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Abstract: Ensuring soil strength, as well as preliminary construction cost and duration prediction,
is a very crucial and preliminary aspect of any construction project. Similarly, building strong
structures is very important in geotechnical engineering to ensure the bearing capability of structures
against external forces. Hence, in this first-of-its-kind state-of-the-art review, the capability of various
artificial intelligence (AI)-based models toward accurate prediction and estimation of preliminary
construction cost, duration, and shear strength is explored. Initially, background regarding the
revolutionary AI technology along with its different models suited for geotechnical and construction
engineering is presented. Various existing works in the literature on the usage of AI-based models
for the abovementioned applications of construction and maintenance are presented along with their
advantages, limitations, and future work. Through analysis, various crucial input parameters with
great impact on the estimation of preliminary construction cost, duration, and soil shear strength
are enumerated and presented. Lastly, various challenges in using AI-based models for accurate
predictions in these applications, as well as factors contributing to the cost-overrun issues, are
presented. This study can, thus, greatly assist civil engineers in efficiently using the capabilities of
AI for solving complex and risk-sensitive tasks, and it can also be used in Internet of things (IoT)
environments for automated applications such as smart structural health-monitoring systems.

Keywords: artificial intelligence; artificial neural network (ANN); construction engineering; geotech-
nical engineering; IoT; pre-parametric cost; project duration; shear strength of soil; support vector
machine (SVM)

1. Introduction

Artificial intelligence (AI) has already revolutionized various daily activities, as well
as sectors such as healthcare, agriculture, transportation, and education [1–3]. The construc-
tion sector has also not been untouched by AI, which is expected to assist civil engineers in
the automation of various construction-related tasks which are normally time-consuming
and labor-intensive.

The construction of buildings, dams, highways, bridges, and roads requires sub-
stantial effort, cost, and strategies for robust, reliable, and beautiful structures. Manual
constructions usually require enormous effort and cost in terms of labor, time, and holistic
thinking. The use of robots for the construction of building walls can be easily seen in
practice in various countries [4]. Robots, as well as augmented and virtual reality, are
brought into use for performing repetitive, hazardous, and risky construction jobs such as
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welding, which humans are reluctant to do. The AI technology of learning from an existing
knowledgebase is used to automate various civil- and geotechnical-related applications,
such as the estimation of compressive strength of concrete, shear strength of soil, project
pre-cost and duration, structural health monitoring, crack detection, pothole detection, and
many more [5–8].

According to various studies, it is estimated that, by the year 2050, no less than two-
thirds of the world’s total population will live in new cities with advanced and robust
structures and roads [9]. In order to meet this expected demand, the rate of construction is
required to be increased manifold. While increasing the pace of construction, the quality of
structures is expected to be maintained. Thus, for achieving these tasks, AI can be brought
into use, which will not only boost the construction pace but also assist the engineers in
maintaining the quality of constructed buildings in a lesser amount of time with high
accuracy and precision.

1.1. Need for AI in the Prediction of Construction Parameters

In geotechnical and construction engineering, various parameters are required to
be computed beforehand for the estimation of properties such as shear strength of soil,
compressive strength of concrete, total cost to be incurred in the project, and duration of the
project. These properties are used for ensuring the quality, durability, reliability, robustness,
and ability to withstand external forces of a structure.

For instance, the construction of good roads is one of the important aspects in provid-
ing a secure and congestion-free driving experience. For the construction of roads, various
factors such as the cost, time, labor, and type of material to use need to be considered
beforehand. If a developing country such as India is considered, before the construction
of roads, the important parameter of cost estimate is required to be computed. However,
its calculation in the construction of roads requires civil engineers and the Central Public
Work Department (CPWD) to manually calculate road parameters such as slope, angle,
and elevation. According to various calculations and in consultation with various CPWD
personnel, it was found that approximately 15,000 INR per km is spent estimating these
road parameters. This manual calculation of road pre-construction parameters is not only
cost-extensive but also time-consuming, which eventually slows the overall growth of
highway construction in India.

In the era of machine learning and artificial intelligence, this preliminary calculation of
road construction parameters can be done automatically with the use of AI and computer
vision techniques with zero to minimal human intervention. Machine calculation of
parameters allows not only lowering the cost and time required but also enhancing the
accuracy in their calculation by eliminating any type of human error. In Table 1, the benefits
of using AI assisted technology in roads and building construction are presented.

The construction industry plays a very crucial role in boosting the economics of any
developing and developed country. The time, cost, and quality of construction projects
are the factors underlying the success of this sector. The estimation and prediction of
pre-construction outputs such as the expected duration of a project, expected cost to be
incurred in a project, shear strength of a soil, and compressive strength of concrete through
the use of initially limited available parameters ensures the performance of the project in
terms of quality, cost, and on-time completion.

Since it is well known that construction projects are susceptible to issues such as
cost overrun, delay in completion, and damage to structures due to improper estimation
of quality parameters, in order to prevent these common issues from occurring in any
construction project, the prior computation and prediction of parameters such as cost,
duration, and quality of soil in use need to be done.

However, the prior prediction and estimation of these project parameters are chal-
lenging tasks considering the fact that very little to no information regarding the project is
available in its initial stages.



Sensors 2021, 21, 463 3 of 44

Table 1. Comparison of artificial intelligence (AI)-assisted vs. manual construction of roads and buildings.

Parameters Artificial-Intelligence-Assisted Road and Building
Construction Manual Road and Building Construction

Labor Less labor is required as the manual and repetitive work will be
automated by the machine.

Labor is required for the work to be done,
which incurs both time and cost.

Cost

Cost is reduced as labor is replaced by automated machines.
Moreover, automated steps reduce the need for the use of

equipment required in the manual construction process. AI also
reduces the material and time wastage with its accurate

calculations and, thus, reduces the overall cost of the production.

Cost is required for paying the bills related
to extra labor, equipment, cost due to delay

in project, material wastage, etc.

Time

AI ensures the timely completion of the project through the prior
prediction of the project duration. Most time-consuming tasks are
replaced by AI-assisted technology, which speeds up the overall

project activities.

