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Abstract: This paper presents an enhanced PDR-BLE compensation mechanism for improving
indoor localization, which is considerably resilient against variant uncertainties. The proposed
method of ePDR-BLE compensation mechanism (EPBCM) takes advantage of the non-requirement of
linearization of the system around its current state in an unscented Kalman filter (UKF) and Kalman
filter (KF) in smoothing of received signal strength indicator (RSSI) values. In this paper, a fusion of
conflicting information and the activity detection approach of an object in an indoor environment
contemplates varying magnitude of accelerometer values based on the hidden Markov model (HMM).
On the estimated orientation, the proposed approach remunerates the inadvertent body acceleration
and magnetic distortion sensor data. Moreover, EPBCM can precisely calculate the velocity and
position by reducing the position drift, which gives rise to a fault in zero-velocity and heading error.
The developed EPBCM localization algorithm using Bluetooth low energy beacons (BLE) was applied
and analyzed in an indoor environment. The experiments conducted in an indoor scenario shows
the results of various activities performed by the object and achieves better orientation estimation,
zero velocity measurements, and high position accuracy than other methods in the literature .

Keywords: ePDR-BLE compensation mechanism (EPBCM); unscented Kalman filter (UKF); Kalman
filter (KF); received signal strength indicator (RSSI); hidden Markov model (HMM); Bluetooth low
energy (BLE)

1. Introduction

Indoor location-based services (LBS) have always been of great importance because
people live and work in indoor environments most of their lives. Massive wireless networks
are built according to the IEEE 802.11 wireless Ethernet standard [1]. LBS are the backbone
of indoor mobile positioning techniques [2]. Global navigation satellite systems (GNSS)
and global positioning systems (GPS) have helped us provide accurate location services for
outdoor environments. Still, these services are impeded by signal absorption and hamper
in specific environments (e.g., dense forests, mountainous regions, underground facilities,
and high-rise buildings) [3]. GNSS and GPS take the user’s three-dimensional information
(i.e., longitude, altitude, and latitude) [4]. The accuracy of these services depends upon
the line of sight, and if the precision is good, object detection is possible within meters.
Therefore, to come up with an overall location service, a number of technologies have
emerged for indoor positioning; for instance, radio frequency identification (RFI) [5],
pseudo-satellites [6], indoor ultrasonic positioning (UIP) [7], indoor positioning approach
using iBeacon [8], ultra-wideband (UWB) technology allows micro-positioning of objects
along with obstacles [9], and indoor positioning based on ZigBee [10].

A large variety of reconfigured wireless devices (RWD) are already in use, namely
Bluetooth low energy (BLE) beacons, smartphones, Wi-Fi, ultra-wideband (UWB) bea-
cons, and digital cameras for indoor positioning [11,12]. For purpose-built installations,
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these RWDs are placed strategically throughout a defined space. IPS uses different lo-
calization mechanisms, including the position estimation of tagging devices from nearby
anchor nodes, such as BLE, UWB, and Wi-Fi access points (AP) with known fixed positions.
Weighted centroid localization (WCL) [13], distance vector hop (DV-Hop) localization [14],
trilateration-based localization, context-recognition aided-based PDR localization [15],
and fingerprinting-based localization techniques are also used [16]. In recent years, re-
searchers have focused on related technologies and methods that provide high precision
positioning services.

Pedestrian dead reckoning (PDR) is an independent approach, and its primary prin-
ciple is to calculate the step length, determine walking direction, and step size by using
inertial sensors (IS) (i.e., accelerometer, gyroscope, and geomagnetic meter) to calculate the
moving target information and positions [17]. Bluetooth low energy beacon is pulled in for
indoor localization technology because of low energy communication via the Bluetooth
beacons and broadcasting low-energy Bluetooth signals in a given range. BLE beacons
send out an ID number via BLE channels triggering a specific action relevant to the loca-
tion approximately ten times every second [18]. The distance between BLE beacons and
smartphones was computed based on the received signal strength indicator (RSSI) values.
To estimate the position, we used the centroid localization algorithm (CLA) and weighted
centroid localization algorithm (WCLA) proposed by [17–19], which uses the BLE beacon
coordinations to estimate the position of the smartphone. The position accuracy using
CLA is very low in WCLA when using weight to improve position accuracy. In AWCLA,
location accuracy is increased, but still, the error accuracy is high. Different filters were
used to get the precise output, e.g., complementary filter, low-pass filter, Butterworth filter,
Kalman filter, extended Kalman filter, unscented Kalman filter, alpha–beta filter, Gaussian
filter, etc. These filters are used in the literature as data fusion filters, responsible for re-
moving noise from sensor values and producing an estimate of the system’s state by taking
the average of the new measurement and the system’s predicted state using a weighted
average. Furthermore, different machine learning-based models were also developed
to estimate the position in an indoor environment. Still, due to the massive amount of
sensing data, these systems cannot provide a real-time position estimation because of high
computational requirements. Due to advanced and sophisticated machine learning tech-
niques, it is therefore required to estimate the real-time position of an object in an indoor
environment by using a lightweight, intelligent solution. Machine learning techniques
have been utilized in many fields, such as healthcare, finance, irony detection, citation
classification, effective waste management, energy consumption forecasting, boreholes
data analysis, groundwater resource planning, and education, to name of a few [20–25].

In this study, EPBCM was developed to track the position of an object in an indoor
environment. Quaternions and their conversion to Euler angles are explained. Smartphone-
based inertial measurement unit (IMU) sensors were used for the data collection. A com-
plementary filter was used to integrate the information of pitch, roll, and angular velocity
to obtain orientation tracking. The state vector used for the estimation of orientation in
UKF contains the prior gyros bias errors and Euler angle errors. The HMM-based activity
detection approach was developed to recognize the various activities (running, walking,
writing on a whiteboard, working on the computer, walking upstairs) performed by the
smartphone user. The state transitions probability matrix and observation probability
matrix were calculated based on the changing magnitudes of the accelerometer values.
The compensation mechanism increases the position accuracy by reducing the drift error.
KF was used for smoothing RSSI measurements obtained from the BLE beacon. The av-
erage weighted centroid localization algorithm (AWCLA) was used for the proximity
calculation between the smartphone and fixed BLE beacon position. Various performance
analyses were used to evaluate the significance of the proposed EPBCM based on HMM
and AWCLA, such as clustering of raw data to know about the activities performed, com-
parison of position accuracy of PDR, BLE, and EPBCM, indoor localization visualization
using IMU sensor data, and orientation estimation based on AHRS and UKF.
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The notable contributions of the proposed study is as follows:

• Developed mechanism based on complementary filter to integrate roll, pitch, and
angular velocity information to obtain orientation tracking information.

• Developed HMM-based activity detection approach to recognize the various per-
formed activities.

• Smoothing of RSSI measurements by passing through the Kalman filter to remove
noise and enhance the accuracy of distance calculation between the beacon and mobile
phone user.

• Weight assignment based on the power of RSSI measurements and use of AWCLA for
the proximity calculation between the BLE beacon and smartphone.

• Furthermore, different evaluation metrics were utilized to evaluate the effectiveness
of the proposed EPBCM based on HMM and AWCLA, such as a comparison, in terms
of position accuracy, confirmation of activity detection by clustering the sensor data
to visualize the performed activities and compare with HMM-based activity detection
approach, and comparison of the orientation estimation approach based on AHRS
and UKF.

The rest of the paper is divided into the following sections. Section 2 presents the
related works; Section 3 presents enhanced PDR-BLE compensation mechanism based on
HMM and AWCLA for Improving indoor localization. Section 4 presents Compensation
mechanism based on AWCLA. Section 6 discusses experimental design, implementation
environment, comparison of proposed system with state-of-the-art-techniques, and perfor-
mance analysis. Section 7 concludes the paper with possible future directions.

2. Related Work

The internet of things is an evolving field, attracting much attention from the research
community [26–43]. The systems pertaining to location tracking and intelligent navigation
are widely employed to handle specific scenarios related to security, logistic medicine,
and mission-critical indoors. Indoor Localization is deemed one of the quintessential
areas among all of them because of excessive location-based services [44]. Therefore,
indoor positioning is a popular topic that is gaining popularity. It is a network of devices
used to locate objects or people where global navigation satellite system (GNSS) and
global positioning system (GPS) technologies lack exactness or are completely unsuccessful,
particularly parking garages, underground locations, multistory buildings, railway stations,
and airports. The dependency of multiple computing concepts on positionings, such as
location and context-aware systems and ubiquitous computing, shows how important the
indoor positioning systems (IPS) hold [45]. To find the accurate location where the GPS
signal is lost, radio-frequency signals have been developed. When compared to the classic
Bluetooth, Bluetooth low energy beacons are low in cost, low in energy consumption,
and small in size [18]. Distance computation between beacons and smartphones can be
done by using BLE beacons. To determine a single point in a two-dimensional space,
a minimum of three beacons are required if considering the trilateration scenario [46].
Indirect distance computation involves the measurement of RSSI values.

