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Abstract: A linear mechanical oscillator is non-linearly coupled with an electromagnet and its driving
circuit through a magnetic field. The resulting non-linear dynamics are investigated using magnetic
circuit approximations without major loss of accuracy and in the interest of brevity. Different
computational approaches to simulate the setup in terms of dynamical system response and design
parameters optimization are pursued. A current source operating in baseband without modulation
directly feeds the electromagnet, which consists commonly of a solenoid and a horseshoe-shaped
core. The electromagnet is then magnetically coupled to a mass made of soft magnetic material and
attached to a spring with damping. The non-linear system is described by a linearized steady-space
representation while is examined for controllability and observability. A controller using a pole
placement approach is built to stabilize the element. Drawing upon the fact that coupling works
both ways, enabling estimation of the mass position and velocity (state variables) by processing the
induced voltage across the electromagnet, a state observer is constructed. Accurate and fast tracking
of the state variables, along with the possibility of driving more than one module from the same
source using modulation, proves the applicability of the electro-magneto-mechanical transducer
for sensor applications. Next, a three-layer feed-forward artificial neural network (ANN) system
equivalent was trained using the non-linear plant-linear controller-linear observer configuration.
Simulations to investigate the robustness of the system with respect to different equilibrium points
and input currents were carried out. The ANN proved robust with respect to position accuracy.

Keywords: sensor; magnetic; transducer; control; observer; multi-physics; nonlinear; dynamics;
modelling; artificial neural network

1. Introduction

Advancements in the field of magnetic materials in terms of better efficiency and
energy densities [1], together with the integration of mechanics, electromagnetics, power
and control electronics into the system, have enabled intelligent electromagnetic actuators
and sensors. Electromechanical devices are fundamentally based on quasi-static magnetic
and electric fields, where force is generated [2]. Widely spread nowadays due to their simple
design and system integration, they can measure changes in the magnetic reluctance of the
circuit, which can be correspondingly related to a change in speed or position [3]. Precise
operation can be realized using control techniques such as feedback control, which enables
them both as sensors and actuators [4]. Typical applications can be found in aerospace [5],
automotive [6], ocean [7] and biomedical devices [8] as well as flywheel and transmission
speed [9], crank and cam shaft position for engine timing, throttle valve position for air
intake, steering wheel position, pedal position, fluid level, chassis height, and in electronic
door locks [6]. Given the joint sensing-actuation functionality, electro-magneto-mechanical
devices are a promising solution for multi-agent architectures. Such architectures have
a vast application field, such as mechatronics and robotics [10], smart grids [11] as well
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as sensor networks [12]. An agent is a software-controlled hardware, which reacts to a
stimulus according to a user-defined behavior [13–16]. A multi-agent constellation or
swarm uses a collaborative approach to achieve a common purpose [17–23], difficult or
impossible to solve by a monolithic system. In this work, we examine a sensor application
of an electromechanical oscillator as proposed by Xiros [24,25] (Figure 1). Initially, a force
imposed on the mechanical system by the electromagnet induces a displacement of the
mass, altering the air gap length. In the next instance, the acting force has changed and
the mass moves again. This iterative sequence repeats, forming a closed loop between
the displacement and the magnetic force. The magnetically actuated mass-spring-damper
system is described and simulated in Section 2. Different simulation methods are presented
and compared. Section 3 shows the state-space formulation of the problem together with
its linearized form. Using the eigenvalues concept, the system’s’ stability is assessed. In
Section 4, closed-loop simulations are conducted to achieve a higher degree of stability. In
order to estimate the position and velocity of the oscillating mass, the system states must
be known at all times. By designing a state observer for the electromechanical oscillator,
position and velocity tracking is achieved. Last, the overall system is replaced by an
artificial neural network (ANN) equivalent. The ANN is trained using data collected from
the analytical model for different equilibrium points. The current input is kept variable yet
close to the equilibrium values where the linearization is still valid.
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(a) (b) 
 Figure 1. (a) Coupled electromechanical oscillator investigated in this work; (b) coupled electromechanical oscillator as

described in [25].

2. The Electromechanical Oscillator
2.1. Lagrangian Formulation of the System

Figure 1a,b show the electromechanical oscillator investigated in this work and
in [25] respectively.

Analysis of dynamic systems requires the equations of motion for such systems
to be derived. The ability of computation and analytical approaches depends on the
mathematical description used to formulate system dynamics. Often Newtonian mechanics
is replaced by Lagrangian dynamics, which solely depends on the energy balance within a
non-dissipative system:

L = K−T (1)

Lagrange’s equation can be augmented, using the so-called “power” function, to
include dissipative forces as well as other non-dissipative, non-conservative external forces:

d
dt

(
∂L
∂

.
qi

)
− ∂L

∂qi
=

∂P
∂

.
qi

(2)

Let us now consider the electromechanical system shown in Figure 1a. In specific, the
system’s circuit consists of an electric current source, a conductance, a capacitor and the
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electromagnet’s coil all connected in parallel. The Lagrangian of the system can then be
written as:

L = Ke +Km − (Te +Tm), (3)

Ke =
1
2

CV2 =
1
2

C
.
ψ

2
(4)

