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Abstract: The estimation of the body’s center of mass (CoM) trajectory is typically obtained using
force platforms, or optoelectronic systems (OS), bounding the assessment inside a laboratory setting.
The use of magneto-inertial measurement units (MIMUs) allows for more ecological evaluations,
and previous studies proposed methods based on either a single sensor or a sensors’ network. In
this study, we compared the accuracy of two methods based on MIMUs. Body CoM was estimated
during six postural tasks performed by 15 healthy subjects, using data collected by a single sensor on
the pelvis (Strapdown Integration Method, SDI), and seven sensors on the pelvis and lower limbs
(Biomechanical Model, BM). The accuracy of the two methods was compared in terms of RMSE
and estimation of posturographic parameters, using an OS as reference. The RMSE of the SDI was
lower in tasks with little or no oscillations, while the BM outperformed in tasks with greater CoM
displacement. Moreover, higher correlation coefficients were obtained between the posturographic
parameters obtained with the BM and the OS. Our findings showed that the estimation of CoM
displacement based on MIMU was reasonably accurate, and the use of the inertial sensors network
methods should be preferred to estimate the kinematic parameters.

Keywords: CoM displacement; IMUs; balance; posturography; human kinematic measurement

1. Introduction

The assessment of the motion of human Center of Mass (CoM) is of uttermost impor-
tance in ergonomics [1–3], sporting [4–6], and clinical practice [7–10], since it contributes to
the quantitative measurements of risky imbalance and postural impairments of humans.

In balanced conditions, postural control acts on body orientation through active and
passive mechanisms, based on somatosensory feedback integration, in order to maintain
an upright stance [11,12]. Thus, both predictable and hazardous perturbations can be
properly counteracted through online corrections of CoM dynamics [13,14]. As the upright
balance relies on the continuous compensation of gravity and external perturbations, the
acceleration of the whole CoM is constantly varying in the three-dimensional space, to
avoid accidental falls. In static conditions, falls occur when the CoM exceeds the Base
of Support (BoS), defined as the area beneath the subject’s points in contact with the
supporting surface [15,16]. Measuring the real-time CoM dynamics during postural steady
tasks would allow monitoring the deficit of postural control and prevent unsafe conditions,
as well as assess the improvement in postural control after a rehabilitation intervention.

In clinical practice, postural impairments related to aging or neuromuscular disorders
can be assessed through kinematic [17–19] and electromyographic [20–22] analysis, using

Sensors 2021, 21, 601. https://doi.org/10.3390/s21020601 https://www.mdpi.com/journal/sensors

https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0002-0747-831X
https://orcid.org/0000-0002-1064-7962
https://orcid.org/0000-0001-6654-6055
https://orcid.org/0000-0002-3213-8261
https://doi.org/10.3390/s21020601
https://doi.org/10.3390/s21020601
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/s21020601
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/1424-8220/21/2/601?type=check_update&version=1


Sensors 2021, 21, 601 2 of 17

stereo-photogrammetry, force platforms, and electromyography (EMG) systems. However,
traditional instrumentation reports numerous limits, such as the high cost, the limited
workspace, and the need for skilled operator supervision. These limitations fuel the
development of novel methods, involving the lowest number of sensors that guarantees
the highest measurement accuracy and greatest usability. Kinematics evaluation of postural
control using a single inertial sensor has the advantage of faster wearability, reducing the
time consumption of the test. Moreover, it allows the assessment of postural capabilities
in a wider range of ecological scenarios, such as the workplace, for biomechanical risk
evaluation [23,24], in a sporting environment to enhance athlete performances [25–27], in a
home setting for continuous monitoring of patients‘ status [28,29], and in the outpatient
clinic during ambulatory assessments and follow-up visits [30–32].

In the last decade, using one inertial sensor placed at the level of the L5 vertebra
was demonstrated to provide sensitive and reliable measurements for postural control
assessment [33]. In this context, several methods were investigated for the measurements
of human CoM displacement in three-dimensional space, involving one or more inertial
sensors. According to the literature, two prevalent methods were investigated in the last
years for measurement of human CoM dynamics—the strapdown integration and the
inertial sensors network. In most cases, the first method relies on one sensor placed at
the level of the L5 lumbar vertebra, while the inertial sensors networks are based on a
biomechanical model with more than two sensors placed on the human kinematic chain.

For the estimation of CoM dynamics during walking tasks, through the use of an
inertial sensor placed on the pelvis, a strapdown integration method was used in the
study by Floor et al. [34]. The main idea behind this approach is that displacement in the
three-dimensional space of a body can be obtained through the double integration of the
accelerometer signal of a sensor placed on the body itself. To reduce the drift phenomenon
due to the integration process, a drift correction was computed by detrending the integrated
signal for each gait stride, with the best linear fit. A similar approach was applied in a study
by Reenalda et al. for the estimation of CoM dynamics in running marathons [6]. In 2020,
Cardarelli et al. suggested a magnetometer-free approach for the estimation of CoM human
displacement and orientation, based on the strapdown integration method [35]. Since
magnetic disturbances are a common phenomenon that can affect sensor orientation and
increase the drift phenomenon, an orientation method with a variant of the Kalman filter,
without magnetometer data, was adopted. Drift was also compensated with restarting
integration every left–right gait cycle during treadmill walking.