A microelectromechanical systems (MEMS) are used to offer beacon-free solutions,
consisting of a gyrometer, an accelerometer, and magnetometer. Due to the lightweight,
smaller size, and lower cost of MEMS, sensors are often employed for the PDR system. Con-
ventionally, the indirect estimation of walking speed and walking direction is conducted
by using the PDR approach [47]. PDR can only obtain relative positioning results, has high
position accuracy, and cumulative errors. However, PDR is a self-confined approach, but
will produce a growing drift as the walking distance increases [48]. To reduce the errors,
bias, and bias instability that accumulate through the navigation equation at the output
of MEMS sensors can be contained by attaching inertial measurement sensors (IMU) on
foot and other body parts to recognize particular activities and by using the zero-velocity
update (ZVU) algorithm to predict the position [49,50]. The velocity and the acceleration
integral of the foot are practically zero when the stance phase occurs during the motion of
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the pedestrian [51]. Therefore, an error in the foot orientation increases the position’s error
to grow linearly with time. Similarly, the calculation of the non-gravitational acceleration is
affected by the attitude errors. If the orientation and attitude errors are not tackled rightly,
the combined result induces a worse position estimation. The erroneous step increased
position error. Therefore, a low false detection rate, in estimating each step’s start and
end is conducive to improve accuracy. In [52], for precise human body part orientation
tracking, the author reviewed the filtering techniques and main sensor fusion. The author
in [53] deals with the nonlinear attitude prediction system and linearization of the currently
estimated points of the model in the PDR system by using the extended Kalman filter (EKF).
For attitude estimation, the author in [54] proposed the hidden Markov model (HMM)
based EKF. To enhance the results of the roll, pitch, and yaw for orientation tracking,
the author developed a double-stage Kalman filter (KF) in [55]. In attitude estimation of
PDR, when the nonlinear characteristic is extreme, for instance, environmental magnetic
variation, variation in acceleration based on human motion, the attitude dynamics, etc.,
causes divergence of the EKF and degrades the accuracy. To enhance the performance of
PDR by using a sophisticated ZVU algorithm in [56], the author achieved ∼4% distance
error by incorporating the two outputs of the maximum bounds at the stance phase by
implementing a binary decision-making rule. The study in [57] shows that the author
knows the sensor data, based on sensor knowledge, examines the acceleration-magnitude
detector, acceleration-moving variance detector, and the angular rate energy detector.
The paper shows that all detectors can be derived by using the general likelihood ratio
test (LRT) framework. To accurately distinguish stance phases, the author in [57] proposed
a clustering algorithm. In [58,59], the authors suggest that HMM chains classify human
activities, and [60] show that there are more computational costs for the hierarchically
structured approaches. The author in [61] used a smartphone-based IMU sensor for activity
recognition to facilitate the people who had chronic neurodegenerative diseases, such as
Alzheimer’s.

To identify and track objects automatically, various technologies related to indoor
positioning include Wi-Fi, ultra wide band (UWB), radio frequency identification (RFID),
and BLE. To achieve better positioning accuracy and to reduce the positioning system cost
based on RFID, the authors in [62] presented a hyperbolic positioning algorithm and in [63]
convert paths that are non-line of sight (NLOS) to the paths which are line of sight (LOS) by
employing a hybrid method based angel of arrival (AOA) and phase difference of arrival
(PDOA). Positioning using BLE beacons in an indoor environment, the author suggested
a hybrid method, combining dead reckoning and trilateration [64]. In [65], the authors
suggested KF, to smooth the RSSI measurements obtained from the installed BLE beacons
and developed an android application to locate a user inside a building. There were high
computational and processing times in the UWB-PDR-based localization algorithm. Due
to the increased numbers of anchors in the localization algorithm, the system cost also
increased [66]. In [67], WCL and fingerprint techniques are used for indoor localization
based on the least square method. Improvements are being made in the WCL localization
algorithm by [68]. However, the estimated error is still significantly high.

To predict and measure the motion of the body based on IMU wearable devices, many
machine learning algorithms are used. To reduce the error in an indoor environment,
a deep neural network fingerprinting based indoor positioning approach is used [69].
In [70], the author used inertial sensor data to detect step length and step detection by
using ANN and RNN. In another paper, the author used the feed-forward NN approach to
get the location at the output [71]. Similarly, in [72], based on RSS measurements of Wi-Fi
access point nodes, the author suggested a radial basis function to find the location of a
user. As mentioned above in Table 1, the critical analysis of indoor localization based on
the BLE-beacon, PDR machine learning algorithms, and the combined hybrid approach
has many drawbacks in system performance and accuracy. To predict and identify the
object or location, these approaches directly use sensor data as an input to the machine
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learning algorithm. The drifting error and bias in sensor readings affect the accuracy of the
position estimation.

To the best of the authors’ knowledge, all of the indoor positioning systems are devel-
oped based on single or hybrid localization algorithms that have problems of high position
errors and more computational costs, particularly for hybrid localization algorithms. More-
over, all of these only determine the location of an object in an indoor environment. In some
cases, sensors mounted on the foot, hand, arm, and chest are considered to track the ori-
entation and detect the activity of an object up to the binary level. Furthermore, all of
these existing indoor positioning systems face different issues, such as high localization
errors, high computational costs, and high hardware costs, to name of few, as mentioned in
Table 1. Therefore, a new solution is required to track the position and detect the activities
performed by the object, which aims to minimize latency, maximize position accuracy,
and provide better orientation estimation. A compensation mechanism is developed to
reduce the effect of the drift caused by the dead reckoning localization algorithm. Proximity
calculation between beacons and smartphones are also improved by using AWCLA and
passing RSSI measurements through the Kalman filter. This enhanced hybrid localization
algorithm is presented in the following sections.

Table 1. Critical analysis of existing technologies for positioning error in IPS.

Sensors Technique Environment Max Distance Error in Meters Achieved
Accuracy

Gyro, Acc [73] Zero velocity update, map matching Sensor mounted on person’s waist 40 m 0.683 m 98.26%

Mag, Acc [74] PDR, map matching Sensor in person’s pocket 104 m (0.55–0.93) m Ave LE,
(0.55–0.93) m

Acc, Gyro [75] Quaternion complementary filter Smartphone placed
in trousers, jacket, and held in hand 270 m 0.529 m Above 98%

IMU [76] Learning prediction system and
improving parameters of the alpha–beta filter NGIMU sensor attached to person’s body ∼50 m 0.102 m Above 98.7%

IMU [77] Learning module, based on ANN
and KF are used as the prediction algorithm

Prediction of actual sensor reading
from Noisy measurements ∼50 m 0.009 m Above 99%

Acc, Gyro [78] Model classification Mobile phone in person’s hand and pocket
while walking 168.55 m 0.31 m Ave LE, 1.35 m

Acc, Gyro, Wi-Fi [56] Zigbee RSSI fusion based on EKF with PDR Zigbee and IMU sensor mounted on
person waist 25 m N/A Max LE, 4 m

Acc, Gyro, Mag, RFI [79] RFID RSSI fusion based on EKF with PDR IMU mounted on person’s foot and RFID
tags installed in rooms 1000 m 0.721 m Ave LE, 98.73%

Acc, Gyro [80] Assistive QR code with PDR scan QR code along the path and kept
smartphone in hand 35 m N/A Above 99%

IMU, BLE beacon [81] BLE beacon, inertial dead reckoning indoor environment 40 m N/A Above 97.47%
IMU, camera [82] PDR, camera meeting room 15 m 0.56 m N/A
BLE-beacon [83] Fuzzy logic, BLE fingerprinting Indoor enviornment 25 m 0.43 m N/A

3. Enhanced PDR-BLE Compensation Mechanism Based on HMM and AWCLA for
Improving Indoor Localization
3.1. Design of Proposed EPBCM Localization Algorithm

In this section, an EPBCM based on HMM and AWCLA was implemented to decrease
drift and error in the position caused by navigation algorithms. The details of the pro-
posed EPBCM are shown in Figure 1. A brief explanation of each step and mathematical
formulation used to calculate the orientation, x,y coordinates through various localization
techniques, and detection of activities of an object in an indoor environment by considering
the HMM are presented in the below sub-sections. Table 2 presents notations and symbols
used in mathematical formulation.