The manual construction process is
time-consuming as it is greatly dependent
on human labor, which is prone to factors
such as the unavailability of skilled labor

and errors.

Accuracy
AI is highly accurate and uniform in its predictions and

estimations as it takes into account various input parameters and
factors that affect the predictions and estimations of an output.

Accuracy depends upon the experience
and skill of the person making the

predictions and estimations. Moreover, it is
not possible to manually consider all input
parameters as it is too complex a process.

Risk
There is low risk to human lives as the repetitive tasks, as well as
tasks which humans are reluctant to perform where their lives are

at risk, are performed by the machine.

There is high risk involved in dangerous
construction-related jobs.

Cost-Overrun
Issues

There are no cost-overrun issues as AI-based models make very
accurate predictions of the project cost and duration by

considering various crucial input parameters with impact on the
overall cost of the project. Furthermore, sensitivity analysis is also
performed, which improves the robustness and accuracy of the
prediction model when certain input parameters are available.

There are often cost- and duration-overrun
problems because of issues such as the lack

of experienced cost estimators and the
inability to consider all crucial parameters.

Furthermore, there exist various construction-related factors and unexpected variables
that greatly affect the estimation and calculation of the abovementioned parameters. These
factors and unexpected variables can be both external and internal, and they vary from
project to project, making the estimation of parameter values on their basis a challeng-
ing task.

1.2. Main Objectives of the Study

The main aim of this study was to explore and highlight the role of AI in the civil
engineering and construction sector. In this study, various applications of AI in civil
engineering, especially focused on construction, are explored by considering articles from
2005 to the present year (2020). This article aims to assist researchers and civil engineers
in determining the strength and potential of AI in the construction sector, which will
eventually assist them in automating the manual, repetitive, and time-consuming tasks with
high precision and lower effort and cost. Figure 1 shows the blueprint of the whole article.
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Figure 1. Blueprint of this paper.

2. Artificial Intelligence and Its Application in Shear Strength and Pre-Project
Cost Estimation
2.1. Introduction to Artificial Intelligence

The term AI was first coined in the year 1956 and aims at emulating the performance
and capabilities of humans [10]. In AI, machines learn and improve from their past
experiences as humans do. Machine learning (ML) is a subset of AI in which machines are
allowed to learn, react, and make decisions on the basis of their experience, i.e., input data.
Similarly, deep learning [11–22] is a further subset of ML and AI.

With the improvements in the capabilities of high-performance computing technology
and the comprehensive development of the use of artificial neural network (ANN)- and
ML-based models, AI has seen tremendous improvement and can be easily found in
various day-to-day activities in industries such as healthcare, cybersecurity, forensics, stock
exchange, and Internet of things (IoT). AI has revolutionized the performance of various
sectors in terms of its high efficiency and accuracy, leading to low cost and duration of
projects [23].

AI supports a plethora of applications. It is used in applications and domains such as
facial recognition, smart transportation systems for object detection, traffic-light monitoring
and control, image recognition, malware detection, and the stock exchange.

The usage of AI and its models can also easily be seen in the domain of construction.
Construction tasks usually require a high level of precision and expertise for the generation
of complex, strong, and beautiful structures. Any error can lead to losses in terms of
people’s lives, as well as losses in infrastructure. AI models, therefore, can be used for
performing various tasks in construction and geotechnical engineering where high accuracy
and precision are required.

There are various issues and challenges in civil and geotechnical engineering, espe-
cially in construction management, design, and decision-making, which are profoundly
impacted by various uncertain factors that not only require mathematical, mechanics, and
physics knowledge but also the experience of the practitioners. These issues and challenges



Sensors 2021, 21, 463 5 of 44

cannot be handled through traditional procedures. However, these complex issues can be
solved easily using AI [24].

Some applications of geotechnical and civil construction engineering where AI models
can be used include (a) the estimation of soil shear strength related to its ability to bear high
load and external pressure due to floods and other natural calamities, (b) the prediction of
concrete compressive strength, (c) the prediction of concrete-beam shear strength [25–27],
(d) the prediction of the shear strength of peaks [28], walls [29], rocks [30], etc., and (e)
the accurate estimation of pre-project bid cost and duration with minimal risk of cost and
duration overrun.

There are various methods and technologies within AI which improve efficiency.

1. Machine learning is a subfield of AI that grants machines the ability to learn and
develop from their past experience without being explicitly programmed. Machine
learning, according to the type of training provided to the model, can be broadly cate-
gorized as supervised learning, unsupervised learning, and reinforcement learning.
In supervised learning, which is also called learning with teacher or guided learning,
labeled data with a desired output are provided as input to the machine. However,
in the case of unsupervised learning, which is also referred to as learning without
a teacher, no labeled input data are provided to the machine [31–36]. The machine
instead tries to draw inferences from the dataset containing unlabeled responses.
There exist various machine-learning algorithms such as decision trees, regression,
and random forest. However, in this article, only those algorithms previously applied
in the prediction of soil shear strength and project pre-cost estimation are listed.

• Support vector machine (SVM) [37] is a binary classification model, capable
of generating a hyperplane to isolate data samples on the basis of maximum
margin principles in order to achieve minimum structural risk [38]. There are
essentially two concepts used in SVM. The first concept is the optimal margin
classifier, which is a linear classifier that generates a distinct hyperplane, also
termed a decision surface, such that the gap is maximized between the negative
and positive instances. Kernel functions represent the second concept. A kernel
function is used to compute two vector dot products. The use of efficient non-
linear mapping of the kernel to the original example data ensures that the data,
which was nonseparable in the original input space, can be separated linearly
into a high-dimensional functional space [39]. This allows solving nonlinear
partitions through the addition of a kernel function [40].
The SVM’s partition function is commonly used to solve pattern recognition,
matter classification, filter problems, and various other problems in geotechnical
engineering. The classification of soil and rock is one such research application,
which allows engineers to decide the correct building materials and construction
methods for ensuring safety, depending on the category of soil and rock.
Landslides are a crucial field of research in geotechnical engineering, since they
pose enormous threats to public safety and frequently lead to major property
losses. SVM can be used for analyzing susceptibility to landslides in advance.
One-class SVM and two-class SVM can effectively predict susceptibility to land-
slides even with limited data. However, two-class SVM is more sensitive to the
number of samples and more accurate than its counterpart [41].
SVM can also be used for solving regression problems, basically involving the
determination of a regression model for describing the relationships among
sample data. The identification of deformed rocks and soil can also be performed
using SVM in geotechnical engineering.