Te =
1
2

L(x)iL
2 − isψ =

1
2L(x)

ψ2 − isψ (5)

Km =
1
2

m
.
x2, (6)

Tm =
1
2

kx2 − x f (t) (7)

Pe = −
.
ψ

2

2R
,Pm = −

.
bx

2

2
(8)

By substituting (4)–(8) into (3):

L =
1
2

C
.
ψ

2
+

1
2

m
.
x2 −

(
1

2L(x)
ψ2 − isψ +

1
2

kx2 − x f (t)
)

(9)

For the mechanical subsystem, the Lagrange equation can be written as:

d
dt
(
m

.
x
)
+

∂
(

1
2 kx2−x f (t)+ 1

2L(x) ψ2
)

∂x = −b
.
x → m

..
x + kx− f (t) + ψ2

2
∂
(

L(x)−1
)

∂x = −b
.
x →

m
..
x + kx + b

.
x− ψ2

2L2(x)
∂(L(x))

∂x = f (t)→ m
..
x + kx + b

.
x = f (t) + ψ2

2L2(x)
∂(L(x))

∂x

(10)

From the right-hand side of the above, the electromagnetic force applied to the mass
by the electromagnet is obtained as follows.

Fem =
ψ2

2L2(x)
∂(L(x))

∂x
(11)

The system has two degrees of freedom, thus for the electromagnetic part:

d
dt

(
C

.
ψ
)
+

∂
(

ψ2

2L(x) − isψ
)

∂ψ
= −

.
ψ

R
→ C

..
ψ +

.
ψ

R
+

1
L(x)

ψ = is
C=0→

.
ψ

R
+

1
L(x)

ψ = is (12)

Note that for C = 0: ic = C dV
dt = 0 equivalent to an open circuit.

2.2. Electromagnetic Subsystem

In this work the magnetic circuit solution is adopted, based on Maxwell’s equations
and the correspondence of the differential equations for linear magnetization problems
with those for steady current problems. This is only true in the special case where boundary
conditions for the two cases are identical [26]. In order to simplify the analysis of mag-
netic circuits and make them suitable and accurate enough for engineering applications,
assumptions must be made. Initially, the terms of the Maxwell equations containing time-
varying electric fields are neglected and the system is regarded as magneto quasi-static.
The second assumption refers to the magnetic circuit, which is thought of as a structure of
high-permeability materials. This results in the magnetic flux to flow entirely through the
path defined by the structure.

An electromagnet featuring a solenoid around a horseshoe-shaped core, an air gap
and a moving mass is shown in Figure 2.
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(11)
�⎯�  𝐹𝐹𝑒𝑒𝑚𝑚 =

1
2𝜇𝜇0

𝐴𝐴𝑔𝑔𝐵𝐵2 (17) 
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Figure 2. Electromagnet featuring an air gap and a moving mass.

The magnetic reluctances < of the circuit are defined as:

<c =
lc

Acµ0µc
(13)

<m =
lm

Arµ0µm
(14)

<g =
lg

Agµ0
(15)

where Am = Ac = Ag = A.
The magnetomotive force (mmf) drives a magnetic flux Φ through the magnetic

reluctances of the core, air gap and moving mass. From (13), (14) and (15) it is clear that the
magnetic reluctance depends on the material permeability. High magnetic permeability
can result in small reluctances, in fact much smaller than that of the air gap. The resulting
magnetic field stores energy in the air gap equal to:

E =
1

2µ0
B2 Aglg (16)

The force in the gap acting on the mass is given by the rate of change of energy with
gap length, thus:

Fem =
dE
dlg

(11)→ Fem =
1

2µ0
AgB2 (17)

It is known that:
B =

NiL

A
(
<c +<m + 2<g

) (18)

thus we can write (17) as:

Fem =
1

2µ0

N2iL
2

Ag
(
<c +<m + 2<g

)2 (19)
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or alternatively:

Fem =
N2 Aµ0µc

2µm
2

(lcµm + µclm + 2µcµmx(t))2 i2 (20)

The force, acceleration, velocity and displacement are vectors. The electromagnetic
force is acting on the mass minimizing the gap length.

Let us now define the two constants (assuming µc = µm = µ):

Ka =
1
2

N2 Aµ0 (21)

Kb =
lcµm + lmµc

µcµm
(22)

We can now write (20):

Fem =
2KaiL

2

(Kb + 2x)2 (23)

and (11) as:
..
x =

2KaiL
2

m(Kb + 2x)2 −
Kx
m
− b

.
x

m
(24)

The dynamic equations for the electrical subsystem must be derived as well. Knowledge of
the induced voltage and variable inductance are key for both sensory and actuating applications.

