the proposed technology, an experimental
validation was designed and carried out. In this experimental phase, we analyzed the
precision of the proposed prediction-correction method, but we also evaluated its behavior
in terms of scalability and required computational time. This section describes the proposed
experimental methods and the obtained results.
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4.1. Experiments: Methods and Materials

Four different experiments were planned and developed. Three of them were based on
simulation techniques, while the fourth one was supported by a real hardware infrastructure.

The first experiment evaluated the evolution of the computational cost of the proposed
solution when deployed in an Industry 4.0 system. To do that, the number of sensor nodes
N in the scenario was varied, and the total computational time required to curate all data
series in real time was monitored. This experiment was focused on the solution’s cost and
its scalability. Time measurements and results were captured and displayed as relative
values normalized by the sampling period Ti. In that way, when processing time was above
the sampling period Ti, we determined the proposed framework was congested (buffers
will grow until the entire software module becomes unavailable). In this experiment,
MATLAB 2019B software was employed to build a simulation scenario where we could
change the number of nodes N in an easy way. The experiment was repeated for different
values of the sampling period Ti.

The second experiment was also focused on analyzing the computational cost of
the proposed solution and its scalability, but in this case when performing an offline data
curation. In this case, the relative length of the expanded time interval

[
ne

1, ne
2
]
, with respect

to the curation interval [n1, n2], (72), was varied in different experiment’s realizations, and
the total computational time required to curate all the samples in the curation interval
was monitored.

ne
2 − ne

1
n2 − n1

(72)

As in the first experiment, to reduce the external validity threats to this experiment and
make results more general, computational time was expressed as a relative number respect
to the sampling period Ti. This experiment was also based on simulation techniques using
the MATLAB 2019B software, where an Industry 4.0 system was built and run. All sensors
were generating data every 30 s. The experiment was repeated for different numbers of
sensor nodes in the Industry 4.0 system, N.

The third experiment aimed to evaluate the precision and curation success of the
proposed predictive-correction algorithm. In this case, the experiment was also based on
simulation techniques using the MATLAB 2019B software. Measures about the proposal’s
precision were obtained as the mean square error, MSE, (73) for the entire curated data flow
and all the sensor nodes in the scenario. This error basically evaluated how different the
obtained curated data series x∗i [n] was from the original information generated by sensor
nodes yi[n]. To improve the clarity in the results, this MSE was expressed as a percentage
(74). The same experiment was performed for the two proposed operation modes: offline
data curation and real-time data curation. Furthermore, the proposed experiment was
repeated for different relative lengths of the expanded time interval

[
ne

1, ne
2
]
, with respect

to the curation interval [n1, n2] (72). All sensors were generating data every 30 s.

MSE =
1

N·(n2 − n1)

N

∑
i=1

n2

∑
n=n1

(x∗i [n]− yi[n])
2 (73)

MSE (%) =
MSE

1
N·(n2−n1)

∑N
i=1 ∑n2

n=n1(yi[n])
2 ·100 (74)

Furthermore, to evaluate the improvement provided by the proposed scheme com-
pared to existing mechanisms, results in the third experiment were compared to results
reported by state-of-the-art solutions [56]. Specifically, to perform a coherent and valid
comparison, we selected a low-cost, error-correction framework for wireless sensor net-
works. This scenario was similar to Industry 4.0 applications, and the selected solution
also included a prediction and a correction phase, so the mechanisms were technically
comparable, so results could be also compared. Results for this state-of-the-art solution [56]
were obtained through a secondary simulation scenario with the same characteristics and
setup employed for the proposed new approach.
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For these three initial experiments, a simulation scenario was built and run using the
MATLAB 2019B suite. The simulation scenario represented a chemical industry where
environmental data are collected to make decisions about how safe it is to work on the
pending activities. Four different kinds of sensor nodes were considered: temperature
sensors, humidity sensors, CO2 sensors (air quality) and volatile compounds sensors
(detecting dangerous gas emissions). The scenario included a random composition, using
all these four types of sensor nodes. All sensors generated data every Ti seconds, although
they were not synchronized. Each sensor started operating at a random instant within the
first minute of the system running. Simulated sensor nodes were designed to represent an
ESP-32 microprocessor (with a 12-bit ADC and a 16-bit architecture). Figure 2 shows the
experimental simulation setup.
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Figure 2. Experimental simulation setup.

The simulated scenario was based on a minimum-sized industry, where distances
were never larger than 50 m. The decision-making software module collected information
from sensor nodes using LoRaWAN wireless technology. The global environment was
suburban, so the level of interferences was moderate-low.