• Least square support vector machine (LSSVM) is a statistical learning tech-
nique that employs the loss function of a least square linear system [42]. LSSVM
aims to reduce the computational complexity of SVM. The inequality constraints
for solving quadratic problems are replaced by equality constraints in the case of
LSSVM, leading to faster training speed compared to SVM. However, LSSVM’s
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solution suffers from a lack of robustness and sparseness. This limitation leads
to an increase in the training time and reduced prediction accuracy, especially for
industrial datasets, which generally contain explosions of data, imbalanced dis-
tribution, and heteroscedasticity [43]. While a single LSSVM with reconstructed
input samples and optimum parameters has excellent predictive efficiency under
some conditions, it may have certain kinds of inherent bias in other cases due to
its fixed kernel feature [44].

2. Artificial neural network (ANN) is a part of artificial intelligence. The concept of
ANN is not new and is inspired by the way human biological neurons work in the
human brain. ANNs are quite helpful in giving optimal solutions to complex prob-
lems that cannot be analytically defined. ANN consists of fundamental processing
units called neurons, along with weighted connections between them. ANN can
be defined as a large, parallel dispersed data-processing network which consists
of simple entities called neurons. It has a natural propensity to store experiential
information which is then used, analogously to the way the brain collects and holds
information [45]. During the learning process, the neural network acquires informa-
tion and preserves it through the intensity of neuronal contact [46]. Neural networks
are designed such that problem-solving is possible without the need for experts and
without programming. In unclear data, they often search for patterns and connections
and are specifically tailored for complex problems where there are no classical math-
ematical and conventional procedures or formal underlying theories. ANN differs
from statistical and algorithmic techniques such as regression sampling in that ANN
learns from examples to give generalized solutions [47–54].
ANN consists of multiple layers, and, in every layer, there exist nonlinear processing
and fundamental computation units called neurons that perform tasks such as feature
extraction. The output from every layer is fed as input into the subsequent layer.
ANN-based models work by collecting their input from various neurons present
at the input layer, and they are designed to sense data from the outside world just
as humans do, passing this information collected from different input neurons to
further neurons present in another layer of hierarchy termed the hidden layer. The
information is then processed at this layer and is passed to the output layer. A typical
ANN structure is shown in Figure 2.

ANN completely depends upon two important phases: (i) training phase and (ii)
testing phase. The training phase involves the labeling of vast volumes of data and deciding
their corresponding characteristics, while the testing phase uses previous experience to
draw conclusions and label the new unexposed data [55]. During the training of the
ANN, a dataset is provided, and weights between the interconnections are adjusted to
reach the output specified in the training dataset. If the output is known, it is deemed
supervised training; otherwise, it is deemed unsupervised training. The basic elements
that characterize an ANN are listed below [56].

• Topology of the network;
• Training method being employed;
• Type of association between input and output;
• Presentation of the information.

ANN offers the following advantages over AI techniques, making it a popular choice
for use in a plethora of domains:

• Self-organization: ANNs are self-organizing. They can create their own structures and
can adjust weights on their own as per the requirements.

• Fault tolerance: Even if some neuron is not responding, some piece of information is
missing, or data are distorted and noisy, ANNs can still produce the output and have
the capability to locate the fault.

• Adaptive learning: ANNs have the ability to learn on their own by choosing optimal
features and weights, and they produce outputs not limited to the provided input.
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• Capability to deal with large data: ANNs work equally well for large datasets. An in-
crease in the number of training samples can help the models to improve their learning
through exposure to different possible scenarios, thus improving their generalizability.

• In ANNs, the input data are stored in the network instead of a database. Thus, any
loss of data has no effect on their working.

• Online and multi-task operations: ANNs can be implemented in parallel to perform
multiple tasks simultaneously without hindering the performance of the system.
Moreover, they are specially configured to perform online processes.
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ANNs can be classified according to their architecture and the number of hidden
layers present. In this section, we present some popular types of neural networks used by
researchers in construction and geotechnical engineering for tasks such as shear-strength
estimation and pre-parametric prediction of project cost and duration.

• Feed-forward neural network (FFNN) is the simplest and most basic type of neural
network and may or may not feature a hidden layer. Information in FFNN flows in only
one direction (forward propagation), i.e., from the input layer to the processing hidden
layer to the output layer [57,58]. Figure 4 shows the basic structure of an FFNN.

• Multilayer perceptron (MLP) is a simple and commonly used neural network which
consists of one input layer, one or more hidden layers, and one output layer. MLP is
mostly used for problem-solving where learning is performed through backpropaga-
tion [59]. This network propagates the data from the input to output layer through
the network and detects errors; then, by incorporating it into the learning formula, it
propagates the data back to the input layer. Gradient descent optimization is used
for reducing the error between the actual desired output and the predicted output by
reupdating the weights of the neurons.

• Recurrent neural network (RNN), also called long short-term memory (LSTM), is the
most widely used and most complex type of neural network, in which the information
flows bidirectionally. The output of the processing nodes is stored in this network and
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is used for improving their performance. RNN works by saving the output from a
layer and feeding it back to the input to help predict layer outputs. The first layer
is formed as a result of the sum of weights with characteristics similar to the feed-
forward neural network. Once this is determined, the RNN phase starts in which each
neuron in the subsequent time step recalls any information it had in the preceding time
step. This allows each neuron to act as a memory cell when conducting computations.
RNN works via forward propagation and remembers the information it needs for
later use. Whenever the prediction is incorrect, the learning rate or error correction is
used to make minor adjustments in order to improve the model’s prediction through
backpropagation [60].

• Radial basis function neural network (RBFNN) is a type of multilayer ANN consist-
ing of an input, hidden, and output layer. RBFNN’s hidden layer consists of hidden
neurons, which are activated by the Gaussian function. Training of the RBFNN is split
into two phases. Firstly, weights are calculated from the input to the hidden layer,
and then weights from the hidden to the output layer are determined. Because of its
compact topology and fast learning speed, RBFNN has attracted extensive attention
compared to other neural networks, and it has been widely used in many research
and engineering sectors [61,62].