Recently, some algorithms based on an inertial sensor network were proposed for the
estimation of the whole CoM dynamics, the latter being estimated through a weighted
average of the CoM position of each human body segment in three-dimensional space.
As an example, a similar approach was tested by Fasel et al. in alpine ski racing [36].
The authors compared two models based on sensor networks for the assessment of the
CoM displacement of the ski athlete—a full 3D model; and a simplified model, based on
head and sternum segments only. Many other authors evaluated the accuracy of the CoM
position provided by the marketed MIMU systems and software [37], like Pavei et al. [38],
or Guo et al. [39], expressing various levels of satisfaction in the performance. However,
the algorithm used by the system for calculating the CoM trajectory was not explained in
details [40], and thus it would be difficult to replicate it in an embedded solution for the
auspicable real-time COM evaluation.

Recently, a biomechanical model based on the lower limb kinematic chain was devel-
oped by Guaitolini et al. in 2019 [41]. In this study, the inertial sensor network approach
was used for the ambulatory assessment of human CoM trajectory, with respect to the
foot, in the stance phase, during walking tasks. However, anthropometric measurements
and sensor-to-segment calibration were performed through an OS, and the performance
evaluation was cleansed of these two important sources of error, and still not reproduced
through a fully wearable solution.
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Despite the high interest in the use of wearable sensors for the measurements of
human CoM dynamics, in most literature cases, the CoM assessment with inertial sensors
was computed during dynamic tasks such as walking, running, or skiing, in which the
CoM dynamics assumed large fluctuations in the 3D space [6,34,35,37,38,41,42]. Only a
few studies verified the accuracy of IMU-based methods for the measurement of CoM
trajectories during standing tasks [43,44]. In postural tasks, the assessment of the 3D CoM
trajectory with inertial sensors could be more demanding. In these cases, the CoM dynamic
assumes smaller oscillations, leading to higher errors in its estimation because of the drift
error. Moreover, in the analysis of CoM dynamics during steady and postural tasks, it
is not possible to correct the drift phenomenon with zero-velocity updates approach or
the integration-restart method. In this scenario, the use of an inertial sensors network
method with a smaller number of sensors could represent a trade-off between accuracy
and feasibility of use.

The present study aimed at analyzing the implications of using an inertial sensor
network method to assess CoM dynamics, in comparison to a reduced set-up involving
strapdown integration in steady and postural tasks involving increasing CoM sways.
A comparative analysis between the strapdown approach based on one sensor-worn, and
the inertial sensor network method involving seven MIMUs placed on lower limbs, was
conducted to assess the best performing measurement approach for 3D CoM dynamics in
postural tasks.

2. Materials and Methods
2.1. Subjects

A cohort of fifteen healthy subjects (nine males and six females, mean age 27.7 ± 5.3,
mean body mass 67.3 ± 9.3 kg, and mean height 171.9 ± 6.5 cm) was enrolled in this study.
All participants were able to stand independently without aids. Subjects with cognitive,
vestibular, or visual deficits, neuromuscular diseases, orthopedic, or neurological surgery
interventions in the last three years, were excluded from the experimental session. All
participants gave written consent before being included in the experimental session. The
protocol was designed and conducted in accordance with the Ethical Standard of the 1964
Declaration of Helsinki and were approved by the Institutional Ethics Committee of the
IRCCS Fondazione Don Carlo Gnocchi (FDG_17.4.19).

2.2. Experimental Setup

Seven wireless Inertial Measurement Units (MIMUs MTw, Xsens Technologies - NL),
including a 3-axes accelerometer (± 160 m/s2 full scale (FS)), a 3-axes gyroscope (± 1200 ◦/s
FS), and a 3-axes magnetometer (± 1.5 Gauss FS) were used to gather kinematic data of the
lower body segments of each subject. More specifically MIMUs were placed—(i) posteriorly
on the pelvis on the median sacral crest and just below the anterior sacral promontory,
(ii) on the mid-thighs between the greater trochanter and the lateral epicondyle, (iii) on
the mid-shanks between the lateral condyle and the malleolus, and (iv) on the instep of
the feet. Elastic tapes were used to attach each sensor to the body segment and limit
relative movements between them. The sampling rate was set at 40 Hz. An 8-camera
optoelectronic system (OS, SMART D500, BTS, Milan, Italy), with an accuracy in the
estimation of marker trajectories of less than 1 mm, was used as the reference measurement
system. The sampling rate was set at 200 Hz for the OS. Each subject was instrumented
with four reflective markers placed on the anterior and posterior iliac spines, according to
the Plug-In-Gait model [45]. In post-processing, marker trajectories gathered from the OS
were down-sampled at 40 Hz, to match the frequencies.