3.1.1. Quaternions Calculation

The orientation between the inertial navigational frame {in f } and the sensor-body
frame {sb f } can be represented by adopting quaternions. The scaler part of quaternions
consist of s ∈ R and v ∈ (x, y, z), which is a vector part and are expressed as q ≡ (s, v),
where v ∈ R3. The vector part of the quaternions can be represented into two different
frames q and q∗ as vin f = q

⊗
vsb f ⊗ q∗. The vector in the sensor body frame {sb f } refers

to vsb f and the inertial navigational frame {in f } refers to vector vin f , and
⊗

denotes the
multiplication operations between vectors. A quaternion number is represented in the
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form of real and imaginary elements, where i, j, and k are basis elements and α, β, γ and δ

are real numbers α + βi + γj + δk. The unit-vector quaternion qsb f
in f encoding rotation from

the inertial frame to the body frame of the sensor qsb f
in f = (α σ1 σ2 σ3)

T .

Table 2. Description of notations and symbols used in the formulation.

Notation Description

{in f } Inertial navigational frame.
{sb f } Sensor-body frame.
s ∈ R Scaler part of quaternions.
v ∈ (x, y, z) Vector part of quaternions, where v ∈ R3.
q Unit quaternion.
q∗ Conjugate quaternion.⊗

Multiplication operation
vin f Vector in the inertial navigational frame.
vsb f Vector in the sensor body frame.
i, j, and k A quaternion basis elements.
α, β, γ and δ Quaternion real numbers.
qsb f

in f The unit-vector quaternion encoding rotation from the inertial navigational frame to the body
frame of the sensor.

α The amount of rotation that should be performed about the vector part .
σ1, σ2, and σ3 Elements σ1, σ2, and σ3 thought of as a vector about which rotation should be performed.
φ The angle of rotation.

ε Unit vector representing the axis of rotation.
Q(q) Rotation matrix.
Q Four-dimensional vector space over the real numbers R4.
NED North–east down
ψ Rotation around yaw.
ξ Rotation around pitch.
ϕ Rotation around roll.
atan2 Computes the principal value of the argument function applied to the complex number in the

quaternion.
δφ Prior gyros bias errors. The error between estimated gyroscope bias and true gyroscope bias.
δψ Euler angles errors .
x State vector of the proposed filter.
eq Error quaternions.
e Attitude error.
ẋk = Akxk + Euk The state equation for the attitude estimation system.
uk The noise vector, which refers to the noise related to the rotation error angle.
ζδΨ(t) Noise error, true bias random walk.
ζ∆Φ(t) Noise error, estimated bias random walk.
ŵb

b/n′ The estimated rotation rate.
ãccsb f Output of accelerometer.
m̃agsb f Output of magnetometer.
y Measurement of the combination of the accelerometer and magnetometer.
ηacc sb f and ηmagsb f The measurement independent zero-mean Gaussian white-noise.
mn and gn True magnetic and gravity vector.
η2

accsb f and η2
magsb f The variance of measurement noise.

MR Covariance matrix.
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Table 2. Cont.

Notation Description

h(q) Represents the nonlinear equations that convert the magnetometer reference vector rmag ∈ R3

and accelerometer reference vector racc ∈ R3 from INF to the SBF.
ρ Sigma points.
λ Represents the scaling parameter that shows the sigma points spread around the column vectors

of the covariance matrix.
Kprior

xj The prior estimates of covariance.
ρ’ Posterior sigma points.
Wm

i and W j
i Used to calculate the mean and covariance of the posterior sigma points.

µ Determines the spread of the ρ around x̂prior
k and β accentuate the weighting on the zeroth ρ.

(ỹ) Residual error.
D(.) Distribution constructed by the kernel density estimate.
wO,t (.) Weight assigned to each activity performed in the various dedicated zones Zi.

The amount of the rotation that should be performed about the vector part specifies
by the element α, where as elements σ1, σ2, and σ3, thought of as a vector about which
rotation should be performed. qsb f

in f = (ασT)T . If φ is the angle of rotation and the vector

ε = (εx εy εz)T is a unit vector representing the axis of rotation, then the quaternion
elements are defined as a unit quaternion ‖ q ‖2= α2 + σ2

1 + σ2
2 + σ2

3 = 1. A simple rotation
can transform a vector from one reference frame to another according to Euler’s rotation
theorem, and this is done by rotating φ about a unit vector ε. This unit vector representing
the axis of rotation, and the quaternion elements are defined as:

α
σ1
σ2
σ3

 =


cos ϕ

2
εx sin ϕ

2
εy sin ϕ

2
εz sin ϕ

2

 (1)

or as a rotation matrix Q(q) = I + 2αS(σ) + 2S2(σ), S(σ)=


0 −σ3 σ2
σ3 0 −σ1
−σ2 σ1 0

 , Q(q) =

(cos φ
2 , (εx εy εz)T× sin φ

2 . The set of quaternions, defined within a four-dimensional

vector space over the real numbers R4 is denoted by Q. Quaternions qsb f
in f can be used to

rotate an arbitrary three-element vector from the inertial frame to the body frame using
the matrix multiplication operation vsb f = Qsb f

in f (q
sb f
in f )vin f . To rotate a vector from the

inertial navigational frame to the sensor body frame, the attitude quaternion can be used
to construct a 3× 3 rotation matrix, to perform the rotation in a single matrix multiply
operation expressed as:

Qsb f
in f

(
qb

i

)
=

 α2 + σ2
1 + σ2

2 + σ2
3 2σ1σ2 − 2ασ3 2σ1σ3 + 2ασ2

2σ1σ2 + 2ασ3 α2 − σ2
1 + σ2

2 − σ2
3 2σ2σ3 − 2ασ1

2σ1σ3 − 2ασ2 2σ2σ3 + 2ασ1 α2 − σ2
1 − σ2

2 + σ2
3

 (2)

The rotation can be reversed by simply inverting the attitude quaternion qsb f
in f before

performing the rotation. Likewise, the operation can be reversed by negating the vector
part of the quaternion vector. Euler angles are intuitive and straightforward for simple
analysis and control, but these are limited by a gimbal lock, which prevents Euler angles
from measuring orientation when the pitch angle approaches ±90◦.
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Figure 1. Hybrid position error compensation mechanism For indoor localization.

3.1.2. Quaternions Calculation at North–East Down (NED)

The inertial frame is an unmoving Earth-fixed set of axes reference. In the inertial
frame, x-axes point north, y-axes point east, and z-axes point down. This configuration
of axes in the inertial frame reference is called north–east Down (NED). The sequence
of rotations is used to represent a given orientation, which is the first yaw, then pitch,
and finally roll. YAW rotation results in the new coordinate frame as illustrated in the
Figure 2a. Yaw represents rotation about the inertial-frame z-axis by an angle ψ. The rotation
of yaw around the z-axis produces a new coordinate frame where the z-axis is aligned with
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the inertial frame, and the yaw angle ψ rotates the x and y axes The orientation of the new
coordinate frame after the rotation of yaw is shown in Figure 2b.

(a)

X (old)

X1 (New Frame)

𝜓 (yaw)

Y1 (New Frame)

Y (old)

Z (old)=Z1 Down

(b)

Figure 2. Quaternions calculation at north–east down (NED) reference. (a) Quaternions calculation at inertial frame;
(b) Quaternions calculation at new frame.

Qnew f 1
in f (ψ) =

 cos(ψ) sin(ψ) 0
− sin(ψ) cos(ψ) 0

0 0 1

 (3)

Similarly, if the rotation around pitch represents ξ and the pitch is not rotating about
the inertial frame Y-axis as shown in Figure 2, it is because that change in orientation occurs
due to the changing in frames. This can be seen in Equations (4) and (5).