• Probabilistic neural network (PNN) is basically a classifier. Unlike other
backpropagation-based ANNs, PNN is based on the kernel discriminant analysis
(KDA), which is a statistical algorithm in which the operations are structured into a
multilayered feed-forward network. The interest in pattern recognition using PNN is
growing due to its unique quality of interpretation using the probability density func-
tion. PNN has many benefits over well-known backpropagation (BP)-based ANNs.
The biggest benefit that PNN offers over other neural networks is that training can be
completed quickly and effectively. Unlike BP networks, weights are assigned and not
trained. Therefore, the original weights always remain the same, and only the new
vectors are introduced into weight matrices during the training process. Therefore,
the operation happens in real time, and the network classifies input vectors into a
specific class. The PNN consists of an input layer, pattern layer, summation layer, and
output layer, as shown in Figure 3. The first layer, which is the input layer, takes the
input and is completely connected to the pattern layers such that every neuron of the
input layer has a connection with all the neurons of the pattern layer. Weight values
in this layer are set equivalent to the different training patterns. In the summation
layer, summation neurons compute the probability density function. Every neuron
of the summation layer adds outputs of the pattern layer neurons, which basically
corresponds to the class from which the training pattern is selected [63,64].
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2.2. Soil Shear Strength

In geotechnical and civil engineering, soil shear strength is a very important parameter
that is used and estimated during the construction of structures such as dams, pavements,
and retaining walls. Internal friction and cohesion are the parameters that define the
shear strength of a soil sample. The shear strength of a soil determines its capability to
bear slippage and internal movement when exposed to some load. Shear strength, thus,
determines the withstanding capability of an infrastructure. The shear strength of a soil
sample is affected by various factors such as the liquid limit, plastic index, and moisture
content, and it can be computed in laboratories. However, the process of computing the
soil shear strength in laboratories is not only time-consuming but costly also owing to
difficulties in the handling of instruments, as well as the long measurement procedures
for ensuring reliable and accurate results. Therefore, AI can be used for the accurate and
timely computation of soil shear strength.

The general steps involved in the estimation of soil shear strength through AI are
as follows:

• Problem identification;
• Data collection and preprocessing of the database;
• Identification of crucial input parameters;
• Selection of AI-based prediction model;
• Performance comparison of developed AI models;
• Sensitivity analysis;
• Prediction based upon the output of the best AI model.

2.3. Pre-Project Cost and Duration

Project cost and duration play a very important role in construction. Prior information
about the cost that will be incurred throughout the construction project, along with the
time it will take to complete the project, can be beneficial for both constructors and clients.
The prediction of project cost can help bidders to make a suitable bid after including their
profits and margins, as well as prevent the issue of cost overrun, which is usually seen
in construction projects. However, accurate pre-project prediction of cost and duration
requires certain information in the form of input parameters, which are limited in nature.
This pre-project estimation of cost and duration can easily be computed using AI models,
with steps similar to those involved in the prediction of soil shear strength.

3. Research Methodology

The revolution that AI has brought about in various sectors is easily visible, and
it has greatly improved the efficiency, productivity, security, cost, and labor burden in
different work areas. The applicability of AI in the construction sector is also remarkable,
leading to various improvements in construction-related activities. For instance, with AI,
construction-related tasks have been automated. The burdens of cost, labor, and time
have been greatly minimized. Tasks where human lives are at risk and which humans
are reluctant to do have been shifted to AI. The pace of construction has also increased
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manifold, and beautiful and complex structures are being developed with great ease. AI
is also used for the pre-project estimation of cost and duration with minimal information
available. This prior estimation of construction cost and duration can help contractors in
setting the most optimal bids for a project after including their profits, thus avoiding the
problems of delay and cost overrun during construction. Similarly, AI can be used for
automating the process of soil shear-strength estimation using various crucial input soil
parameters, thus enabling the development of strong structures that can withstand natural
disasters such as earthquakes and floods.

In this study, an attempt was made to highlight the importance and applicability of AI-
based models for performing automatic calculations and predictions of crucial parameters
such as soil shear strength and project cost and duration, which are important aspects of
construction, using the minimal information available.

The importance of automatic predictions and calculations of cost, time, and shear
strength parameters was discussed in the previous section. AI-based models can definitely
solve various problems in the process of construction, such as cost overrun, delays, and
building collapse. AI models make use of various factors and parameters which play an
important role in the calculation and prediction of the abovementioned parameters. In fact,
there exist a plethora of AI-based algorithms and models used by researchers across the
globe for solving problems in construction-related activities [65].

This motivated us to highlight various relevant studies available in the literature using
various AI-based techniques in making accurate and low-cost predictions of important and
crucial parameters outlined previously.

In this first-of-its-kind state-of-the-art survey, an attempt was made to examine the
existing work of various researchers focused on using AI techniques for the estimation, pre-
diction, and calculation of crucial parameters in construction-related jobs. The methodology
followed in performing this study was as follows:

• Initially, various AI-based models and algorithms widely used in the geotechnical
field by researchers in the literature were studied and analyzed to identify their pros
and cons.

• The various areas of civil construction and maintenance where AI models can be
applied were explored in detail. This was done by referencing available relevant
research articles over the past decade that were published in reputed peer-reviewed
journals, conferences, book chapters, etc.

• Important input parameters with an important role in and impact on the prediction
and estimation of cost, time, and shear strength are presented.

• Existing challenges, research gaps, and future research directions are presented at the
end of the article with the expectation of providing a path to help researchers already
working in this domain.

Figure 5 shows the methodology and steps involved in the prediction of cost, duration,
and shear-strength parameters throughout a construction project.
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4. Applications of Artificial Intelligence in Civil Construction and
Maintenance-Related Tasks

Good-quality structures such as dams, roads, highways, buildings, and bridges are
key to a country’s development. In this section, the existing work of various researchers
related to the use of AI in the Prediction of soil shear strength and pre-project cost and
duration is discussed in detail.