Malfunctions were represented by models and functions included in the MATLAB
libraries, so we guaranteed the independence of the system configuration phase and the
system evaluation phase. In that way, results were more relevant. Models for jitter were
introduced from Simulink and included duty-cycle-distortion deterministic jitter, random
jitter, sinusoidal jitter and noise. In this work, only deterministic and random jitter were
considered. The different types of jitter were injected into devices according to the IBIS-
AMI specifications [57]. Delays were managed through the Control System Toolbox, which
allowed integrating the input delay, the output delay and the independent transport delays
in the transfer function and the frequency-response data. In this work, we are using
first-order plus dead time models and state-space models with input and output delays.
Regarding BER, MATLAB includes the Bit Error Rate Analysis App Environment, which
can integrate different instances of the numerical models generated through a Monte Carlo
Analysis Simulink block and simulation. Finally, numerical errors were introduced and
modeled as numerical noise in devices, using the Simulink framework and the IBIS-AMI
specifications (in a similar way as described and conducted for jitter models).

Simulations represented a total of 24 h of system operation. To remove the impact
of exogenous variables in the results, each simulation was repeated 12 times. Results
were calculated as the mean value of all these simulations for each system configuration.
All simulations were performed using a Linux architecture (Ubuntu 20.04 LTS) with the
following hardware characteristics: Dell R540 Rack 2U, 96 GB RAM, two processors (Intel
Xeon Silver 4114 2.2 GB, HD 2 TB SATA 7.2K rpm). Simulations were performed under
isolation conditions: Only the MATLAB 2019B suite was installed and running in the
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machine; all other services, software or internet connection were stopped or removed. The
objective was to remove as much as possible all validity threats. The global simulation time
was variable and automatically calculated by the system to get data representing 24 h of
system operation.

The fourth and final experiment also aimed to evaluate the precision and curation suc-
cess of the proposed predictive-correction algorithm. However, in the last experiment, we
employed a real hardware platform. In this case, in an emulation environment representing
the referred chemical industry, four nodes (one of each type) were deployed together
with a LoRaWAN gateway. The sensor nodes configuration was identical to the proposed
configuration for the simulation scenarios. In particular, all sensors were generating data
every 30 s. In this case, measures about the proposal’s precision were obtained as the mean
square error (73)–(74) as well. The experiment was also performed for the two proposed
operation modes: offline data curation and real-time data curation. The proposed exper-
iment was repeated for different relative lengths of the expanded time interval

[
ne

1, ne
2
]

with respect to the curation interval [n1, n2] as performed in the third experiment. In this
case, malfunctions were introduced by actual environmental and technological factors.
For each configuration, the system was operating 24 h (so results in the third and fourth
experiments are comparable).

For all these experiments, the configuration for the proposed prediction-correction
algorithm is shown in Table 2.

Table 2. Proposed algorithm configuration.

Parameter Value Comments

Eb 0.2 dBm Typical value according to the hardware capabilities of ESP-32 microprocessor
γlim 4 Standard value for the correction capacity of cyclic codes
Λmax 216 Associated to a 16-bit architecture

Σ 4096 Associated to a 12-bit ADC
Γ 1 h Standard value in traffic theory
β 3 Typical mathematical order for high-precision applications

4.2. Results

Figure 3 shows the results of the first experiment. As can be seen, for all Industry 4.0
systems up to 10 sensor nodes, the proposed solution was able to curate all data series in
real time, as the computational time was below the sampling period. However, systems
with higher sample-generation rates (Ti = 1 s and Ti = 5 s) got congested when the number
of nodes went up. Specifically, systems with 20 and 40 elements, respectively, caused the
system to become unavailable. Any other higher sampling period did not cause congestion
in the system, even with platforms including up to 100 sensor nodes.
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Although for higher device densities and higher amounts of sensor nodes, the pro-
posed system may get congested with higher sampling periods, 100 nodes is above the
number of nodes most current Industry 4.0 platforms include.

Figure 4 shows the results of the second experiment. In this case, we evaluated the
computational cost in the offline data curation. As can be seen, in only one case was
the computational time above the sampling period: for networks with 100 sensor nodes.
This situation was caused by a very populated network (100 sensor nodes), where data
were generated at a high rate; greater than the processing rate offered by the prediction-
correction mechanism (the data generation rate went up when the number of nodes in the
network increased). Thus, after a few samples, the system did not process data “on the fly”
and the new data were queued. Therefore, long term, the medium computational time was
higher than the sampling period, because of data queues and the congestion caused by the
high data-generation rate. In any case, in general and as said before, 101 is a number of
devices above the current needs of common Industry 4.0 deployments (although future
pervasive platforms may go beyond this number).
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Only a second system configuration may cause the system to get congested: for
an Industry 4.0 system with 50 devices and an extended time interval 25 times higher
than the curation interval. Although this is a large number of samples to process, the
reduced complexity of the proposed solution allowed (even in this case) computational
times slightly below the sampling period.

As a conclusion of these two initial experiments, the proposed solution successfully
operated in real time and offline. Besides, it is scalable to large systems, above the cur-
rent Industry 4.0 needs. However, for future pervasive sensing platforms, the proposed
solution may require powerful cloud systems or the definition of a distributed or edge
computing scheme.