To guarantee consistent sensor and marker location on the body segment, the same
expert operator instrumented all participants. The two systems were simultaneously
triggered at the beginning of each acquisition. More specifically, a BNC cable was used
to provide an external trigger, i.e., a square signal ranging from 0 to +5 V, to the MIMUs
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Awinda Station, through the motion capture system. In Figure 1, the sensors’ and markers’
position is shown on one subject.
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Figure 1. MIMUs and markers position on one subject as well as the inertial sensor reference system. Only the MIMUs
placed on the pelvis and the lower limbs and the markers placed on the pelvis were considered in this study.

2.3. Experimental Procedure

Before each session, all tested subjects were asked to perform a Functional Calibration
(FC) procedure advised by an operator. The FC procedure provided sensor orientations
with respect to the body segment, to ensure the body-to-sensor alignment [46]. It consisted
of a standing and sitting task, each lasting 5 s. Afterward, all subjects stood in a comfortable
upright bipedal position, on the center of the calibration volume of the OS. All subjects
were asked to wear comfortable gym clothes and perform the experimental session bare-
foot. The experimental session consisted of six tasks—(i) standing still in the double-leg
stance (”Double Leg Stance task”); (ii) standing still in the right-leg stance (“Single Leg
Stance task”); (iii) standing in the double-leg stance swinging pelvis body segment in the
anteroposterior direction (”AP sway task”) and (iv) in the mediolateral direction (”ML
sway task”); (v) standing in the double-leg stance performing a free pelvis oscillation (”Free
sway task” ); and (vi) performing a squat (“Squat task”). The monopodalic task, Single
Leg Stance task, was performed with the right-leg stance only, as only healthy young sub-
jects without motor asymmetry were considered in this study. Figure 2 shows the overall
marker-set tracked by the OS of a healthy subject performing the experimental protocol.
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Figure 2. The overall marker-set tracked by the OS of a healthy subject performing the experimental protocol. (a) Double
Leg Stance task, (b) Single Leg Stance task, (c) Anterior–Posterior (AP) sway task, (d) Mediolateral (ML) sway task, (e) Free
sway task, and (f) Squat task.

Each task was performed twice, and the order of the tasks was randomized. For each
participant, the following anthropometrics were gathered by the same expert operator—
(i) pelvis width (wpl) as the distance between right and left anterior iliac spines; (ii) pelvis
height (hrpl, hlpl) as the distance between the horizontal line passing through the right/left
anterior iliac spine and the right/left greater trochanter; (ii) thigh length (lrth, llth,) as
the distance between the right/left greater trochanter and the right/left flex-extension
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knee joint axis; (iii) the shank length (lrsh, llsh) as the distance between the right/left flex-
extension knee joint axis and the right/left lateral malleolus; (iv) foot height (hrft, hlft) as
the distance between the right/left lateral malleolus and the ground; and (v) the foot length
(lrft, llft) as the distance between the vertical line passing through the right/left malleolus
and the 5th right/left toe proximal phalanx. Each subject was asked to perform a series of
squats for the identification of the flex-extension knee joint axis. All anthropometrics were
measured for both the right and left sides.

2.4. Data Processing

All data were analyzed off-line, using the MATLAB (v.2015b, MathWorks, Natick, MA,
USA) program. Two different methods were used to estimate the CoM in the static and
dynamic postural tasks.

2.4.1. First Method: Inertial Sensor Network

The first method concerned the development of a Biomechanical Model (BM) com-
posed of nine body segments based on an inertial sensors network of seven MIMU [41].
Similar to [47,48], a kinematic chain composed of nine inertial body segments was adopted
for the BM. More specifically (i) pelvis (pl), (ii–iii) right and left thighs (rth, lft), (iv–v)
right and left shanks (rsh, lsh), (vi–vii) right and left hindfoot (rhft, lhft), and (viii–ix) right
and left forefoot (rfft, lfft). A reference body frame was defined for each body segment as
follows—z-axis vertically directed and pointing upward, yz-plane parallel to the sagittal
plane, and y-axis as the anterior/posterior one, pointing forward, as reported in Figure 3.
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Figure 3. Reference systems for the pelvis body and the lower limb.