4.1. Predicting Soil Shear Strength for Construction

It is very important to determine the soil shear strength before doing any type of
construction. Shear strength is defined as the ability of soils to withstand internal movement
or slippage when subjected to an imposed load. This property is a key element that is
often used in the planning and design of many large-scale infrastructure projects, including
high-rise buildings, roads, sidewalks, earth dams, and walls.

Shear strength is the property of soil that helps it to maintain balance in situations
when the ground surface is not level or if the load is intense, which can cause shear
stress. A plethora of methods and techniques have been proposed in the literature for
determining the shear-strength parameters of unsaturated soil. Such shear parameters can
be measured in the field and/or in the laboratory. However, the method of obtaining soil
shear strength in the lab is not only expensive but also time-consuming. Hence, a new
robust model to accurately predict futuristic shear strength is highly desirable, such that
slow and cumbersome laboratory research can be avoided.

Soft computational methods such as ANN, fuzzy techniques, and genetic algorithms
have been used to solve a wide range of geoscience and geotechnical engineering problems
such as landslide susceptibility zonation (LSZ), debris flow prediction, landslide monitoring,
and rock strength prediction. AI can be used for the estimation of soil shear strength by
considering various factors such as clay content, moisture content, and liquid limit as input.

AI-based approaches are very useful in nonlinear modeling and can take several
input variables into account when determining soil shear strength. AI models are also
flexible and can adjust their structures according to changes in the collected geotechnical
data [66]. A general ANN-based model depicting the use of various input parameters for
the prediction of soil shear strength is shown in Figure 6.
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The authors in [66] made use of the swarm intelligence-based machine-learning tech-
nique for the prediction of soil shear strength during road construction. The AI technique
used for this parameter calculation was a hybrid of two AI techniques: (i) least square
support vector machine (LSSVM) and (ii) cuckoo search optimization (CSO). In this work,
a dataset containing 332 soil samples gathered from the Trung Luong National Expressway
Project in Vietnam was used for training and validation of the model. For predicting the
shear strength, input parameters such as the sand percentage, sample depth, percentage of
clay and loam, specific gravity, wet density of soil, plastic limit, liquid limit, liquid index,
and plastic index were used. In this hybrid AI model for predicting soil shear strength,
LSSVM was used for the task of generalizing the functional mapping that predicts the shear
strength from the abovementioned input parameters. Since LSSVM requires the proper
setting of kernel function and regularization parameters, CSO was used for their automatic
computation. The flow of the proposed LSSVM and CSO algorithm is shown in Figure 7.
From the experimental and simulation results, it was found that the proposed hybrid
AI model using LSSVM and CSO was able to outperform other benchmark approaches
including standard LSSVM, ANN, and regression trees, thus showing that AI can be used
to facilitate civil construction jobs. The complete model was coded, implemented, and
tested using the MATLAB software.
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Similarly, the authors in [67] used a regression tree and ANN for the computation of
soil shear-strength parameters such as cohesion and angle of internal friction. Six input
parameters (namely, sand, silt percentage, gravel percentage, clay percentage, plastic index,
and dry density) were used and fed as input to the ANN and regression tree-based model
for the prediction of soil shear strength. A total of 115 soil samples were considered,
of which 90 were used for training, while the remaining 25 were used for testing the
performance of the model. The correlation coefficient (R) and root-mean-square error
(RMSE) were evaluated for both the regression tree and the ANN during the performance
evaluation, and it was observed that, for the prediction of internal friction angle, both
techniques performed equally well, whereas, for the estimation of cohesion, the ANN
outperformed the regression technique. Furthermore, all six input parameters considered
were found to be important for the estimation of shear parameters. MATLAB software was
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used for the coding and implementation of the model. The flow of the proposed ANN
model for the calculation of shear-strength parameters is shown in Figure 8.Sensors 2021, 21, x FOR PEER REVIEW  15 of 43 
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For the estimation of soil shear-strength parameters, the authors in [64] made use
of PNN, in which input parameters such as water content, dry density of soil, and the
percentage of gravel, sand, silt, and clay in soil were considered. Two soil shear-strength
parameters, cohesion and internal friction, were predicted using the neural network in this
work. A total of 300 soil samples from 20 different boreholes in Ranchi, Jharkhand, India
were collected and used in this work. The PNN model in this work had four layers, namely,
(i) input layer, (ii) pattern layer, (iii) summation layer, and (iv) output layer, as shown in
Figure 4. The input layer of the proposed model consisted of one neuron that fetched one
set of new input data, i.e., the test data. Similarly, the pattern layer comprised 300 neurons,
and each neuron had one set of input data with information on the seven soil parameters.
The summation layer consisted of 16 neurons and represented each class. In the output
layer, there was one neuron which output the best class. On the basis of the results, the
authors concluded that neural models gave better results than mathematical models.

Similarly, for the prediction of soil shear strength, the authors in [68] made use of a
functional network. The database for training the proposed predictive model was taken
from [69], which consisted of a total of 131 soil samples from landslide areas, slope failure
areas, volcanic eruption areas, etc. Input parameters that were considered for soil shear-
strength estimation included liquid limit, plasticity index, and clay fraction. In order
to compute the performance and efficiency of the proposed functional network-based
predictive model, the authors compared their model with SVM- and ANN-based models
using performance metrics such as the Nash–Sutcliffe coefficient of efficiency, correlation
coefficient, maximum average error (MAE), RMSE, and absolute average error (AAE).
According to the results, it was observed that the author’s proposed functional network-
based model performed better than the ANN in terms of the Nash–Sutcliffe coefficient of
efficiency and correlation coefficient. However, its performance was not found to be better
in comparison to the SVM-based model.