VL =
d(L(x)iL)

dt
→ VL = L(x)

diL
dt

+ iL
dL(x)

dx
dx
dt

(25)

It is known that:

ψ =
NiL(t)(

lc
Acµ0µc

+ lm
Arµ0µm

+ 2 x(t)
Agµ0

) (26)

and:
L =

Nψ

iL
→

L =
N2(

lc
Acµ0µc

+ lm
Arµ0µm

+ 2 x(t)
Agµ0

) =
N2 Acµ0µcµm

lcµm + µclm + 2µcµmx(t)
(27)

We assume:

ξ0 = N2 Acµ0µcµm, ξ1 = lcµm + µclm, ξ2 = 2µcµm (28)

and (27) can now be written as:

L(x) =
ξ0

ξ1 + ξ2x(t)
(29)

2.3. Electromechanical System Simulation

The dynamical electromechanical system described in this work is simulated using
Matlab [27], in particular:

• Matlab Simulink Simscape;
• Matlab Simulink;

2.3.1. Simscape Implementation

Matlab Simscape uses physical blocks to model complex systems (Figure 3). Each
block models an item which is interconnected with others, forming a diagram equivalent
to the mathematical model of the system. The interaction of the blocks is accomplished
through signal ports permitting non-directional energy exchange. Additional signal ports
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are available to the blocks in order to specify initial conditions and enhance the model’s
computational speed. Blocks are available for both active and passive elements depending
on their ability to deliver energy to the system, store it, or dissipate it. Results of the
simulated system are shown in Figure 4.
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2.3.2. Simulink Implementation

Matlab Simulink allows dynamical modelling using a graphic environment through-
out signal blocks. These blocks are complete only when input and output signals are fully
defined. The magnetic force function is built and integrated into the Simulink model using
the approximation described in (29) for the inductance.

Figures 5 and 6 shows the air gap length and the Simulink coil voltage over a sim-
ulation time of 10 s, for the implementation in Figure 5. Initially the output voltage is
equal to zero, since the system is in equilibrium (no spring deformation). When a current i
is applied to the circuit an attractive force is pulling the mass toward the electromagnet
(Figure 2), changing the air gap length thus inducing voltage on the inductance. When the
spring force overcomes the magnetic force the mass moves away from the electromagnet.
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Motion on the positive x direction induces a positive voltage (negative x direction motion
results in negative induced voltage).
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2.3.3. Methods Comparison

Next the two methods described above to perform the dynamic simulation of the
system are compared. Figure 7 confirms that the results are comparable hence both methods
are suitable.



Sensors 2021, 21, 6788 8 of 28Sensors 2021, 21, x FOR PEER REVIEW 8 of 29 
 

 

  
(a) (b) 

Figure 7. (a) Air gap length variation over time methods comparison; (b) variable voltage across the electromagnet’s coil 
over time methods comparison. 

3. State-Space Problem Formulation 
The state-space model is defined in terms of the derivatives of the states and its rep-

resentation is given below: 

�̇�𝒙 = 𝑨𝑨𝒙𝒙 + 𝑩𝑩𝑩𝑩  

𝒚𝒚 = 𝑪𝑪𝒙𝒙 + 𝑫𝑫𝑩𝑩 (30) 

In order to formulate the state equations of the electro-magneto-mechanical oscillator 
shown in Figure 1, constraints limiting the system according to its physical and perfor-
mance characteristics must be defined. For the inductance, we assume the expression de-
scribed by  (29), derived using the magnetic circuit approximation. In favor of simplicity: 

𝐿𝐿 =
𝜉𝜉0

𝜉𝜉1 + 𝜉𝜉2𝑥𝑥(𝑑𝑑)
 (31) 

where 

𝜉𝜉0 = 𝑁𝑁2𝐴𝐴𝑐𝑐𝜇𝜇0𝜇𝜇𝑐𝑐𝜇𝜇𝑚𝑚 (32) 

𝜉𝜉1 = 𝑙𝑙𝑐𝑐𝜇𝜇𝑚𝑚 + 𝜇𝜇𝑐𝑐𝑙𝑙𝑚𝑚 (33) 

𝜉𝜉2= 2𝜇𝜇𝑐𝑐𝜇𝜇𝑚𝑚 (34) 

Figure 1 shows the origin of the mechanical coordinate (x), assumed equivalent to 
the neutral position of the spring while that of the electromagnetic system (z) at the posi-
tion where the mass is marginally in contact with the magnet armature, such that: 

𝑧𝑧 = 𝑑𝑑 − 𝑥𝑥 [𝑚𝑚] (35) 

thus: 

−𝑑𝑑 < 𝑥𝑥 < 𝑑𝑑 [𝑚𝑚] (36) 

Based on the expression derived for the electromagnetic force earlier where the mag-
netic flux and consequently the current appears squared, one can easily derive that the 
force will be unidirectional, and always attractive, regardless of the electric current’s sign: 

𝐹𝐹𝑒𝑒𝑚𝑚 ≥ 0 [𝑁𝑁] (37) 

Additionally, given that we want to avoid any physical contact in the system, the 
velocity of a moving part must be controlled and constrained as follows [28]: 

Figure 7. (a) Air gap length variation over time methods comparison; (b) variable voltage across the electromagnet’s coil
over time methods comparison.