Figure 5 presents the results of the third experiment. As can be seen, in all situations
the MSE was below 50%, even for weak configurations, such as expanded time intervals
that were only less than two times higher than the curation interval. As the number of
samples that were integrated into the candidate calculation process went up, the MSE
clearly went down. For configurations where the length of the expanded interval was
around 25 times the length of the curation interval, the MSE was almost null, and the
remaining error may be considered residual and intrinsic to all processing schemes.
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It was also interesting to analyze the impact of the proposed correction phase. As
can be seen, real-time curation showed worse performance than offline data curation, as
the available information was more reduced. The MSE may be between 10% and 20%
higher in real-time data curation than in offline curation for the same system configuration.
However, when considering the proposed correction phase, which was able to integrate
future information in the previously obtained curated data series, real-time data curation
may reach the same precision as offline mechanisms.

Figure 6 shows a comparison between results obtained in the third experiment and
results reported by state-of-the-art solutions [56]. As state-of-the-art mechanisms do not
depend on the length of the expanded time interval (this notion was defined only in the
new proposed scheme), the MSE for the previously reported solution was constant. Small
variations displayed in Figure 6 were caused by numerical effects in the simulation. As
can be seen, for expanded time intervals very similar in length to the curation interval, the
MSE was lower in state-of-the-art solutions. Decision trees in state-of-the-art mechanisms,
to be trained, analyze large amounts of data, so their models are much more precise
than the models generated in the proposed framework. However, as larger expanded
intervals were considered, the MSE in the proposed solution was greatly reduced, while
state-of-the-art mechanisms remained constant. In fact, for relation of lengths above 20, the
proposed solution showed an MSE 50% lower than the previously reported mechanism. In
conclusion, for models obtained from the analysis of comparable amounts of samples, the
proposed framework produced curated data series 50% more precise.
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If we evaluate together Figures 3–6, we can conclude the proposed solution success-
fully obtained a precise curated data series in Industry 4.0 platforms. Besides, if we assume
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an error around 5%, the proposed algorithm may be deployed in scenarios with a large
number of sensor nodes, above the current state of the art in Industry 4.0 solutions.

Finally, Figure 7 shows the results of the fourth experiment. As can be seen, the
evolution of the MSE with the relative interval length was similar to the one observed
in Figure 4 (third experiment). As larger intervals were considered and more samples
introduced in the candidate calculation process, the precision went up and the MSE went
down. However, in this case, the precision was slightly lower than in the simulation study;
in particular, we can see the MSE was around 5% higher. In any case, the qualitative
evolution of the proposed mechanism was equivalent in simulation and real scenarios.
Only in one situation was the performance different in a relevant manner: for curation and
expanded time intervals with the same length (relation of lengths equal to the unit). Under
those circumstances, in simulation scenarios, the correction phase had a smooth behavior
and it still reduced the MSE. However, in real scenarios, when the relation of lengths was
equal to the unit, not enough information was provided to the correction algorithm and
thresholds did not converge properly. As a consequence, the correction phase introduced
an additional error instead of improving the data quality. This situation, in any case, was
very transitory and solved immediately when the expanded interval was even slightly
higher than the curation interval (relation of lengths above the unit). Despite this fact, and
once more, the impact of the correction phase was relevant, even more in this real hardware
implementation (MSE may grow up to around 90% without the correction phase).
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Thus, results allowed us to conclude the proposed solution was successful and valid as
a data curation technology for Industry 4.0, focused on improving sensor interoperability.

5. Conclusions

At the software level, real-time algorithms and automatic decision-making mecha-
nisms are very sensitive to the quality of received data. Common malfunctions in sensor
nodes, such as delays, numerical errors, corrupted data or inactivity periods, may cause a
critical problem if an inadequate decision is made based on those data. The most common
solution to this problem is the adaptation and transformation of high-level software com-
ponents to tolerate these effects, but this calibration turns interoperability between physical
sensors and software modules into a very problematic issue.

Therefore, new solutions that guarantee the interoperability of all sensors with the
software elements in Industry 4.0 solutions are needed. In this paper, we proposed a
solution based on numerical algorithms following a predictor-corrector architecture. Using
a combination of techniques, such as Lagrange polynomial and Hermite interpolation, data
series may be adapted to the requirements of Industry 4.0 software algorithms. Series may
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be expanded, contracted or completed using predicted samples, which are later updated
and corrected using the real information (if received).

Through this process, the resulting curated time series has enough quality to be
employed with any software module (artificial intelligence, decision making, etc.), guaran-
teeing the interoperability of all sensor nodes with the high-level applications (which now
do not require any adaptation or calibration procedure).

Results show the proposed solution successfully operated in real time and offline
and it was scalable to large systems, above the current Industry 4.0 needs. Besides, we
can conclude the proposed solution successfully obtained a precise curated data series in
Industry 4.0 platforms, even in scenarios with large number of sensor nodes.

Future works will consider the proposed solution in large Industry 4.0 deployments
with intense industrial activity, where the environment is more hostile and the operation
conditions are more critical.
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