Qnewf2
newf 1(ξ) =

 cos(ξ) 0 − sin(ξ)
0 1 0

sin(ξ) 0 cos(ξ)

 (4)

Qnewf 1
in f (ξ, ψ) = Qnew f 2

new f 1 (ξ)Qnewf
inf (ψ) (5)

Performing rotation around the newf
2 x-axis, SBF is obtained. The SBF contains yaw, pitch, and roll, and the rotation matrix

for moving from the newf2 to SBF is given by:

Qsb f
newf 2(ϕ) =

 1 0 0
0 cos(ϕ) sin(ϕ)
0 − sin(ϕ) cos(ϕ)

. (6)

To complete the rotation matrix for moving from the inertial frame to the body frame—
it is shown in Equation (7)

Qsb f
in f = (ϕ, ξ, ψ) = Qsb f

new f 2(ϕ)Qnew f 2
new f 1(ξ)Q

new f 1
in f (ψ). (7)

To get the accurate angular rates in the proper frames, the x-axis IMU output must
be rotated into the newf2 frame, the y-axis IMU output must be rotated into the newf1



Sensors 2021, 21, 6972 10 of 31

frame, and the z-axis IMU output must be turned into the INF. The resulting transformation
matrix for converting body-frame angular rates to Euler angular rates is given by

E = (ϕ, ξ, ψ) =

 1 sin(ϕ) tan(ξ) cos(ϕ) tan(ξ)
0 cos(ϕ) − sin(ϕ)

0 sin(ϕ)
cos(ξ)

cos(ϕ)
cos(ξ)

. (8)

Let ρ represent the smartphone body frame x-axis gyro output, τ represent the smart-
phone body frame y-axis gyro output, and θ represent the body frame z-axis output.
By taking the derivative of the roll, pitch, and yaw, the Euler angle rates are computed as ϕ

ξ
ψ

 =

 ρ + τ sin(ϕ) tan(ξ) + θ cos(ϕ) tan(ξ)
τ cos(ϕ)− θ sin(ϕ)

τ
(

sin(ϕ)
cos(ξ)

)
+ θ
(

cos(ϕ)
cos(ξ)

)
. (9)

Gimbal lock becomes a problem when using Euler angles and the above operation
illustrates mathematically. When the pitch angle ξ approaches ±90◦, the matrix elements
diverge to infinity because the zero in the denominator causes the filter to fail.

The quaternions data can be converted to Euler angles on the receiving end, and the
exact equations for converting from quaternions to Euler angles depend on the order of
rotations. The sensors move from the inertial navigational frame to the sensor body frame
using the first yaw, then pitch, and finally roll. The Euler angles can be obtained from the
quaternions, and this results in the following conversion equation: ϕ

ξ
ψ

 =

 atan2
(
2(ασ1 + σ2σ3), 1− 2

(
σ2

1 + σ2
2
))

asin(2(ασ2 − σ3σ1))
atan2

(
2(ασ3 + σ1σ2), 1− 2

(
σ2

2 + σ2
3
))
. (10)

To tackle the problem that arose due to the arctan and arcsin, function atan2 com-
putes the principal value of the argument function applied to the complex number in the
quaternion. The function atan2 value is in the range (−π, π], that is −π < atan2(y, x) ≤ π.
The body attitude matrix can be calculated by Euler angles ϕ, ξ, and ψ. By using the
angular velocities of the body frame concerning the inertial navigation frame denoted in
the smartphone body frame, the measure angular velocity can be calculated as explained
in [48].

3.1.3. Orientation Estimation Based on UKF

In this study, the detailed explanation of orientation estimation based on UKF is
presented as shown in Figure 3. As discussed in Section 3.1.1, in the proposed orientation
estimation based on UKF, the prior gyros bias errors, and Euler angle errors are expressed

as δφ and δψ in the state vector of the proposed filter as x =

[
δψ
δφ

]
. Assuming ‖ δψ ‖ is small

and the error quaternions eq is approximated as eq ∼=
[
1 δψ

2

]
The basic idea behind the

use of the proposed filter is to use the quaternions as the global attitude representation and
use a three-component state vector δψ for the local representation of attitude errors [11].

δΨ = δΨ.e (11)

where δψ is the rotation error angle and et =

ex
ey
ez

 is the rotation axis. The product of

estimated and error quaternion gives true quaternion qt = δq(δψ)
⊗

q̂. Where eq = δq(δψ)
and the cross symbol shows quaternion multiplication [68].The state vector in the proposed
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filter is chosen as
[

δψT

δφT

]
, here δψ is the error between the estimated gyroscope bias and

true gyroscope bias.

Accelerometer Gyroscope Magnetometer

x-axis y-axis z-axis x-axis y-axis z-axis

Inertial 
Sensor

HPF

Complementary 
Filter

Orientation 
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Pitch Roll
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x-axis y-axis z-axis
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Figure 3. Orientation Estimation Based on UKF.

3.1.4. Orientation Calculation System Model

The state equation for attitude estimation system is

ẋk = Akxk + Euk

xk =
[

δψ ∆Φ
]T (12)

The process model is adopted as xk+1 = (I + Ak × ∆t) xk + uk, where uk is the noise
vector, which refers to the noise related to the rotation error angle ζδΨ(t) and ζ∆Φ(t) is the
noise error between true bias random walk and estimated bias random walk. Ak is defined
using the estimated

uk =

[
ζδΨ(t)
ζ∆Φ(t)

]
, Ak =

[
−
[
ŵb

b/n

]
−I3×3

03×3 03×3

]
, and E =

[
−I3×3 03×3
03×3 I3×3

]
(13)

rotation rate ŵb
b/n′ and ζδΨ(t)εR3 and ζ∆Φ(t) ∈ R3 are process noise and are assumed to

be a zero mean Gaussian white noise. Then, the process covariance matrix is

Q = E
(

ukuT
k

)
=

[
c2

δΨ 03×3
03×3 ζ2

∆Φ

]
. (14)

The measurement equation is represented by, y = h(q) +
[

ãccsb f m̃agsb f
]T

, where y

is the measurement of the combination of accelerometer and magnetometer. Here ãc̃c
b
∈ R3

and m̃agb ∈ R3 are output of accelerometer and magnetometer, ηacc sb f and ηmagsbf are the
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measurement independent zero-mean Gaussian white-noise and can be expressed as the
true magnetic and gravity vector mn and gn.

ãccsb f = e∗q ⊗ q̂∗ ⊗−gin f ⊗ q̂⊗ eq + accsb f + ηaccsb f (15)

m̃agsb f = e∗q ⊗ q̂∗ ⊗min f ⊗ q̂⊗ eq + accsb f + ηmagsb f (16)

The variance of measurement noise is η2
accsb f and η2

magsb f and its covariance matrix

expressed as MR =

[
η2

accsb f × I3×3 03×3

03×3 η2
magsb f .I3×3

]
, and h(q) represents the nonlinear

equations that convert the magnetometer reference vector rmagεR3 and accelerometer
reference vector raccεR3 from INF to the SBF. The values of racc and rmag are constants
whose specific values can be found using the method in [84].

3.1.5. Time and Sigma Points Update

For calculating the posterior first and second order statistics of a random variable,
which undergoes the unscented transformation. By using a minimal set of deterministically
chosen weighted sample points, the state distribution is again represented by a Gaussian
random variable (GRV). Covariance and true mean completely capture the prior random
variable by using the weighted sample points called sigma-points. In this case, the error
state x contains the orientation information q and the gyro bias φ and has zero mean x̂.
The following scheme is used to calculate the sigma points ρ.

ρj−1 =

[
x̂2

j−1 + λ
(
Kj−1

) 1
2 x̂j−1 − λ

(
Kj−1

) 1
2

]
(17)

where, λ represents the scaling parameter that shows the Sigma points spread around the
column vectors of the covariance matrix K and x̂.

λ = (ι + γ)
1
2 , and γ = µ(ι + κ)− ι (18)

whereas, the augmented state vector dimension is represented by l, µ = (10−3, 1], and
K = 0. To yield each point of a set, which is expressed through the Equation (52), and trans-
formed samples ρi,j|j−1 = f

(
ρi,j−1|j−1

)
. Here the ith column of the matrix represent i.