3. State-Space Problem Formulation

The state-space model is defined in terms of the derivatives of the states and its
representation is given below:

.
x = Ax + Bu

y = Cx + Du (30)

In order to formulate the state equations of the electro-magneto-mechanical oscillator
shown in Figure 1, constraints limiting the system according to its physical and performance
characteristics must be defined. For the inductance, we assume the expression described
by (29), derived using the magnetic circuit approximation. In favor of simplicity:

L =
ξ0

ξ1 + ξ2x(t)
(31)

where
ξ0 = N2 Acµ0µcµm (32)

ξ1 = lcµm + µclm (33)

ξ2 = 2µcµm (34)

Figure 1 shows the origin of the mechanical coordinate (x), assumed equivalent to the
neutral position of the spring while that of the electromagnetic system (z) at the position
where the mass is marginally in contact with the magnet armature, such that:

z = d− x [m] (35)

thus:
− d < x < d [m] (36)

Based on the expression derived for the electromagnetic force earlier where the mag-
netic flux and consequently the current appears squared, one can easily derive that the
force will be unidirectional, and always attractive, regardless of the electric current’s sign:

Fem ≥ 0 [N] (37)

Additionally, given that we want to avoid any physical contact in the system, the
velocity of a moving part must be controlled and constrained as follows [28]:

− s(d− x) <
.
x < s(d− x) [m/s] (38)
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where s is a constant such that
.
x ∈ [−5, 5] [m/s].

According to Kirchhoff’s law, Newton’s second law and the Lagrangian dynamics
analysis presented earlier, with the electromagnetic force acting on the moving mass the
state equations are:

.
ψ = Ris − R

L(x)ψ
.
ψ = Ris − Rξ0

ξ1+ξ2x(t)ψ = 〈
(

x,
.
x, ψ

) (39)

..
x =

ξ2ψ2

2mξ0
− k

m
x− b

m
.
x = {

(
x,

.
x, ψ

)
(40)

with states: the mass potion x, the mass velocity
.
x and the magnetic flux ψ.

Assuming the voltage across the inductance to be the systems’ output:

VL =
.
ψ = Ris −

Rξ0

ξ1 + ξ2x(t)
ψ = 〈

(
x,

.
x, ψ

)
(41)

(39)–(41) represent the dynamics of a nonlinear system thus linearization is applied
around some equilibrium point

(
x0,

.
x0, ψ0, is0

)
using Taylor expansion:

t
(

x,
.
x, ψ

)
= t

(
x0,

.
x0, ψ0, is0

)
+ t′x

(
x0,

.
x0, ψ0, is0

)
(x− x0) + t′.x

(
x0,

.
x0, ψ0, is0

)( .
x− .

x0
)
+

t′ψ
(

x0,
.
x0, ψ0, is0

)
(ψ− ψ0) + t′ψ

(
x0,

.
x0, ψ0, is0

)
(is − is0) ,

(42)

where:

t′x
(

x0,
.
x0, ψ0, is0

)
=

∂〈
∂x
(
x0,

.
x0, ψ0, is0

)
or

∂{
∂x
(
x0,

.
x0, ψ0, is0

)
(43)

t′.x
(

x0,
.
x0, ψ0, is0

)
=

∂〈
∂

.
x

(
x0,

.
x0, ψ0, is0

)
or

∂{
∂

.
x

(
x0,

.
x0, ψ0, is0

)
(44)

t′ψ
(

x0,
.
x0, ψ0, is0

)
=

∂〈
∂ψ

(
x0,

.
x0, ψ0, is0

)
or

∂{
∂ψ

(
x0,

.
x0, ψ0, is0

)
(45)

and for the equilibrium point
.
x0 = 0,

..
x0 = 0 and,

ψ0 =

√
2ξ0Kx0

ξ2
(46)

is0 =
ψ0

L(x0)
(47)

By substituting (39)–(41) into (43)–(45):

〈′x
(

x0,
.
x0, ψ0, is0

)
= −Rψ0

ξ2

ξ0
(48)

〈′.x
(
x0,

.
x0, ψ0, is0

)
= 0 (49)

〈′ψ
(
x0,

.
x0, ψ0, is0

)
= −R(ξ1 + ξ2x0)

ξ0
(50)

{′x
(
x0,

.
x0, ψ0, is0

)
= − k

m
(51)

{′.x
(
x0,

.
x0, ψ0, is0

)
= − b

m
(52)

{′ψ
(
x0,

.
x0, ψ0, is0

)
=

2ξ2 ψ0

mξ0
(53)

and (39)–(41) are written as:

.
ψ =

(
−Rψ0

ξ2

ξ0

)
(x− x0)−

R(ξ1 + ξ2x0)

ξ0
(ψ− ψ0) + R(is − is0) (54)
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..
x = − k

m
(x− x0)−

b
m
( .

x− .
x0
)
+

2ξ2 ψ0

mξ0
(ψ− ψ0) (55)

VL =

(
−Rψ0

ξ2

ξ0

)
(x− x0)−

R(ξ1 + ξ2x0)

ξ0
(ψ− ψ0) + R(is − is0) (56)

We define as state variables the displacement x, the velocity
.
x, the magnetic flux ψ and

adopt the variable transformation δx = x− x0
.