The authors in [69] demonstrated the use of different variations of ANN and SVM
models for the calculation of soil residual strength by applying these different machine-
learning techniques to different input soil parameters such as the clay fraction, liquid limit,
and plasticity index. A total of 137 samples for testing were taken from available databases
describing samples from different areas such as landslide areas, volcanic eruption areas,
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debris flow areas, and slope failure areas. Out of the 137 available samples, 70% (96 sam-
ples) were used for training, while the remaining 30% (41 samples) were used for testing
the performance of the models. In this study, the authors designed two ANN models for
training, namely, the differential evolution neural network (DENN) and Bayesian regular-
ization neural network (BRNN), which were compared with the Levenberg–Marquardt
neural network (LMNN). Different combinations of the input parameters were considered
in the application of the abovementioned ANN models. From the results, it was found
that the model in which all input parameters were considered produced better results in
terms of the correlation coefficient. This study by the authors suggested the possibility and
success of using ANN models for different soils of different origins.

For the construction of robust houses, the estimation of soil shear strength is crucial.
The authors in [70] hybridized AI-based support vector regression (SVR) and particle
swarm optimization (PSO) for the prediction of soil shear strength. A set of 12 input
parameters, namely, plastic limit, moisture content, void ratio, content of sand, liquid index,
plastic index, dry density, liquid limit, loam content, sample depth, wet density, and clay
content, were fed to the AI-based model for prediction. A dataset containing 443 samples
of soil collected from a Vietnam housing project was used for the training and validation of
model performance. In this hybrid AI model, SVR was used as the function optimization
method for providing the mapping to predict the soil shear strength using the considered
input parameters. PSO was used for optimizing the training phase of the SVR’s function
approximator. For the evaluation of model performance, metrics such as MAPE, RMSE,
and R2 were used, and it was observed that the author’s proposed hybrid AI-based model
consisting of SVR and PSO yielded better prediction accuracy in terms of RMSE, MAPE,
and R2 with values of 0.038, 9.701%, and 0.888, respectively.

In Table 2, other studies available in the literature for the prediction of soil shear
strength using AI are presented in detail.

Discussion

According to the above analysis of the literature, a general observation is that artificial-
intelligence-based techniques are efficient and highly useful for soil shear-strength predic-
tion. Furthermore, as the topic of concern is complex, other advanced and hybrid AI models,
along with the hyperparameter tuning, can be explored to enhance the performance of the
existing models.

4.2. Prediction of Road Building Cost and Project Duration

Cost estimation is an essential aspect of construction projects, where cost is seen
as a crucial factor in project feasibility studies and early decision-making. Pre-project
cost estimate accuracy is a critical factor in the success of any construction project, and
projects often suffer from issues such as cost overrun, especially in the case of projects
with a tight budget. Cost overrun can potentially result in the cancelation of projects and
excessive delays.
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Table 2. Artificial intelligence for the estimation of soil shear strength.

Ref. Application
Artificial

Intelligence
Techniques Used

Parameter
Computed Dataset Used Input Parameters Performance Metrics Simulation

Software Used Performance Results

[66]
Predicting soil
shear strength for
road construction

Hybrid AI using
LSSVM and CSO Soil shear strength

332 soil samples
collected from
Trung Luong
National
Expressway
Project, Vietnam

• Sand percentage
• Sample depth
• Percentage of clay

and loam
• Wet density of soil
• Specific gravity
• Liquid limit
• Plastic limit
• Plastic index
• Liquid index

• RMSE
• MAPE
• VAF
• Coefficient of

determination (R2)

MATLAB along
with the
LS-SVMLAB
toolbox

RMSE: 0.078
MAPE: 14.841%
VAF: 93.110%
R2: 0.885

[67]
Predicting soil
shear strength for
road construction

ANN and
regression tree

Soil shear strength
(cohesion and
internal friction
angle)

115 soil samples
with 95 soil
samples for
training while 20
for testing

• Sand percentage
• Silt percentage
• Gravel percentage
• Clay percentage
• Plastic index
• Dry density

• Correlation
coefficient (R)

• RMSE
MATLAB

• ANN

R: 0.87
RMSE: 0.136

• Regression tree
R: 0.73
RMSE: 0.162

[64]
Predicting soil
shear strength for
road construction

Probabilistic
neural network
(PNN)

Soil shear strength
(cohesion and
internal friction
angle)

300 soil samples
from different 20
bore holes in
Ranchi, Jharkhand,
India

• Soil water content
• Plasticity index
• Dry density
• Gravel percentage
• Sand percentage
• Silt percentage
• Clay percentage

• Observed cohesion
and predicted
cohesion

• Observed friction
angle and
predicted friction
angle

Not mentioned

The difference
between the predicted
and observed
cohesion and
predicted angle was
between 7% and 14%.
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Table 2. Cont.

Ref. Application
Artificial

Intelligence
Techniques Used

Parameter
Computed Dataset Used Input Parameters Performance Metrics Simulation

Software Used Performance Results

[68]
Predicting soil
shear strength for
road construction

Functional neural
network (FNN)

Residual strength
of clay

131 samples of
database obtained
from areas of
landslide, debris
flow, volcanic
eruptions

• Liquid limit,
• Plasticity index
• Clay fraction

• Correlation
coefficient

• Nash–Sutcliffe
coefficient of
efficiency

• Absolute average
error (AAE)

• Maximum average
error (MAE)

• Root-mean-square
error (RMSE)

MATLAB

Best case while using
all the input
parameters,
R: 0.898
RMSE: 2.782

[69]
Predicting soil
shear strength for
road construction

ANN and SVM Residual friction
angle of clay

Database obtained
from areas of
landslide, debris
flow, volcanic
eruptions

• Clay fraction
• Liquid limit
• Plasticity index

• Correlation
coefficient

• RMSE
• MAE
• AAE

MATLAB RMSE: 7.0

[71] Predicting soil
shear strength SVM Soil shear strength

538 samples of soil
collected from
Long Phu 1 Power
Plant Project, Soc
Trang Province,
Vietnam

• Clay content
• Moisture content
• Specific gravity
• Void ratio
• Liquid limit
• Plastic limit

• Correlation
coefficient

• RMSE
• MAE

MATLAB using
the
machine-learning
toolbox

SVM performed well
for the prediction of
soil shear strength
with a correlation
coefficient between 0.9
and 0.95.
Moisture content,
liquid limit, and
plastic limit were
found to be the most
important parameters.



Sensors 2021, 21, 463 18 of 44

Table 2. Cont.