The prior estimates of covariance Kprior
xj and state x̂prior

j are given through the ρ as ex-
pressed in equation

x̂prior
j =

2l

∑
i=0

Wm
i

[
ρi,j|j−1

]
(19)

Kprior
xj =

2l

∑
i=0

W j
i

[
ρi,j|j−1 − x̂prior

j

]2
+ Qj. (20)

In the above two equations Wm
i and W j

i are used to calculate the mean and covariance
of the posterior ρ’, respectively, as follows:

Wm
0 =

γ

(l + γ)′
, W j

0 =
γ

(l + γ)
+
(

1−
(

µ2 + β
)

(21)

Wm
i =

1
2(l + γ)

, W j
i =

1
2(l + γ)

(22)

To determine posterior covariance, µ determines the spread of the ρ around x̂prior
k ,

where β accentuate the weighting on the zero ρ [85]. The value of optimal β is obtained
from [86].
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3.1.6. Measurement Update

Magnetic measurement and gravity vector are not good choices for the reckoning of
the horizontal component of the state vector. Moreover, yaw correction is not possible by
using a gravity vector. Due to the described issues and to ensure gravity correction, it does
not act on the yaw estimate, and as magnetic anomalies only influence the pitch estimates
and roll, we divide the measurement update into two steps. For the case of gravity vector
measurement update:

Mãccsb f
i,j|j−1 = ha

(
ρi,j|j−1

)
(23)

We set the third part of δψ to zero after the first update step, as qe,j
[
xj
]
= 0 and

based on the update K the ρ should be recalculated. Similarly, the magnetic field vector
measurement equation can be written as Mm

i,j|j−1 = hm

(
ρi,j|j−1

)
and the first two part of δψ

are set to zero after the second update as qe,k[2, 3] = 0. In UKF compared to EKF, the system
around its current state does not need to linearize.

To adaptively adjust the measurement covariance R, diagonal covariance inflation (CI)
approach in [87] is implemented. In this approach, for the residual error (ỹ), the measure-
ment update of the low-confidence hypothesis will inflate in all directions. The proposed
covariance inflation approach always guaranteed the Mahalanobis distance r < 1. The CI
approach can resolve the inconsistency between the low-confidence hypothesis observation
and the proposed filter prediction. The measurement update for the accelerometer and
magnetometer is

ỹ = q̂∗ ⊗ gn ⊗ q̂− ãb (24)

The determination of the error covariance Rk is the main issue of implementing
this method

Ra
k = c× ỹ2 + ζ2

a (25)

3.2. Activity Detection Model Based on HMM

The observation model uses the inertial measurement (IMU) acceleration data re-
ceived from the different activities performed by the person containing the smartphone.
By performing various activities while holding a smartphone in a user’s hand, fingerprints
are collected of each activity in an offline phase. Let ρi,k,l be the measurements, having set
Mj collected in the various designated areas of the 4th floor of JEJU national university,
concerning the k activities performed PAk. Whereas l ∈ {0, 1, 2, . . . , Mi−1}. Once new IMU
measurements set ρt collected during random motion, containing all of the mentioned
activities in Table 3. The model allocates specific evidence to each zone.

Table 3. Performed activities and range of accelerated values.

Performed
Activities

Working on
Computer

Running
Activity

Walking
Upstairs Walking Activity Writing on

White Board

Range of
Acc Values α1 ≤ αo ≥ α2 α2 ≤ αo ≥ α3 α3 ≤ αo ≥ α4 α4 ≤ αo ≥ α5 α5 ≤ αo ≥ α6

In previous research, the observation model’s role was to assign a weight wO, t(.)
to each activity performed in the various dedicated zones Zi i ∈ {0, 1, 2, . . . , M(i − 1)}
for all measurements in ρt. By modeling the activities based on the different values
of the accelerations computed from various performed actions on the university floor,
a distribution D(.) is constructed by the kernel density estimate.

Dzi(.) =
1

Mi

Mi−1

∑
l=0

1
hi−1,1...hi−1, MPA

MPA

∏
k=1
K
(× − ρi,k,l/hi,k

)
, (26)
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To each PA in each zone K(.) is the kernel and hi,k is the bandwidth of the kernel. Due
to the facility of analytical derivations, the Gaussian kernel is considered, and the shape of
the kernel has no impact on the model [88].

K(u) = 1
(2π)1/2 e−1/2u2

(27)

By maximizing the pseudo-likelihood leave-one-out cross-validation, the bandwidth
of hi,k is estimated. hi,k = argmaxh NLi,k(h) where NLi,k(h) is computed as,

NLi,k(hi,k) =
1

Mi

Mi−1

∑
l=0

log

∑̃
l 6=l

K
(

ρi,k,l − ρi,k,l

hi,k

)− log[(Mi − 1)hi,k]. (28)

The allocation of weight by the observation model to each performed activity at any
time t is computed as the output of the kernel density estimate of each zone followed by a
normalization phase,

w0, t(Zi) =
Dzi(ρt)

∑
Mz−1
j=0 Dzi(ρt)

. (29)

In this activity detection approach, based on the hidden Markov model, the mobility
model is constructed. To determine the confidence level that the sensor resides in each
zone, the probability is assigned based on the measurements of the accelerometer and
combined with the evidence given by the observation model. At first, we provide a general
overview of the HMMs and the confidence-based zone estimation combined with the
observation model.

3.2.1. Hidden Markov Models

A probabilistic model that can be used to represent observations, and these sequence
of observations can either be independent, time-dependent, continuous, or discrete [89].
Let the SN HMM model be denoted by H, and the total states S = {S1, S2, . . . , SN}. The ob-
jective of the Nth order HMM model is to determine the corresponding state sequence
S = {S1, S2, . . . , Sα}, whenever the sequence of length α and R = {R1, R1, . . . , Rα} is given.
For each present state, the probability of arriving at the next state is designated by the
transition probability and termed as matrix A. The actual states are hidden from the ob-
server and determine the likelihood that each type of observation is in each state by using
observable data and termed as emission probabilities forming matrix B. Probabilities of
starting at different states in HMM are represented as T. Based on the prior knowledge,
it can be either random, any vector generated, or uniform. Thus any HMM can be repre-
sented as H = (A, B, T). The transition probability from the state a to b can be denoted
by Paba, b ∈ {1, 2, . . . , SN} and forming the matrix A. The output probability distribution
forming the matrix B, and can be represented as P̀a(R), a ∈ {1, 2, . . . , SN}. The complete
explanation is in [90].

3.2.2. Activity Detection Approach Architecture

In an indoor environment, the objective is to detect a change in the sensor state from
one zone to another in a specific period. To determine the likelihood that the sensor has fol-
lowed some trajectory, we use the HMMs. Since the states are hidden S = {S1, S2, . . . , Sα},
we can observe a sequence R = {R1, R1, . . . , Rα}, corresponding to a vector of acceleration
magnitude measurements at each state. To observe the sequence R, we are interested in
determining the probability P(R|H). The probability obtained by the observation model is
combined with P(R|H) to determine a confidence level of having the accelerometer sensor
values residing in each zone. The transition between two zones Zi to Zj can be represented
by SN state HMM Hi,j, whereas a set of HMMs denoted as Hi,j, i, j ∈ {1, 2, . . . , Mz}. In each
transition region, the number of states chosen by the user is represented as SN .
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Figure 4 shows the transition region between each pair of neighboring zones in the
offline phase. This region is divided into the number of states chosen by the user in each
transition region. In each transition region, Γ = SN × σaccmag measurements were gathered.
Random selections of measurements from each state made the change in the frequency of
the accelerometer values. Every kind of variation in the accelerometer values is considered
as a database for each HMM. For each HMM Hi,j = (A, B, Γ), the parameters are calculated
as follows,

• Except for the first and the last state, where there are only two options, the accelerom-
eter sensor values can move to the state upfront, behind, or retain their positions.
The transition matrix ASN×SN .

• The activity detection model of each sequence is computed by modeling the of-
fline collected accelerometer sensor measurements of each sequence with the multi-
dimensional distribution Pa(R) = QΓ(Pa), j ∈ {1, 2, . . . , Mz}. For example, to model
observation ρa using the accelerometer sensor measurements Γ for all the PAs, the dis-
tribution QΓ(ρa) which is the output of the distribution Q(.) is used.

• The vector T is defined as
[

1
SN

, ..., 1
SN

]
, unless information of prior knowledge is

given regarding the starting of the state vector.

Zone4

Zone7

Zone 1 Zone2 Zone3

Zone5 Zone6

Zone8 Zone9

Running

Activity

Walking 

Upstairs

Walking 

Activity

Writing on 

White-Board

Working on 

Computer

Transition Zone

Figure 4. Transitions Regions between all performed Activities.