δx =
.
x− .

x0, δψ = ψ− ψ0 and δi = is − is0.
(30) is now written as: δ

.
x

δ
..
x

δ
.
ψ

 =

 0 1 0
− k

m − b
m

2ξ2 ψ0
mL0

−Rψ0
ξ2
ξ0

0 − R(ξ1+ξ2x0)
ξ0


 δx

.
δx
δψ

+

 0
0
R

[δi] (57)

y =

[(
−Rψ0

ξ2

ξ0

)
0 − R(ξ1 + ξ2x0)

ξ0

] δx
.

δx
δψ

+

 0
0
R

[δi] (58)

and:

A =


0 1 0(

a2ξ1e−a(d−x0) − 2a2ξ2
1e−2a(d−x0)

L(x0)

)
ψ0

2

m −
k
m − b

m
2aξ1e−a(d−x0) ψ0

mL(x0)
2(

Raξ1e−a(d−x)

L(x0)
2 ψ0

)
0 − R

L(x0)

 (59)

B =

 0
0
R

 (60)

C =

[(
−Rψ0

ξ2

ξ0

)
0 − R(ξ1 + ξ2x0)

ξ0

]
(61)

D = [R] (62)

The partial derivatives described in (43)–(45) to linearize the system are calculated
using both the analytical and numerical methods around an equilibrium point point
x0 = 0.015 m (Table 1).

Table 1. Analytical and numerical values for the linearization partial derivatives.

Partial Derivative Analytical Numerical

〈′x
(

x0,
.
x0, ψ0, is0

)
−124.01 −124.86

〈′ψ
(

x0,
.
x0, ψ0, is0

)
−389.97 −390.76

〈′ψ
(

x0,
.
x0, ψ0, is0

)
−910.103 −910.45

and:

A =

 0 1 0
−100 −0.06 −910.45
−124.86 0 −390.76

 (63)

B =

 0
0
2

 (64)

The system output is the voltage across the inductance in equilibrium position, thus (51):

C = [−124.86 0− 390.76] (65)



Sensors 2021, 21, 6788 11 of 28

D = [2] (66)

Table 2 summarizes the state variables, inputs and outputs of the linearized system:

Table 2. State variables, inputs and outputs summary for the linearized system.

States Input Output δx = x− x0.
δx =

.
x− .

x0
δiL = iL − iL0

 δi = i− i0 δVL

Let us now compute the eigenvalues of A to determine whether the linearized open-
loop system (without feedback control) is stable. The poles of the transfer function are the
solution to:

det(sI −A) = 0 (67)

thus: p1 = −910.36, p2 = −1.05 + 3.64i and p3 = −1.05 + 3.64i. All of three poles lie in the
left-half plane making the system stable.

4. System Controllability and Observability

A linear time invariant system
.
x = Ax + Bu, x(0) = x0 is controllable if over the

interval
[
0, t f

]
a control input u(t) ∀ t ∈

[
0, t f

]
steers the state from xinit to xt f according to:

x
(

t f

)
= eAt f xinit +

∫ t f

0
eA(t−τ)Bu(τ)dτ (68)

or in other words an LTI system is controllable at time t f > 0 if for any initial state and for
any target state xt f , a control input u(t) exists that can steer the system from x(0) to xt f

over the defined interval.
It can be shown that an LTI system is controllable if and only if its controllability

matrix M has full rank, where M = [B, AB]. For our system, from (63) and (64):

M =

 0 0 1.2486 × 103

0 1.2486 × 103 −1.1393 × 106

2 −1.8209 × 103 1.6578 × 106

 (69)

The controllability matric M has full rank since rank (M) is equal to number of
state variables.

An LTI system is observable at time t f if the initial state x(0) can be uniquely deter-

mined from any given u(0), . . . , u
(

t f − 1
)

, y(0), . . . , y
(

t f − 1
)

, where y is the output of
the system. By analogy, an LTI system is observable if and only if its observability matrix O
has full rank, where O = [C, AC]. For our system, from (63) and (65):

O =

 0 0 1
124.8627 0 −910.4529

−1.1368 × 105 124.8627 8.2892 × 105

 (70)

The observability matrix O has full rank since rank (O) is equal to number of
state variables.

Let’s now consider the linearized system as described in Section 3 with state variables
the spring displacement x and the velocity

.
x, and output the inductance voltage VL. As

stated earlier, the system contains an unstable pole with a corresponding damping ratio of
−1. A negative damping ratio, called driving force, increases the system oscillation rather
than driving the system to stability (damping force).
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4.1. Linear Controller Design Using Pole Placement

To stabilize the system around a specific position, a feedback controller is designed
using poles placement (Figure 8). In order to implement full-state feedback all state
variables must be known to the controller at all times.
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The controller equation is:
u = −Kgainx (71)

where u is the system input, Kgain the negative state-feedback gain matrix and x the state
variables, and:

.
x = Ax + B

(
−Kgainx

)
=
(
A− BKgain

)
x (72)

y = Cx + Du (73)

where:

A =

 0 1 0
−100 −2 624.3134
124.86 0 −910.4529

 (74)

B =

 0
0
2

 (75)

C = [−124.86 0− 390.76] (76)

D = 2 (77)