Ref. Application
Artificial

Intelligence
Techniques Used

Parameter
Computed Dataset Used Input Parameters Performance Metrics Simulation

Software Used Performance Results

[72] Predicting soil
shear strength ANN

Soil shear strength
parameter of
friction angle

320 samples
obtained from
Geotechnical
Engineering
laboratory of the
Federal University
of Bahia (UFBA),
Brazil

• Sand content
• Plastic limit
• Coarse content
• Fine content
• Liquid limit
• Soil bulk density
• Shearing rate

• Coefficient of
determination
(CoD)

• RMSE
• Coefficient of

residual mass
(CRM)

Not mentioned

Sensitivity analysis
was also performed to
check how the system
would respond if
certain input
information was not
available. Soil bulk
density was found to
be an important
parameter.
RMSE: 51.63
CRM: 0.00518
CoD: 0.97

[73] Predicting soil
shear strength

Three
nature-inspired
hybrid algorithms,
i.e., dragonfly
algorithm, whale
optimization
algorithm, and
invasive weed
optimization of
ANN

Soil shear strength

28 boreholes were
constructed and
154 soil samples
were obtained
from Royal City
Project of Hanoi,
Vietnam

• Depth of sample
• % of sand
• % of loam
• % of clay
• % of moisture

content
• Wet density
• Dry density
• Void ratio
• Liquid limit,

plastic limit
• Plastic index
• Liquidity index

• RMSE
• MAE
• CoD

MATLAB 2014

RMSE
ANN: 1
DFA: 4
WOA: 2
IWO: 3
MAE:
ANN: 1
DFA: 2
WOA: 3
IWO: 4
CoD:
ANN: 1
DFA: 4
WOA: 2
IWO: 3

[74] Predicting soil
shear strength ANN

Soil shear strength
(cohesion and
internal friction
angle)

83 soil samples
were collected
from random
locations of central
and southern
areas of Delta
State

• Plasticity index
percentage

• Liquid limit
• Specific gravity

• MAE
• RMSE
• Coefficient of

correlation
• Cohesion equation

Visual Basic
software

RMSE: 8.33
MAE: 6.08
Coefficient of
correlation: 0.861
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Table 2. Cont.

Ref. Application
Artificial

Intelligence
Techniques Used

Parameter
Computed Dataset Used Input Parameters Performance Metrics Simulation

Software Used Performance Results

[75] Predicting soil
shear strength ANN

Soil shear strength
(cohesion and
internal friction
angle)

20 boreholes were
detected and 200
soil samples were
collected from
Nalanda District
of Bihar, India

• Plasticity index
• Sand percentage
• Silt percentage
• Clay percentage
• Bulk density
• Dry density
• Water content

• RMSE
• Correlation

coefficient (R)
Not mentioned

RMSE: 0.636
MAPE:
R: 0.907

[76] Predicting soil
shear strength

Multivariate
regression and
ANN

Soil shear strength
(cohesion and
internal friction
angle)

108 soil samples
taken from
Isfahan, Iran

• Plastic limit
• Liquid limit
• Plasticity index
• Density
• Clay %
• Silt %
• Sand %
• Gravel %

• RMSE
• MAE
• Variance

accounted for
(VAF)

SPSS 23 software

Correlation coefficient
analysis showed that
liquid limit, plastic
limit, and % of clay
and silt were
important input
parameters for the
calculation of soil
cohesion, whereas
density, plasticity
index, liquid limit,
and % of clay, sand,
and silt were crucial
for the prediction of
effective friction
angle.
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The costs of a building project need to be estimated with high precision. However,
lack of sufficient prior knowledge and dynamically changing factors having a direct impact
on the overall project cost are the major barriers in the cost estimation of a cost, particularly
in the early stages. As such, cost-estimating methods are used to address this lack of detail,
providing results within a reasonable range of accuracy [77].

AI, especially neural networks, plays a vital role in building good-quality highways
and roads at a faster pace with less labor and cost. Estimation of the cost of building high-
ways and roads before actually starting the construction work is very crucial. Substantial
time, money, and manpower are spent in doing these calculations. AI can instead be used
for the automatic estimation of road construction parameters from which the building
estimate cost can be calculated easily.

Cost estimation of highway projects using parameters is very beneficial in the early
stages when very minimal information is known. Parametric-based project cost estimation
involves identifying the key parameters along with their importance such that the parame-
ter with the highest importance is given the highest weight. These weighted parameters
are then input to an AI-based model, which tries to predict the cost of the whole project.
Along with the cost and the offered price, another factor in choosing the best contractor
for a construction project is the proposed time of completion. The timely completion of
any project is of utmost importance and is a crucial factor of consideration, along with the
offered price, when awarding the bid to a contractor.

The authors in [78] introduced a three-layer neural network for the automatic estima-
tion and prediction of the cost of building a highway project. This AI-inspired model for
road cost prediction is transparent and easy to use for practitioners in construction. This
neural network model was implemented in Microsoft Excel in the form of a spreadsheet
simulation. In their work, the spreadsheet represented a template for a neural network
with one hidden later, and standard steps such as (a) data organization, (b) data scaling,
(c) weight matrix, (d) output of hidden layers, (e) final output of neural network, and
(f) backpropagation of errors were performed for the processing of the template. This
work made use of bids of 18 different highway projects submitted in the span of 5 years
in the office of Public Works, Services, and Transportation, St. John’s, Newfoundland,
Canada. Each bid had the itemized cost of various jobs with the identity of bidders not
disclosed. Some contractors were also contacted to gather cost-related information required
for training the model. The authors identified 10 key attributes crucial for estimating the
project cost using the AI-based models. These attributes were (a) descriptors of project size,
(b) project type (subclassified as (i) bridge, (ii) highway, and (iii) others), (c) construction
season (i.e., winter, summer, or fall), (d) location, (e) duration of project in months, (f)
size of highway/road in km, (g) capacity (e.g., two lanes or two lanes divided), (h) water
body (yes or no), (i) soil condition, and (j) year. The representation of the work is shown
in Figure 9. In order to determine the optimal weights of the neural network, techniques
such as simplex optimization, backpropagation, and genetic algorithm (GA) were used
by the authors in this model. According to the their conclusion, it was found that the
simplex optimization technique was able to produce the most optimal neural network for
determining and predicting the cost of a national highway project.