3.2.3. Weight Assignment

The aim is to evaluate the probability of observing the sequence P(R|H), given an
observation R and SN state HMM model H. When we know the parameters of the HMM,
this is a problem for evaluating the observed sequence. For the evaluation purpose of
P(R|H), it can be broken down as follows. We can compute the joint probability of the
state sequence and the observed sequence, given a state sequence S = {S1, S2, . . . , Sα},
and the range of α values in different zones are α1 ≤ αo ≥ α2, α2 ≤ αo ≥ α3, α3 ≤ αo ≥ α4,
α4 ≤ αo ≥ α5, α5 ≤ αo ≥ α6,

P(R, S|H) = P(R|S, )× P(S|H) (30)

In (30) is the product of the probability of the state sequence S given the modelH and
the likelihood of the observation sequence R given the state sequence S. The first term is
obtained from the activity detection matrix B as follows,

P(Rαi | H) =
αi

∑
α=1

αi

∏
a=1

P̀sa(Ra) (31)
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From the transition matrix A, the second term is obtained as,

P(S | H) =
αi

∏
a=1

Psa−1sa(Ra) (32)

By taking the summation of P(R, S|H) over all possible state sequences SN, we can
then derive P(R|H) [91],

P(R | H) = ∑
For all S

P(R, S | H) = ∑
For all S

αi

∏
a=1

Psa−1sa P̀sa(Ra) (33)

The computational cost and feasibility of the system depend on the range of α. To ob-
tain the probability P(R|H) and reduces the computational burden, a forward–backward
algorithm can be used. Thus, (33) can be transformed as

P(R | H) =
SN

∑
y=1

P
(

R1, R2,×, Ra, sa = P′/H
)
· P
(

Ra+1, Ra+2, . . . , Rαi |, sa = P̀,H)

ga(P̀) = P
(

R1, . . . , Ra, sa = P̀ | H
) (34)

ha(P̀) = P
(

Ra+1, . . . , Rα | sa = P̀,H
)

(35)

The probabilities ga(P̀) and ha(P̀) mentioned in (35) can be recursively computed;
therefore, the probability P(R|H) is given by,

P(R | H) =
SN

∑̀
P

ga(P̀)ha(P̀). (36)

In the (36), when a transition between Zi to Zj took place, the objective of the proposed
HMM-based activity detection model is to assign evidence. Each HMM Hi,j allocate a
likelihood based on a sequence R = {R1, R1, . . . , Rα}. For each HMM Hi,j, the proba-
bilities P

(
R|Hi,j

)
, i, j ∈ {1, 2, . . . , Mz} are computed. Based on that, the probabilities of

the transitions between different zones are calculated. The probability is zero where no
transition is possible. The coefficient of transition ci,j, i, j ∈ {1, 2, . . . , Mz} between zones
Zi to Zj is as follows,

ci,j =

{
P
(

R | Hi,j
)
, if i 6= j

1−∑MZ
i=1 P

(
R | Hi,j

)
, if i = j.

(37)

Probabilities that the sensor moves from Zi to Zj are a complement to the probabilities
where the likelihood for transition is zero. The calculation for the evidence wM,t (.) is
as follows,

wM,t(Zi) =
Mz

∑
j=1

wO,t−1
(
Zj
)
× ci,j. (38)

The weight associated with the observation model O(.) is wO,t−1. The coefficient ci,j
will be large if there is no transition Zi to Zj. All coefficient ci,j values in the case for i = j
will be significant. This problem does not cause any issue if we put the values of coefficients
in the above equation and, thus, evidence is based on the observation model wO,t−1

(
Zj
)
.

3.2.4. Zone-Based Confidence Estimation

The evidence was allocated by the mobility model and the observation model com-
bined to get the confidence Ct(.). The confidence level shows the zones based on the
accelerometer sensor values.

Ct(Zi) =
w0,t(Zi)× wM,t(Zi)

∑Mz
x=1 w0,t(Zx)× wM,t(Zx)

(39)



Sensors 2021, 21, 6972 17 of 31

Based on the accelerometer sensor values, the zone with the highest confidence level
chosen is shown in (39).

3.3. Pedestrian Dead Reckoning

The zero-velocity information is effectual for the error correction because of the sensor
drift and fast accumulation of the positioning error. The velocity and angular velocity
are almost zero when the pedestrian’s foot is totally on the ground. For that purpose,
the PDR system based on HMM and ZVU algorithms is introduced. According to the
accelerometer and gyroscope readings, rules are defined based on the threshold for ZVU
detectors [92]. This method ignores the sensor measurement fluctuations and uses an
instantaneous sample that only gives the precise phase judgment. To recognize the phase,
the following is used: Obs = (obs1, obs2, . . . , obsk). To determine the observation obsk at
k time, stance, and swing phase, two indicators are deployed. The accelerometer mea-
surement is constant in the stance phase, the angular rate approximates to zero, and local
gravity is approximately equal to the phase magnitude. Therefore, the observation is
defined as obsk = Z1 ∧ Z2, whereas

Z1 =
∣∣∣∥∥∥ãb

∥∥∥− g
∣∣∣ < TH1 (40)

Z2 =
∥∥∥w̃b

∥∥∥ < TH1 (41)

where obsk = [0, 1], TH1 and TH2 are thresholds. Thresholds are set empirically based on
Z1 and Z2 calculated from the static test. To classify the observation into stance and swing,
a long series of observations are given. To yield better recognition, the HMM is adopted,
and to represent stance and swing, we use two HMMs, respectively. The calculation of the
observations under each model and their conditional probability from the given observation
sequence suggests the walking phase is the maximum probable model. For each HMM,
the hidden state is assumed binary s = [0, 1]. The output probability distribution d, which
is B = bj(k) and state transition probability distribution A = aij are the two elements.

B = P(ot+1 = k|st = j) (42)

and HMM is defined as ε = (A, B), and the parameters A and B are determined by
using [57]. Partial observation sequence obs1, obs2, . . . , obst, ε being in state i at time t,
and the forward probability is the probability of the HMM and it is shown in (43) as below,

µt(i) = P(obs1, obs2, . . . , obsT , |st = i, ε) (43)

From t + 1 to the end, backward probability is the partial observation sequence
probability, obst+1, obst+2, . . . , obsT, given the state st = i and the model threshold.

Φt(i) = P(obst+1, obst+2, . . . , obsT | st = i, ε) (44)

Given an observation history Obs and HMM εn to find new values of εn+1, such that
probability P

(
Obs

∣∣εn+1) ≥ P(Obs|εn). From the state i we estimate the expected number
of transitions based on the changing values of accelerometer sensor values as ∑T

t=1 λt(i)
and ∑T−1

t=1 κ′(i, j) from state i to j. The complete derivation procedure to estimate the new
model parameters in the last step can be found in [77]. The algorithm for the observation
sequence—the maximum probable model as the walking phase having estimated param-
eters of HMM. argmax

k P(εk|Obs) where k = 0or1. Here, ε1 represents the stance model,
and ε0 represents the swing model. By using the following equation during the swing
phase, the velocity vn and the position pn are estimated by using the HMM-based ZVU
algorithm.

accn
k = q̂k ⊗ ãcccb

k ⊗ q̂∗k − gn (45)
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velocity n
k = velocity n

k−1 + accn
k ∆t (46)

position n
k = position n

k−1 + velocity n
k−1∆t +

1
2

accn
k ∆t2 (47)

The sampling interval of the inertial sensors is 4t and gn and the gravity vector in
inertial navigational frame {in f } is gn.

4. Compensation Mechanism Based on AWCLA

In the case for the compensation mechanism based on AWCLA, we used iBeacon
Estimote version Bluetooth 4.0 smart as a fixed device, and its detail is mentioned in
Table 4. A 32-bit ARM® Cortex M0 is a small computer accompanied by a temperature
sensor and accelerometer. Bluetooth low energy beacon uses ultra-high 2.4 GHz radio
frequency. The CR2477 battery power source is used to power the BLE estimate for three
years if used in the default condition. The range of the ideal Beacon is around 70 m,
and in an indoor environment where signals can interfere, diffracted, or be absorbed by
the walls and human body, the range is reduced to 30–40 m. The iBeacon sent information
in an advertisement packet containing RSSI values, advertising intervals, measured power,
and broadcasting power.

Table 4. Implementation environment.