The system specific closed loop Acl matrix is now equal to
(

A− BKgain
)

and the gain
Kgain matrix is a 1 × 2 matrix hence,

Acl =

 0 1 0
−100 −2 624.3134
124.86 0 −910.4529

−
 0

0
2

[Kgain1 Kgain2 Kgain3
]

(78)

The eigenvalues of Acl are given by det(Acl − λI):

det(Acl − λI) = 0 (79)

Let us now assume that we would like to place two poles p1 and p2 such that the
characteristic equation is:

(λ + p1)(λ + p2)(λ + p3) = 0 (80)

The gain matrix Kgain can now be calculated by setting the coefficients equal to each other.
The location of the poles p1 and p2 characterize the stability and time-domain perfor-

mance of the system.
The controller design and the selection of the gain matrix Kgain are based on two criteria:
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1. overshot < 5%
2. settling time < 0.5 sec

For an overshoot less than 5% we have:

exp
(
− ζπ√

1−ζ2

)
< 0.05→ − ζπ√

1−ζ2
< ln(0.05) = −3.00→ ζ√

1−ζ2
>0.95

→ ζ2

1−ζ2 > 0.91→ ζ2 > 0.91
1+0.91 → ζ2 > 0.48→ ζ2 > 0.69

(81)

and for a settling time (3% error) of less than 0.5 s:

ts =
ln(0.03)

ζω
< 0.5→ ζω >7 (82)

For a second order system with ζ < 1 the poles are given by:

− ζω∓ iω
√

1− ζ2 (83)

The closed loop system showed in Figure 8 is simulated using the following three al-
ternative pole sets:

• p11 = −10 + i10, p12 = −10− i10 and p13 = −50
• p21 = −20 + i20, p22 = −20− i20 and p23 = −100
• p31 = −30 + i30, p32 = −30− i30 and p33 = −150

with gain matrixes:

• Kgain1 =
[
Kgain11 Kgain12 Kgain13

]
= [64.99 0.772− 421.22]

• Kgain2 =
[
Kgain21 Kgain22 Kgain23

]
= [115.44 3.54− 386.22]

• Kgain3 =
[
Kgain31 Kgain32 Kgain33

]
= [262.01 8.23− 351.22]

respectively.
The controller is based on the linearized system while the plant is the non-linear

system described by (39)–(41). The current applied to the plant features a small delta
with respect to the equilibrium current, δis0 = 0.01 A, to remain in the region where the
linearization is valid. Figures 9–11 show the controlled mass displacement for different
equilibrium points using poles set as p31, p32 and p33.
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4.2. Observer Design

The pole placement method described earlier requires knowledge of the system states
at all times. In practice, this is very demanding due to unavailable or expensive sensors
often driven by high noise as well. Moreover, some types of application require the system
to operate as a sensor rather than as an actuator. Given the proven observability of the
studied system, a state observer is designed to overcome the issue. A state observer is
capable of estimating and observing the system states regardless of whether some state
variables are available for direct measurement or not. The only measurable output for
the hereby-described electromechanical oscillator is the inductance voltage. The observer
mimics the model of the plant, except for an additional term, introduced to compensate for
inaccuracies in the matrices A and B. This new term, called estimation error, is equal to the
difference between the estimated output value and the measured value.
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The observer equations are:

.̂
x = Ax̂ + Bu + L(y− ŷ) = Ax̂ + Bu + L

(
y− Ĉx−Du

)
= (A− LC)x̂ + (B− LD)u + Ly

(84)

ŷ = Cx̂−Du (85)

where x̂ the estimated states, ŷ the estimated output and L the observer gain matrix.
The system’s output is compared to the estimated output. The resulting error is

corrected to help the observer converge to the system state values. The observer’s error
dynamic is given by:

.
e =

.
x− .̂

x = (A− LC)e (86)

The input to the open-loop plant is equal to:

u = −Kgainx̂ (87)

Thus:
.
x = Ax + Bu = Ax + B

(
−Kgainx

)
=
(
A− BKgain

)
x− BKgain(x̂− x)⇒ .

x
=
(
A− BKgain

)
x + BKgaine

(88)

and: [ .
x
.
e

]
=

[
A− BKgain BKgain

0 (A− LC)

][
x
e

]
(89)

(88) shows that the state dynamics is decoupled from the observer’s error e (separation
principle) thus the gain K can be computed independently of the observe gain L. The gain
matrix Kgain is computed, for p31 = −30 + i30, p32 = −30− i30, p33 = −150 and is equal
to Kgain = [262.01 8.23− 351.22]. For the observer, we select eigenvalues located at least
five times further left on the complex plane than the plant eigenvalues, since we want
the dynamics of the observer to be much faster than the system itself. In other words,
the observer must converge to the plants’ states before they converge to zero. Hence we
choose: pobs1 = −150 + 6i, pobs2 = −150− 6i and pobs3 = −750. Poles placed further
apart than that could result in complex systems with large bandwidth, making the system
vulnerable to noise effects. The analytical procedure to derive the observer matrix is
identical to the one described for the gain matrix Kgain. Alternatively, one can use the
place command in Matlab and: L =

[
−9.405 × 103 1.914 × 103 − 1.29 3.23 × 103]. The

selection of matrix L is a tradeoff between a fast dynamic response and noise reduction.
Figure 12 shows the non-linear plant-linear controller-linear observer block diagram.