According to [46], the rotation matrix between two adjacent body segments was
computed as follows:

bI RbJ =
(

gndRsI
sI RbI

)T gndRsJ
sJ RbJ (1)
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where bI and bJ are the proximal and distal body segment and the gndRsI is the quaternion-
derived rotation matrix representing the I-sensor orientation, i.e., the relative rotation
between the sI and the ground reference system (gnd):

R =

 1− 2s(q2
j + q2

k) 2s(qiqj − qkqr) 2s(qiqk + qjqr)

2s(qiqj + qkqr) 1− 2s(q2
i + q2

k) 2s(qjqk − qiqr)

2s(qiqk − qjqr) 2s(qjqk + qiqr) 1− 2s(q2
i + q2

j )

 (2)

q = qr + qii + qjj + qkk (3)

where in case of the unit quaternion, s = 1, otherwise s = ‖q‖−2. More specifically, the
orientation of each IMU was computed with a Kalman filter for 3 degrees-of-freedom
orientation, called XKF-3w. The rotation and the velocity increments computed through
a strap-down integration algorithm [49,50], along with the magnetometer samples, were
used to compute the 3D sensors’ orientation. More details of the XKF-3w are reported
in [51]. The sI RbI represents the rotation matrix between the I-th body segment and the
I-th sensor obtained through the functional calibration procedure. More details on the FC
procedure are reported in [46].

The roto-translation matrix between two adjacent body segments was obtained by
considering the following equation:

bI TbJ =

[
bI RbJ

bI obI ,bJ

0 0 0 1

]
(4)

where bI obI ,bJ is the origin of the distal segment frame in the proximal segment. Each origin
was set in accordance with the anthropometrics of the body segment, as reported in the
following equations:

plo pl,rth =
[

wpl
2 0 0

]T
(5)

plo pl,lth =
[
−wpl

2 0 0
]T

(6)

rthorth,rsh =
[

0 0 −
(

hrpl + lrth

) ]T
(7)

ltho lth,lsh =
[

0 0 −
(

hlpl + llth
) ]T

(8)

rshorsh,rh f t =
[

0 0 −lrsh
]T (9)

lsho lsh,lh f t =
[

0 0 −llsh
]T (10)

rh f torh f t,r f f t =
[

0 lr f t −hr f t
]T (11)

lh f to lh f t,l f f t =
[

0 ll f t −hl f t
]T (12)

After obtaining the roto-translation matrices for each body segment, the roto-translation
matrix between the right forefoot and the pelvis body segment and its transpose were
obtained as follows:

plTr f f t =
plTrth

rthTrsh
rshTrh f t

rh f tTr f f t (13)

plTr f f t =

[ plRr f f t
plo pl,r f f t

0 0 0 1

]
(14)

r f f tTpl =

[ (
plRr f f t

)T
−
(

plRr f f t

)T
plo pl,r f f t

0 0 0 1

]
(15)



Sensors 2021, 21, 601 8 of 17

Finally, the CoM position was computed as the origin of the pelvis body segment in
the right (or left) forefoot frame:

rCoMBM = r f f tor f f t,pl = −
(

plRr f f t

)T plo pl,r f f t (16)

Similar consideration was applied to the left side. Thus, the estimation of the human
center of mass through the use of the BM was computed, both on the right (rCoMBM) and
the left (lCoMBM) side of the human kinematics chain. In this study, data provided only
by the right side was used. To match the components, the CoM displacement obtained
through BM was then rotated in the OS coordinate system.

2.4.2. Second Method: Strapdown Integration

Similarly to [34], the second method was based on the strapdown integration (SDI) of
the acceleration signal of the sensor placed on the pelvis body. The rotation matrix reported
in Equation (2) was used for the component change of the acceleration signals from the
sensor frame (sa) to the ground reference system:

gnda = gndRs × sa (17)

After the component change, the gravitational contribution was removed and the
acceleration signal in the global frame was integrated in a straightforward. A high-pass
first-order Butterworth filter with a cut-off frequency of 0.2 Hz was used for the anterior–
posterior (AP) and mediolateral (ML) components, while a cut-off of 0.5 Hz was adopted
for the vertical (V) component of the velocity signal, as reported in [34]. The displacement
of the pelvis body segment was obtained with a second straightforward integration and
filtering [34]. Thus, the center of mass of the human body from the strapdown method
(CoMSDI) was computed as the three-dimensional components of the pelvis displacement.

For the sake of clarity, for both methods, the ground reference system was defined
according to the OS system; the x-axis along the direction of progression, as the ante-
rior/posterior axis pointing forward, the y-axis vertically directed pointing upward and
the z-axis completing a right-handed coordinate system. The sensors reference system is
reported in Figure 1.

The reference CoM displacement was obtained through OS as the average of the
markers’ trajectories of the iliac spines in the OS coordinate system [4]. Before computing
the CoM trajectories, all raw data were filtered with a 5th order Butterworth low-pass filter,
with a cut-off frequency of 10 Hz. The time course of the CoM trajectories provided by the
OS and the two MIMU-based methods in a representative subject is reported in Figure 4.

The root mean square error (RMSE) between the OS and each MIMU-based trajectory
was computed on the modulus (mod) and each component of CoM—anteroposterior (AP),
mediolateral (ML), and vertical (V), and used to assess the accuracy of the SDI and the
BM [52].