Component Description

BLE Beacon model Estimote
CPU 32-bit ARM® Cortex M0
Power source CR2477
Battery life 3 years
Ideal beacons range 70 m (230 feet)
Practical beacons range 30–40 m
Radio frequency 2.4 GHz UHF
Version Bluetooth 4.0 Smart
Sensors embedded Accelerometer, temperature

4.1. Kalman Filter Based RSSI Measurements Filtering

Figure 5 shows the distance computation between the object and Bluetooth low-energy
beacons, which is used for calculating the position of an indoor object. Received signals
from the beacons are used for the calculation of distance. To smooth RSSI signals, we used
the proposed KF process and measurement model. The distance computing model and
approach for RSSI estimation are presented. The distance output from iBeacons and the
received RSSI measurements have suffered from high distance errors and high noise levels
in the indoor environment. Various localization algorithms have been proposed to decrease
the position error and enhance the accuracy when using the distance values based on the
beacon output signals. However, still, the error is too high, and the localization accuracy
is low. In this paper, indoor positioning accuracy and the distance error were improved
using the proposed enhanced PDR-BLE compensation mechanism based on HMM and
AWCLA for improving indoor localization.
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Figure 5. BLE-beacon Compensation Mechanism Based on Kalman Filter and AWCLA.

4.2. Path-Loss Model-Based Measuring Distance

The nature of the medium and the distance are factors that cause an attenuation when
wireless signals are transmitted. The signal is reflected, diffracted, refracted, and scattered
when experiencing objects during transmission. In the case of LOS or NLOS, direct
attenuated signal is due to other physical effects and indirect attenuated signals such
as refraction, reflection, scattering, and diffraction [93]. In the simplest path loss model,
there is no multi-path components and signal strength decreases by 1

d1 .The amount of
power transmitted compared to the power received is calculated using Friis free space
equation [94].

received P = transmitted P
TxGRxGλ̀2

(4πD)2 . (48)

The path loss is expressed in dB and it takes place exponentially with distance as
shown in Equation (49)
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Ploss(d) = Ploss(d0) + 10nlog(
d
d0

). (49)

The relation between distance and RSSI in [80] can be described by the log-distance
path loss model.

RSSI = −10nlog10
(

d
d0

)
+ r0 (50)

The above equation can be rewritten as:

d = 10(
(Txs−RSSI)

10n ) (51)

where, the strength of the transmitted signal is Txs. The process model for smoothing RSSI
using the Kalman Filter is shown below in Equation (52):

xt+1 = Axt−1 + But + wt (52)

The relationship is modeled through matrices A and B, and it is among the control
unit, current state, and previous state. At time step t, the state of interest is xt+1, whereas
the previous state is xt−1 , wt is the process noise, and the control input is ut. The KF based
observation model is expressed as:

mt = TXt + vt (53)

where, at time step t mt is the measurement , the transformation matrix is represented as T,
and noise measurement is vt.

Likewise, the steps update and prediction based on the Kalman filter are as follows

x̂t = x̂t−1 + But (State prediction) (54)

P̂t = APt−1AT + Q (Error Covariance) (55)

GK = P−t TT
(

TP−t TT + K
)−1

(Gain Calculation) (56)

x̂t = x̂−t + Gt(mt − GtT)P−t (Estimate update) (57)

Pt = (I − GtT)P−t (Error covariance update) (58)

We define RSSI signals as the state of interest xt. For certain time frames, the mobile
and position are set as static; hence, the RSSI measurements in that time frame remain
constant, and the rest of the parameters are taken as process noise. The model can be
constructed by setting A to an identity matrix and ignoring control input ut.

The RSSI estimation is computed in three steps. Step 1: xt = RSSI(t). Step 2: ẋt =
Axt + wt (Kalman filter process model). Step 3: rssim = Txt + Vt, observation are designed
by using the received RSSI measurements and the relationship between the state of interest.
For the state of interest updates and the KF, we use a time step from t− 1 to t, variance
from the time step t− 1 to t, and Kalman Gain (KG).

4.3. Position Estimation Using Beacon Weights

To find the mobile position the centroid location algorithm uses, while using the
weight of each Beacon, the weighted centroid location WCL estimates the mobile location.
In this paper, we explored the Beacon’s importance in terms of weight to estimate the
mobile position based on CLA by using the deployed beacons. The accuracy of the centroid
localization algorithm is poor, so different modifications are proposed to decrease the
position error. To improve the object’s position, the proximity between the mobile devices
and the Beacons are considered in terms of weights for each beacon. The relationship
between the weight and distance is directly proportional, while the impacts of propinquity
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between the mobile devices and the beacons are inversely proportional. Based on (59), the
value of Beacon weight is calculated using equation

wij =
1

(̂dij)
g , (59)

where the estimated distance between the mobile device and beacon is denoted by dij
and the adjustable degree depends on the environments, and it is referred to g. To es-
timate the unknown mobile position, the weighted centroid localization algorithm uses
Equations (60) and (61) based on the known Beacon position.

x̂ =
∑n

i=1 wi × xi

∑n
i=1 wi

(60)

ŷ =
∑n

i=1 wi × xi

∑n
i=1 wi

(61)

Here x̂, ŷ are the estimated x and y coordinate. The weight of each Beacon calculates
using the signal power per Equation (62)

wij =
(

ref(x, y)× 10(
RSSI

20 )
)g

(62)

Calculations of smartphone locations in indoor surroundings based on KF, which
integrates the smoothed RSSI measurements based on the beacon weight. In the proposed
algorithm based on KF, RSSI measurements are pre-processed and integrated. The proposed
beacon-based localization eliminates noise and smooth RSSI values. By using the estimated
filtered RSSI values, the distance between the deployed beacons and smartphones is
calculated. The strength of the received RSSI signal is directly proportional to the power
delivered to the beacon. The calculation of the actual distance between the deployed
beacons and smartphones by using centroid points of beacons.

dactualn = ((xn − x0)
2+(yn − y0)

2)
1
2 (n = 1, 2, . . . , m) (63)

The error in distance is calculated using equation4dn = dn− dactualn(n = 1, 2, . . . , m).
The position error between the BLE beacon and smartphone is denoted by4dn. The es-
timated smartphone coordinates are calculated using weights of BLE beacons, and the
average of the BLE beacons used to calculate the position. The estimated position of the
smartphone is calculated as follows.

x̂est =
∑m

n=1 wnavg ×
(
xcij
)

∑m
n=1 wnavg

(i&j = a, b, c) and i 6= j (64)

ŷest =
∑m

n=1 wnavg ×
(
ycij
)

∑m
n=1 wnavg

(i&j = a, b, c) and i 6= j (65)

Ep =
(
(x̂est − x0)

2 + (ŷest − y0)
2
)1/2

(66)

Figures 6 and 7 shows the activities performed by an object in an indoor environment.
In Figure 6, various performed activities are shown, which include working on a computer
or idle activity, running activity, walking upstairs, walking on a plain surface, and writing
on board. The change in the magnitude of accelerometer sensor values clearly illustrates the
activities start and end times. It also shows how the change in the frequency also changes
as the change in activity occurs. The high magnitude and high frequency in activity
writing onboard show the frequent movement of the test object in an indoor environment.
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On the other hand, Figure 7 demonstrates the raw data information obtained from the IMU
smartphone-based sensor.

Figure 6. Activity detection using measurements of accelerometer sensor data.

Figure 7. Clustering of IMU sensor data.

5. Experimental Results and Discussion
Development Environment

Experiments were conducted on a Windows PC with 12GB RAM. A front end (desktop
application) was developed using Java, and the clustering techniques were applied in
python. Well-know python libraries, including NumPy, SkLearn, and Scipy, were used for
clustering experiments. In addition, NCSS was used for the visualization of data in PC.
Furthermore, the simulation time for acquiring data for every instance was one minute
(60 s). The required software and hardware components are listed in Table 5.
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Table 5. Implementation environment.

Component Description

Operating system Android OS
Hardware BLE-beacon ARM® Cortex®-M4 32-bit processor

with FPU, Smartphone, Intel(R) Core(TM) i5-8500
CPU @ 3.00GH

Memory DDR4-16GB RAM, 64 kB RAM
Libraries Google API, Android Graph Library, Android Posi-

tion Library
Front end framework Swing based GUI
Core programming language Java
IDE Android Studio
Simulation time 60 s (1 min)

6. Results and Discussion

To validate our enhanced PDR-BLE compensation mechanism based on HMM and AW-
CLA for improving indoor localization, the person moves in an indoor environment with a
Bluetooth enabled smartphone. The mobile was tested in seven different locations. Actual
smartphone coordinates were compared with the estimated positions. Seven Bluetooth
low energy beacons with known coordinates named C1(x1, y1), C2(x2, y2), . . . Cn(xn, yn)
(n− 1, 2, . . . 6) placed in the entry and exit points of the fourth floor of Jeju National Uni-
versity, South Korea. To validate our approach, at eleven different locations, the position
of the smartphone was calculated. The RSSI values of the BLE-beacon, as shown in the
figure, were calculated in the android application. The positioning system in this paper
is three-dimensional. In this paper, we considered two floors of Jeju National University
engineering building 4. We used a 3D navigation approach to localize object movement in
an indoor environment.