Figure 13 shows theMatlab Simulink system implementation. The states are now unknown
to the controller, hence the observer is used to generate estimates by comparing the plant
output to the observer output. These estimates of the states are fed into the linear controller
to stabilize the system around an equilibrium point.

Figures 14–16 depicts the system output, with the observer and the linear controller,
for the following initial conditions:

• x0 = 0.006 m, x̂0 = 0.002 m

• .
x0 = 0 m/s,

.̂
x0 = 0.04 m/s

• ψ0 = 0 Wb, ψ̂0 = 0.07 Wb

and equilibrium at 0.005, 0.010 and 0.015 m.
The observer is a virtual system, designed to approximate the state variables not

available for sensing. A properly designed observer has all initial conditions specified.
Despite there isn’t a standard rule, for this study are chosen such that the initial error is
equal to e = [0.004,−0.04,−0.07]. Responses of the state variables, for different equilibrium
points are depicted in Figures 17–19: it is clear that the estimate states converge to the
actual state variables while tracking reasonably well the equilibrium value.
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.

x0 = 0 m/s, x̂0 = 0.04 m/s and ψ = 0 Wb, ψ̂ = 0.07 Wb, equilibrium at x = 0.015.

5. Artificial Neural Network (ANN) Representation of the System

An ANN is an adaptive, often non-linear system, that learns to perform a function (an
input/output map) when an input and the corresponding desired or target response set is
presented to the untrained ANN [29].

An ANN is structured in three layers (Figure 20):

• the input layer, where there is no real processing done, is essentially a “fan-out” layer
where the input vector is distributed to the hidden layer;

• the hidden layer, being the computational core of the ANN;
• the output layer, which combines all the “votes” of the hidden layer.
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The general mathematical expression that describes an ANN is [29]:

yANN = (u_n fANN(xANNw_n + bANN)) + bANN (90)

First, the input xANN is multiplied by the weight w_n. Second, the weighted input
xw _n is added to the scalar bias bANN to form the net input n. The bias is similar to a
weight, except that it has a constant input of 1. Finally, the net input is passed through the
transfer function fANN , which produces the output yANN .

The equation can be more detailed and further expanded to [29]:

h_j = fANN(
p

∑
i=0

w_jixANN_i) (91)

yANN_k =
M

∑
j=o

(u_kjh_j) (92)

with p the number of input nodes, M the number of hidden nodes and K the number of
output nodes.

The activation function fANN is commonly chosen to be one of the following:

• the logistic sigmoid function (Figure 6), commonly abbreviated as logsig,

fANN(z) =
1

1 + e−z (93)

• the hyperbolic tangent function (Figure 6), commonly abbreviated as tansig,

fANN(z) =
1− e−2z

1 + e−2z (94)

The change in error due to output layers weight can be found by Least Mean Square
(LSM) algorithms. The output error is given by [29]:

E_x=
1
2

K

∑
k=1

(d_k − y_k)
2 (95)

The back-propagating error corresponding to the hidden layer output can be expressed
as the partial derivative [29]:

∂E_x

∂u_kj
=

∂E_x

∂y_k

∂y_k
∂u_kj

(96)

Successful training of the network requires calibration of the weights to counteract
the error gradient to minimize the output error according to [29]:

u_kj = −η
∂E_x

∂u_kj
= −ηδy_kh_j (97)

u_new
kj = u_old

kj + ∆u_kj (98)

w_ji = −µ
∂E_x

∂w_ji
= −µδh_jx_i (99)

w_new
ji = w_old

ji + ∆w_ji (100)

5.1. ANN System Configuration

In this section, a feed-forward network organized in layers is proposed to approximate
the electro-magneto-mechanical system. The input layer has three neurons, the hidden
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layer 10 neurons while the output layer has three neurons. The workflow design has the
following steps:

• Collect data
• Create the network
• Configure the network
• Initialize the weights and biases
• Train the network
• Validate the network
• Use the network

5.1.1. Generation of ANN Data

The training data is generated using the system described in Section 4. In order to
provide some variance to the system, the input current is modelled as:

i = i0 + I0 cos(ωt) (101)

The training data set for the ANN correspond to the source current (input), the
inductance voltage (input), the simulation time (input) and the state variables (output).

5.1.2. ANN Implementation and Training

The Matlab Neural Network Toolbox Mathworks (The MathWorks, Inc.) is used to
construct the network. The selected training algorithm is the Levenberg–Marquardt with
the following samples set aside for:

• training, 70% of the data;
• validation, 15% of the data;
• and the remaining 15% for testing.

5.2. ANN Simulation of the Non-Linear System-Linear Controller-Observer

The system described in Section 4.2 is now been simulated by the trained ANN
analogue. Figure 21 shows the ANNs setup and the training tool provided by Matlab
Simulink. Figures 22–27 depict the ANN performance for different equilibrium positions:
x = 0.005 m, x = 0.01 m, x = 0.015 m.
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The dashed line (Figures 22, 24 and 26) represents the ideal case where the ANN
simulated results are an exact replica of the targets. The solid line represents the best-fit
linear regression line between trained net outputs and targets, which in our case is adjacent
to the ideal case. All cases indicate a good fit, with the scatter manifesting the data points
exhibiting a poor fit. R correlates the targets to the simulated net outputs. If R = 1, there is
an exact linear relationship between outputs and targets. If R = 0, no linear relationship
between outputs and targets can be inferred. All three cases, for different equilibrium
points, show a good approximation of the non-linear plant-linear controller-linear observer
system output by the ANN (Figures 23, 25 and 27).