In addition, the kinematics parameters commonly used in postural evaluations [10],
such as (a) the range of motion of CoM displacement in the AP (AP Sway) and ML (ML
Sway) directions, (b) the total path length in the AP and the ML plane, divided by the task
duration (Mean Sway Velocity), and (c) the 95% confidence ellipse area (95% Sway Area)
were computed for all methods. For the kinematic parameters, the accuracy of the methods
was estimated by considering the following error:

er = xi − xOS (18)

where xi is the kinematic parameter obtained with BM or SDI and xOS is the corresponding
reference value obtained with OS.
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Figure 4. CoM trajectory of a Free Sway task (anteroposterior, AP; mediolateral, ML; and vertical, V, directions) performed
by a representative subject, as obtained through the Biomechanical Model (BM, red) and the Strapdown Integration Method
(SDI, blue), as compared to the gold standard (the optoelectronic system, OS, dotted black line).

2.5. Statistical Analysis

Statistical analysis was performed with the SPSS package version 25 (IBM-SPSS Inc.
Armonk, NY, USA). We had two repetitions available for each subject, for a total number of
thirty observations for each trial. All data were tested for normality through the Shapiro-
Wilk test. Paired t-tests were used to compare the RMSE in the estimation of the CoM
trajectories of the two MIMU-based methods, as well as the errors introduced by the two
analyzed methods in the estimation of the kinematic postural parameters, separately for
each investigated trial. Finally, Pearson’s correlation coefficient was used to investigate
the correlation between the kinematic parameters computed either through the method
based on the MIMU Pearson’s correlation coefficient was used to investigate the correlation
between the kinematic parameters computed through OS and the kinematic parameters
computed through the methods based on the MIMU. The coefficient values were inter-
preted as follows [53]—0.0–0.2 little if any; 0.2–0.4 weak; 0.4–0.7 moderate; 0.7–1.0 strong.
Statistical significance was set at p < 0.05.

3. Results

In Figure 5, the mean ranges of the oscillation of the CoM measured by the OS and
estimated by both MIMU-based methods were depicted. For the inertial sensors network
method, only results of the right side were reported (rCoMBM), since the results of the
two sides were not statistically different. As expected, the OS measurements report lower
oscillations in the Double Leg Stance task in all directions, as compared to other motion
conditions; moreover, the oscillation ranges in the AP, ML, and V directions were higher in
the AP Sway, ML, Sway, and Squat task, respectively.
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Figure 5. Means and 95% confidence intervals values of the range of the trajectory made by the CoM,
as measured by the optoelectronic system, and estimated by the two IMU-based methods, in the
anteroposterior (AP), mediolateral (ML), and vertical (V) directions, for the 6 considered tasks.

According to the OS measurement, in the Double Leg Stance, the mean values were
13.4 ± 7.5 mm (AP), 4.5 ± 3.5 mm (ML), and 1.2 ± 0.8 mm (V). For the AP, ML, and V
directions, the highest values were 189.7 ± 28.2 mm in the AP Sway task, 274.3 ± 57.1 mm
in the ML Sway task, and 269.8 ± 83.5 mm in the Squat task. As expected, comparing the
Double Leg Stance and the Single Leg task, higher values of the oscillations’ range was
found in the Single Leg task in all directions—in the monopodalic stance, a greater CoM
dynamics was required to maintain an upright position as a consequence of a reduced base
of support.

3.1. Comparison of the Root Mean Square Errors of the Investigated Methods

In Table 1, descriptive statistics of the RMSE related to the SDI and the BM methods,
as well as their difference and the results of the statistical analysis are reported, separately
for the four components and the six investigated trials.
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Table 1. Root mean square errors (RMSEs) of the two methods based on MIMUs (Biomechanical Model, BM and Strapdown
Integration, SDI), calculated using the optoelectronic system as the reference method, for the six considered tasks. RMSEs are
computed for each component of the CoM—anteroposterior (AP), mediolateral (ML), and vertical (V), as well as separately
for the modulus (mod). Negative RMSE differences refer to lower RMSEs in the BM; positive RMSE differences cells refer to
lower RMSEs in the SDI. P values refer to the paired t-tests.

Task Component
BM RMSE SDI RMSE Difference

p-Value
Mean (SD) Range Mean (SD) Range Mean (SD)