By using the Kalman filter in the proposed algorithm, the collected RSSI values
were then smoothed, and for position estimation of the smartphone, the weight of each
BLE-beacon was used. The figure shows various smartphone and deployed BLE beacon po-
sitions.

6.1. Error Reduction Using Kalman Filter in RSSI Measurement

To validate our KF approach mentioned in Section 4, RSSI measurements passed
through KF to reduce errors. The result of smoothed RSSI values obtained after passing
raw RSSI measurements through the Kalman filter from different smartphone locations
is mentioned in Table 6. On separate entry and exit points of the floor, the estimated
BLE-beacon RSSI values and raw BLE-beacon RSSI values are shown in Figure 8. The
smoothed BLE-beacon RSSI values are further used to calculate the distance.

Table 6. Comparion in Position Error-Reference and EPBCM.

Reference Position XTrue
Meters

YTrue
Meters

XEPBCM
Meters

YEPBCM
Meters Position Error

Elevator Area 6 1.2 6.06 1.26 0.08
Conference Room 3 1.9 3.11 1.89 0.11
Stairs Area 10 2.4 10.32 2.36 0.32
Mobile Computing Lab 1 1 1.01 1.005 0.01
Networking Lab 15 3.74 15.65 3.66 0.65
Rest Area 20 5.32 20.11 5.4 0.14
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(a) (b)

(c) (d)
Figure 8. Filtered RSSI values and raw RSSI values. (a) BLE-beacon RSSI values around Conference room; (b) BLE-beacon
RSSI values around stairs area; (c) BLE-beacon RSSI values around MCL; (d) BLE-beacon values around elevator area.

6.1.1. Comparison between BLE-Beacon, PDR and EPBCM Localization Algorithm

The estimated mobile positions using EPBCM algorithm, the BLE-beacon and PDR is
given in Table 7. The combined plotting of EPBCM, PDR, and BLE-beacon-based localization
at all tested mobile positions is shown in Figure 9. The EPBCM algorithm shows promising
results when compared with other IPS, such as PDR and BLE-beacon-based systems.

6.1.2. EPBCM Algorithm Based Positioning

To validate the EPBCM localization algorithm, six mobile positions were chosen and
compared with other estimated positions using different approaches. Figure 10 shows the
actual position at six random mobile positions compared to their estimated location using
EPBCM, PDR, and the BLE-beacon algorithm. The deviation of position obtained from the
proposed EPBCM approach from the actual position is shown in Table 6, along with the
coordinates of these locations and their errors.

The measurements of accelerometer, magnetometer, and gyroscope were used to track
the position and orientation of an object moving in an indoor environment. Walking down
two flights of stairs, trajectory is shown in Figure 11, whereas the count of steps in each
flight is 13 steps.

The purpose of showing this result is to evaluate the performance of UKF-based
orientation tracking and data collection from smartphone-based IMU sensors. The starting
point is the mobile computing lab (MCL) situated on the fourth floor of the JNU, and the
ending point is the end of two flights of stairs. However, the exact ground truth cannot
be given, but the person’s orientation and activity can be determined. Compared to the
flat ground, the error in stair walking is more significant. This is due to the fact that the
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calculations of vertical acceleration in stair walking has to be calculated for this scenario
and it must include gravitational acceleration.

Table 7. Comparison of reference position with EPBCM, PDR, and BLE-beacon-based localization algorithms.

Reference Position XTrue
Meters

YTrue
Meters

XEPBCM
Meters

YEPBCM
Meters

XBLE−beacon
Meters

YBLE−beacon
Meters

XPDR
Meters

YPDR
Meters

Elevator Area 6 1.2 6.06 1.26 6.13 1.27 6.07 1.39
Conference Room 3 1.9 3.11 1.89 3.08 1.98 3.1 2.04
Stairs Area 10 2.4 10.32 2.36 10.7 2.47 11.3 2.54
Mobile Computing Lab 1 1 1.01 1.005 0.99 1.01 1.03 1.04
Networking Lab 15 3.74 15.65 3.66 15.09 3.33 16.2 3.64
Rest Area 20 5.32 20.11 5.4 21.4 5.53 21.89 5.62

Figure 9. Position Calculation based on EPBCM, PDR, and BLE-beacon at different mobile locations.

Figure 10. Mobile position estimation using BLE-beacon, PDR, and the EPBCM algorithm.

In this experiment, several pedestrian walking experiments were conducted in the
engineering building of JNU, and the final results are shown in Figure 12. In addition,
walking experiments were conducted to assess the performance further, and the smart-
phone’s position was compared with the various reference points at the path of the test
subject. Figure 12a shows pedestrian walking experiment conducted on the fourth floor of
Jeju National University. It is clearly seen that the localization trajectory based on the pro-
posed EPBCM algorithm follows the ground truth values. Figure 12b shows the complete
round trip foot trajectory of walking along a corridor, walking down two flights of stairs,
containing multiple turns, and the total distance covered is around 220.35 m. The trajectory
computed with the proposed algorithm is compared with the PDR localization algorithm
and actual trajectory. The proposed localization algorithm shows a clear decrease in the
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drift from the actual path as compared to the PDR. To quantify the positioning accuracy,
we adopted the maximum error and end-to-end error. For the evaluation of the proposed
algorithm, we implemented three algorithms EPBCM, PDR, and BLE. EPBCM incorpo-
rates accelerometer magnitude HMM-based detection, and the other two are PDR and
BLE-beacon-based localization algorithms.

Figure 11. Indoor localization visualization using IMU sensor data.

(a)

Figure 12. Cont.
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(b)

Figure 12. Performance evaluation of the proposed localization model considering pedestrian
walking trajectories. (a) Pedestrian walking experiment; (b) Person walking trajectory evaluation by
using EPBCM and PDR based localization algorithms.

7. Conclusions

In this study, an EPBCM based localization algorithm was developed to estimate the
position of an object in an indoor environment. The proposed system is a combination
of two localization algorithms—PDR and BLE-beacons. In the proposed position estima-
tion module, orientation is estimated using the unscented Kalman filter and HMM-based
activity detection by considering the varying measurements of the accelerometer sensor.
In this paper, the BLE-beacon-based localization algorithm is used as a compensation algo-
rithm. In this compensation model, the path-loss model is used for distance measurement.
The Kalman filter is used for noise elimination, smoothing RSSI measurements, and in-
tegrates raw BLE-beacons measurements to reduce the positioning error. The position
estimation combinator is designed to combine the position coordinates of the two local-
ization algorithms and get the enhanced position, containing less error. For comparative
analysis, we compare the HMM-based activity detection approach results with the K-mean
clustering technique. We also compare the three localization algorithm results, showing
the proposed indoor positioning system containing the least error. It also shows that the
proposed algorithm deviation from the actual location is the minimum. The walking
scenario experimental results show that the proposed EPBCM based on HMM and AWCLA
is feasible for the indoor positioning system. At some points, the positioning error is tiny,
although to maintain a high accuracy level, more beacon deployment must be required to
get more compensation in error at different mobile locations.

Author Contributions: Data curation, H.J.; Formal analysis, F.J.; Funding acquisition, D.-H.K.;
Investigation, F.J.; Methodology, D.-H.K.; Software, F.Q.; Supervision, D.-H.K.; Validation, H.J;
Visualization, H.J.; Writing—original draft, F.J., H.J. and F.Q.; Writing—review & editing, F.J., H.J.,
F.Q. and D.-H.K. All authors have read and agreed to the published version of the manuscript.

Funding: This research was supported by the MSIT(Ministry of Science and ICT), Korea, under
the ITRC(Information Technology Research Center) support program(IITP-2019-2016-0-00313) su-
pervised by the IITP(Institute for Information & communications Technology Planning & Evalu-ation),
and this research was supported by Energy Cloud R&D Program through the National Research
Foundation of Korea (NRF) funded by the Ministry of Science, ICT (2019M3F2A1073387), Any
correspondence related to this paper should be addressed to DoHyeun Kim.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.



Sensors 2021, 21, 6972 28 of 31

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
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