6. Conclusions

The dynamics of an electro-magneto-mechanical system was investigated in this work.
The coupled system simulation was developed and comparatively assessed using different
modelling techniques in Matalb/Simulink and Matlab/Simscape. Next, the nonlinear
state-space problem formulation and the linearization method using partial derivatives
were presented. The resulting linearized system proved both controllable and observable,
yet marginally stable. To stabilize and control the system, pole-placement with full-state
feedback is employed. To implement the full-state feedback a state observer is introduced
and designed. Using the models developed and the simulation results, an ANN equivalent
has been configured and tuned for the non-linear plant-linear controller-linear observer
system. The model is flexible and accurate; specifically, it is able to adapt to different
equilibrium conditions (equilibrium position was varied in the range 0.005 m and 0.015 m)
and compensates satisfactorily for changes in current source input (sinusoidal reference
input). The system may operate as a contactless displacement sensor or actuator, or in
combined mode. In ongoing work, the connection of more than one transducer to the
same source will be demonstrated using amplitude modulation. The tuned frequency of
each transducer will be defined by assigning different values to the capacitor as shown
in Figure 1b. Preliminary analysis shows that such transducer arrays can be used in
maritime and aerospace applications, where avoiding physical contact is often a sine qua
non requirement, to achieve coordinated sensing and actuation of e.g., space structures like
in an orbital station to detect and mitigate the vibrational effects of hits by space debris; or
in the maritime, for energy harvesting without violating hull integrity with penetrations to
implement physical contact. Other applications are possible too, especially if promising
theoretical tools like feedback linearization (instead of the local linearization demonstrated
here) are employed.
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Nomenclature

A System matrix
A Cross section (m2)
Ac Core cross section (m2)
Acl Closed loop system matrix
Ag Gap cross section (m2)
Am Mass cross section (m2)
B Input matrix
B Magnetic flux density (Wb)
b Damping constant (Ns/m)
bANN ANN scalar bias
C Output matrix
C Capacitance (F)
D Feedforward matrix
d Initial gap length (m)
E Energy (J)
E_x LSM error
e Observer error
.
e Observer error variation over time
Fem Electromagnetic force (N)
f Force (N)
{ Function
fANN Activation function
G Conductance (Ω−1)
〈 Function
I0 Current amplitude (A)
i Current (A)
iL Inductance current (A)
i0 Equilibrium point current (A)
is Source current (A)
is0 Source current at equilibrium (A)
K Kinetic energy (J)
Ka Constant
Kb Constant
Ke Electrical kinetic energy (J)
Kgain Gain matrix
Km Mechanical kinetic energy (J)
k Spring constant (N/m)
L Inductance (H)
L Lagrangian quantity
L Observer gain matrix
lc Core length (m)
lg Gap length (m)
lm Mass length (m)
M Controllability matrix
m Mass (Kg)
N Number of turns
O Observability matrix
P Dissipation term (J)
p Poles
qi Independent variables
R Resistance (Ω)
< Magnetic reluctance (H−1)
<c Core magnetic reluctance (H−1)
<g Gap magnetic reluctance (H−1)
<m Mass magnetic reluctance (H−1)
s Constant
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T Potential energy (J)
Te Electrical potential energy (J)
Tm Mechanical potential energy (J)
〈 Taylor expansion function
ts Stelling time (s)
u Input control vector
V Voltage (V)
VL Inductor voltage (V)
w _n ANN weight matrix between hidden and hidden layer
x Displacement (m)
x State variable vector
x̂ Estimated state variable vector
xANN ANN input vector
x0 Equilibrium point displacement (m)
.

x0 Equilibrium point speed (m/s)
x̂0 Observer equilibrium point displacement (m)
.̂

x0 Observer equilibrium point speed (m/s)
y Output vector
ŷ Estimated output vector
yANN ANN output
z Neutral position of electromagnetic system
δi Current deviation from equilibrium point (A)
δx Displacement deviation from equilibrium point (m)
δ

.
x Speed deviation from equilibrium point (m/s)

δ
..
x Acceleration deviation from equilibrium point (m2/s)

δψ Magnetic flux deviation from equilibrium point (Wb)
δ

.
ψ Voltage deviation from equilibrium point (V)

ζ Damping ratio
λ Eigenvalue
µc Core relative material permeability
µm Mass relative material permeability
µ0 Air permeability (H/m)
ξ0 Inductance constant
ξ1 Inductance constant
ξ2 Inductance constant
ψ Magnetic flux (Wb)
ψ0 Magnetic flux at equilibrium (Wb)
ψ̂0 Observer equilibrium point magnetic flux (Wb)
ω Natural frequency
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