Double Leg Stance

AP (mm) 6.5 (3.0) 1.8–19.8 6.1 (1.8) 3.3–13.2 0.4 (3.6) 0.514

ML (mm) 2.5 (0.9) 1.2–4.7 1.9 (1.6) 0.9–9.1 0.5 (1.4) 0.045

V (mm) 0.9 (0.3) 0.5–1.6 0.3 (0.1) 0.2–0.8 0.6 (0.3) <0.001

mod (mm) 5.4 (2.6) 3.5–18.0 4.5 (1.3) 3.2–10.2 0.9 (3.1) 0.129

Single-Leg Stance

AP (mm) 26.2 (15.1) 5.6–63.9 11.0 (5.0) 4.6–29.3 15.2 (15.1) <0.001

ML (mm) 12.0 (10.1) 0.0–42.7 8.7 (8.7) 2.6–36.3 3.8 (10.6) 0.066

V (mm) 4.0 (3.1) 1.1–13.9 2.0 (1.4) 0.8–6.5 2.0 (3.5) 0.005

mod (mm) 23.8 (19.3) 3.3–68.7 9.8 (7.2) 3.8–35.4 14.0 (21.0) 0.001

AP sway

AP (mm) 18.9 (7.5) 9.1–38.2 32.0 (17.6) 15.8–90.8 −13.1 (17.0) <0.001

ML (mm) 7.6 (2.3) 4.5–12.4 6.1 (2.2) 3.2–14.9 1.4 (2.5) 0.004

V (mm) 8.9 (2.5) 4.5–12.8 5.5 (3.1) 1.5–14.5 3.3 (3.5) <0.001

mod (mm) 17.1 (5.6) 9.2–29.8 24.5 (4.2) 13.1–31.8 −7.4 (4.9) <0.001

ML sway

AP (mm) 6.3 (1.3) 4.6–9.1 10.5 (3.6) 4.8–17.8 −4.1 (3.8) <0.001

ML (mm) 23.9 (25.2) 6.8–133.3 48.6 (42.2) 13.4–171.4 −24.7 (33.0) <0.001

V (mm) 8.4 (4.1) 2.5–16.6 3.0 (1.6) 1.3–8.8 5.3 (3.9) <0.001

mod (mm) 18.4 (11.7) 6.2–44.7 36.9 (14.2) 13.7–72.5 −18.5 (14.2) <0.001

Free sway

AP (mm) 15.8 (7.8) 5.4–34.8 26.9 (17.7) 10.6–84.7 −11.1 (15.9) 0.001

ML (mm) 23.9 (14.2) 7.2–59.3 44.1 (26.8) 16.2–124.3 −20.2 (23.2) <0.001

V (mm) 11.4 (4.6) 3.7–20.5 4.9 (2.6) 1.8–12.8 6.5 (4.2) <0.001

mod (mm) 18.5 (9.3) 7.7–44.5 35.3 (10.3) 21.8–56.9 −16.8 (11.3) <0.001

Squat

AP (mm) 17.0 (10.9) 4.2–52.4 41.9 (17.4) 7.3–72.6 −24.9 (19.0) <0.001

ML (mm) 9.7 (5.0) 3.4–23.5 6.5 (2.6) 2.1–13.0 3.3 (5.7) 0.004

V (mm) 24.4 (11.4) 5.9–48.5 79.5 (30.3) 33.5–153.7 −55.1 (28.2) <0.001

mod (mm) 22.3 (9.7) 6.3–43.9 84.7 (32.0) 41.8–159.5 −62.4 (29.8) <0.001

With respect to the SDI, considering the three directions, the mean RMSE ranged from
0.3 mm (vertical component, Double Leg Stance task) to 79.5 mm (V component, Squat
task); instead, the lower mean RMSE value of the BM was 0.9 mm (V component, Double
Leg Stance task), while the higher was 26.2 mm (AP component, Single Leg Stance task).

In all but the AP component, the modulus was in the Double Leg Stance trial and the
ML component in the Single Leg Stance trial. Specifically, the RMSE of the AP component
was always lower for the BM methods, except for the Single Leg stance task. The ML
component was lower for the SDI in the Double and Single Leg Stance, in the AP Sway
and the Squat; the RMSE of the V component was always lower for the SDI method,
except for the Squat task. Finally, the RMSE of the modulus was always lower for the BM
method, except for the Single Stance Method. Considering the three directions, the highest
differences favorable to the SDI was 15.2 mm (AP component, Single Leg Stance task), the
highest favorable to the BM was 55.1 mm (vertical component—Squat task).
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3.2. Comparison of the Errors Introduced in the Estimation of Postural Variables

In Figure 6, the errors in the estimates of the analyzed postural variables, as well as
their difference and the results of the statistical analysis are depicted, separately for the six
investigated trials.Sensors 2021, 21, x FOR PEER REVIEW 12 of 17  
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All but the AP Sway, the Mean Sway velocity, and the 95% Sway Area in the Double
Leg Stance task were different between the two methods. The error in the AP Sway was
lower using the SDI method in Single Leg Stance and using the BM for the four remaining
tasks. The ML Sway was lower for the SDI methods in the Double Leg Stance, AP sway,
and Squat tasks, and lower for the BM in the Single Leg Stance, ML Sway, and Free Sway
task. The SDI provided a better estimation of the Sway Velocity in the Single Leg Stance
task, while the BM provided better results in the AP Sway, ML Sway, and Free Sway tasks,
as well as in the Squat task. Finally, a better estimate of the 95% Sway Area was provided
by the SDI in the Double and Single Leg Stance, AP Sway, and Squat tasks, while better
performance was obtained with the BM in the ML Sway and the Free Sway tasks.

3.3. Correlation Analysis

Pearson’s correlation coefficients between the kinematic parameters computed using
either method, based on the inertial sensors and the OS are reported in Table 2. Considering
the BM method, 18 out of 24 analyzed parameters (4 parameters, 6 different tasks) showed
a strong correlation with those computed through the OS, while among the parameters
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computed according to the SDI, only 8 achieved a Pearson’s coefficient higher than 0.7.
For the BM method, the Pearson’s correlation coefficients ranged from 0.331 (95% Sway
Area, Double Leg Stance task) to 0.980 (Mean Sway Velocity—Free Sway task). For the SDI
method, the range was from 0.154 (95% Sway Area, Double Leg Stance task) to 0.962 (Mean
Sway Velocity—AP Sway task).

Table 2. Pearson’s correlation coefficients between the kinematic parameters computed using each method, based on
inertial sensors (Biomechanical Model based on an Inertial Sensors Network, BM, and Strapdown Integration, SDI) and the
optoelectronic system (OS). AP—anteroposterior, ML—mediolateral. Pearson’s correlation coefficient interpretation: 0.0–0.2
very weak correlation; 0.2–0.4 weak correlation; 0.4–0.7 moderate correlation; 0.7–1.0 strong correlation.

Task Kinematic Parameter Pearson’s Correlation Coefficient
(p Value) between OS and BM

Pearson’s Correlation Coefficient
(p Value) between OS and SDI

Double Leg Stance

AP Sway 0.579 (0.001) 0.238 (0.204)

ML Sway 0.779 (<0.001) 0.466 (0.009)

95% Sway Area 0.331 (0.074) 0.154 (0.418)

Mean Sway Velocity 0.838 (<0.001) 0.514 (0.004)

Single Leg Stance

AP Sway 0.692 (<0.001) 0.501 (0.006)

ML Sway 0.892 (<0.001) 0.806 (<0.001)

95% Sway Area 0.904 (0.001) 0.811 (0.552)

Mean Sway Velocity 0.869 (<0.001) 0.922 (<0.001)

AP Sway

AP Sway 0.831 (<0.001) 0.688 (<0.001)

ML Sway 0.699 (<0.001) 0.287 (0.124)

95% Sway Area 0.703 (<0.001) 0.557 (0.001)

Mean Sway Velocity 0.942 (<0.001) 0.962 (<0.001)

ML Sway

AP Sway 0.822 (<0.001) 0.416 (0.025)

ML Sway 0.930 (<0.001) 0.630 (<0.001)

95% Sway Area 0.810 (<0.001) 0.535 (0.003)

Mean Sway Velocity 0.935 (<0.001) 0.873 (<0.001)

Free Sway

AP Sway 0.919 (<0.001) 0.806 (<0.001)

ML Sway 0.962 (<0.001) 0.521 (0.003)

95% Sway Area 0.946 (<0.001) 0.708 (<0.001)

Mean Sway Velocity 0.980 (<0.001) 0.873 (<0.001)

Squat

AP Sway 0.917 (<0.001) 0.437 (0.016)

ML Sway 0.586 (0.001) 0.293 (0.116)

95% Sway Area 0.677 (<0.001) 0.388 (0.034)

Mean Sway Velocity 0.933 (<0.001) 0.675 (<0.001)

4. Discussion

In this work we compared the accuracy of two MIMUs-based methodologies, to
estimate the three-dimensional CoM position during postural tasks involving CoM dis-
placements of different amplitude and direction. Specifically, one method was based on
an Inertial Sensors Network, with seven sensors, while the other involved a strapdown
integration of the signal provided by a single sensor, placed on the pelvis. An OS-based
method was used as a gold standard. The accuracy was determined both in terms of RMSE
between each method based on MIMUs and the gold standard, as well as in terms of the
absolute error in the estimation of kinematic parameters commonly used as hallmarks of
the postural control.
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4.1. Accuracy of CoM Displacement Estimation

Overall, the mean RMSE was always lower than 26 mm for the BM, and 85 mm for
the SDI. Considering the first method, our results were comparable to those obtained by
Guaitolini et al. [41] during treadmill gait, using an inertial sensor network composed
of 7 IMUs, or Najafi et al. [27], using two or three sensors to estimate the trajectory of
the CoM. More specifically, our methodology overcomes the limitation of the work of
Guaitolini et al. [41], as in our study, the anthropometrical measures were taken by means
of a measuring tape, instead of through the OS system. This, in addition to the use of a
functional calibration procedure for the sensor-to-segment rotation estimation, allowed us
to present and validate a procedure that is completely performable out of the laboratory
setting. However, because of the different analyzed tasks (treadmill walking vs. postural
tasks), a direct comparison could not be performed.

In our study, we analyzed tasks with different amplitudes of CoM excursion, both
lower and higher than those normally achieved during a walking task, especially on a
treadmill. For example, Floor et al. [34] found mean excursions of 1.9± 0.4 cm, 2.2 ± 0.7 cm,
and 3.5± 0.3 cm in the AP, ML, and V direction, respectively. High excursions of the vertical
distance between CoM and the base of support, similar to those observed in the Squat task
reported in our study, were presented in the study by Fasel et al. [34], during the skiing
tasks. In this context, higher accuracy was found in [34], comparing tasks with similar
oscillation ranges. Noteworthily, the kinematic chain adopted in the study of Fasel et al.,
involves a higher number of inertial sensors placed both on the lower than on the upper
body segments. This could suggest the need for deeper investigation of the granularity
of the Inertial Sensors Network, in the estimation of CoM trajectory during postural tasks
with high CoM excursions.

Considering the SDI methods, in tasks with similar oscillation, our results were
comparable to those obtained by Floor et al. [34] and Cardarelli et al. [35], but higher errors
were found when compared to those by Myklebust et al. [5].

Comparing the two methods, a better performance was achieved by the SDI in the
two most static tasks, i.e., the Double Leg Stance and the Single Leg Stance, or in the
directions with a small displacement amplitude (as in the ML direction for the AP Sway
task, or the vertical direction for all tasks but the Squat). On the contrary, lower RMSE
values were obtained with the BM in tasks or directions with higher displacement. It is
worth mentioning that the highest difference in terms of RMSE in favor of the SDI method
was 1.5 cm (Single Leg Stance task, AP direction), while the highest difference in terms of
RMSE in favor of the BM method was 6.2 cm (Squat task, modulus). Moreover, our sample
was composed of healthy young men and women, who were still expected to be able to
maintain the CoM during both a Double or Single Leg Stance task. On the contrary, higher
oscillations in a Double Leg Stance task were expected in different samples (as neurological
or orthopedic patients), which could also lead to better results with the BM methods in a
static test.

4.2. Accuracy of Kinematic Postural Parameters Estimation

Considering the accuracy in the estimation of the kinematic postural parameters, the
SDI method showed better performance in tasks with lower CoM displacement, while
the BMI method achieved better results in more dynamic tasks. However, the correlation
analysis unveiled a stronger Pearson’s correlation coefficients between the BMI-based
and the OS-based parameters, when compared to the correlation coefficients between the
SDI-based and the OS-based parameters, for all analyzed tasks. We can speculate that this
different behavior could be related to the different weights of fixed and random error in
the two methods—predominantly fixed in the BM, while predominantly random in the
SDI. Deeper and more specific analyses should be performed to accurately explore this
topic. Moreover, it would be of interest to evaluate if the application of methods based on
machine learning techniques, as already proposed by some authors in this field [42,54,55],
could enhance the accuracy of the CoM trajectory estimation, or reduce the number of
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sensors to be used in the biomechanical model. Future studies should be focused on these
research areas.

4.3. Limits

A limit of the study is the relatively small number of subjects involved; although com-
parable or higher than those enrolled in similar validation studies [5,35,38,41]. Moreover,
we only investigated healthy subjects, and therefore, further studies should be addressed
to evaluate the feasibility of the methods in different samples, especially in patients with
neurological or orthopedic diseases.

In addition, the following limitations should be considered. (a) The tests were carried
out in an environment free of magnetic interferences, but this condition might not always
be possible outside of the laboratory. (b) The considered postural tasks did not actually
replicate all standard tasks in targeted applications, such as sport, ergonomics, clinical
practice, and therefore, additional tests should be carried out for more demanding tasks;
(c) To actually evaluate the possible ecological use of IMUs outside the laboratory, further
tests should be carried out evaluating the accuracy in movements performed for a long
period of time. (d) The performances of the tested algorithms could be influenced by
several factors such as different type of sensors; drift, noise and temperature influence;
and, different orientation algorithms, which were not evaluated in this analysis. (e) The
lack of the use of a full-body marker set to obtain a more accurate estimation of the CoM
trajectory. Future investigations should be considered to address the role of these aspects
on the accuracy of the presented methods.

5. Conclusions

Our findings showed that the estimation of CoM displacement, based on MIMU, is
reasonably accurate, with the mean RMSE values for the three directions ranging from
0.3 to 79.5 mm for the SDI methods, and from 0.9 to 26.2 mm for the BM, therefore, MIMUs
could be used for a more ecological evaluation of posture and balance performance, to
investigate postural control in athletes, or in patients with orthopedic or neurological
diseases, as well as their changes over time, due to the natural course or to the effects
of a pharmacological or a rehabilitation intervention. Moreover, our results suggest that,
when possible, the use of the inertial sensors network methods should be preferred over a
strapdown integration method, based on a single sensor to estimate kinematic parameters.
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