Bidding is the primary process to decide the contractor to which a highway or road
project is to be given. Thus, it is required for a contractor or a bidder to furnish an optimal
bid for doing a construction-related task. In order to provide a close to accurate prediction
of the project cost, the authors in [79] proposed an AI-inspired model for the prediction
of the project’s cost. In this work, the authors used various data mining and AI-based
algorithms such as multiple regression, GA, case-based reasoning (CBR), and ANN for
the prediction of bid award amount on the basis of limited available information. For the
training of the AI models, data from various bridge construction-related projects were
fetched from the database of Taiwan Public Construction Commission. Initially, the authors
fetched 275 bridge construction projects, which was reduced to 98 projects of interest
after the application of various filters to check for projects within the scope of this work.
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Features such as unit price analysis tables, design drawings, construction contracts, and
detailed price quotes, important for the prediction of bid award amount, were extracted
from the dataset. For validation of the performance of the model, the authors used a k-fold
cross-validation technique in which the dataset was divided into 10 subsets of similar
sizes, whereby, after the removal of one subset, the nine remaining subsets were used for
learning. The error rate was computed using the holdout set. The whole learning process
was executed a total of nine times for different training sets, with each set removed. The
accuracy of the algorithm was computed as the average accuracy of the 10 models in 10
validation rounds. The mean absolute percentage error (MAPE) was the metric used for
evaluating the performance of the model. From the performance analysis, it was observed
that the GA- and ANN-based models showed promising performance in the prediction of
highway cost amount. The linear regression’s performance was not found to be optimal
in the results. According to the test data, the MAPE values of GA–ANN, CBR, and linear
regression were 7.526%, 8.83%, and 9.149%, respectively.

Sensors 2021, 21, x FOR PEER REVIEW  23 of 43 

 

 

were used by the authors in this model. According to the their conclusion, it was found 

that the simplex optimization technique was able to produce the most optimal neural net‐

work for determining and predicting the cost of a national highway project. 

 

Figure 9. Neural network for prediction of the budget cost of a project. 

Bidding is the primary process to decide the contractor to which a highway or road 

project is to be given. Thus, it is required for a contractor or a bidder to furnish an optimal 

bid for doing a construction‐related task. In order to provide a close to accurate prediction 

of the project cost, the authors in [79] proposed an AI‐inspired model for the prediction of 

the project’s cost. In this work, the authors used various data mining and AI‐based algo‐

rithms such as multiple regression, GA, case‐based reasoning  (CBR), and ANN  for  the 

prediction of bid award amount on  the basis of  limited available  information. For  the 

training of  the AI models, data  from various bridge construction‐related projects were 

fetched from the database of Taiwan Public Construction Commission. Initially, the au‐

thors fetched 275 bridge construction projects, which was reduced to 98 projects of interest 

after the application of various filters to check for projects within the scope of this work. 

Features such as unit price analysis tables, design drawings, construction contracts, and 

detailed price quotes, important for the prediction of bid award amount, were extracted 

from the dataset. For validation of the performance of the model, the authors used a k‐

fold cross‐validation technique in which the dataset was divided into 10 subsets of similar 

sizes, whereby, after the removal of one subset, the nine remaining subsets were used for 

learning. The error rate was computed using the holdout set. The whole learning process 

was executed a total of nine times for different training sets, with each set removed. The 

accuracy of the algorithm was computed as the average accuracy of the 10 models in 10 

validation rounds. The mean absolute percentage error (MAPE) was the metric used for 

evaluating the performance of the model. From the performance analysis, it was observed 

that the GA‐ and ANN‐based models showed promising performance in the prediction of 

highway cost amount. The linear regression’s performance was not found to be optimal 

in the results. According to the test data, the MAPE values of GA–ANN, CBR, and linear 

regression were 7.526%, 8.83%, and 9.149%, respectively. 

Similarly, for estimating the cost and duration of urban road construction projects, 

the authors in [80] proposed an AI‐based prediction model using SVM and ANN. Correct 

prior estimation of the total funds and resources required in a project can help construc‐

tors to fix the best bid for a project, inclusive of the own profit margin. Furthermore, the 

prior estimate of time required for the completion of a project can help the constructor 

and funding organizations determine the completion time of a project. For the proposed 

model to predict the cost and duration of a road construction project, the authors gathered 

training data from various realized road construction projects carried out between Janu‐

Figure 9. Neural network for prediction of the budget cost of a project.

Similarly, for estimating the cost and duration of urban road construction projects,
the authors in [80] proposed an AI-based prediction model using SVM and ANN. Correct
prior estimation of the total funds and resources required in a project can help constructors
to fix the best bid for a project, inclusive of the own profit margin. Furthermore, the prior
estimate of time required for the completion of a project can help the constructor and
funding organizations determine the completion time of a project. For the proposed model
to predict the cost and duration of a road construction project, the authors gathered training
data from various realized road construction projects carried out between January 2005 and
December 2012 in the city of Novi Sad, Republic of Serbia. In total, 198 realized projects
were collected, which was later reduced to 166 after ruling out projects which were not
related to road construction. For estimating the cost, inputs fed to the model included
the amount of crushed stone, number of curbs, amount of asphalt base and surface layer,
preparation works, earthworks, drainage works, and traffic signalization works. The
complete model for estimating cost and duration was simulated using the Statistica 12
software package. From the simulation results, it was observed that, due to the different
impact of input parameters on the cost estimation in contrast to the project’s duration, a
greater accuracy level was achieved when using separate models for their estimation. A
combined model resulted in lower precision in the case of ANN, whereas SVM was able
to provide better generalization and greater accuracy in the estimation of both cost and
duration.

Another study predicting the duration and cost of highway road projects was proposed
by the authors in [81] using ANN. Data for model training were taken from past projects
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in which all items were uniform. The proposed ANN-based predictive cost and duration
model considered bills of the following items for prediction: earthwork, site clearance,
sub-base works, culverts, bituminous works, minor and major bridges, junctions and curbs,
drainage works, traffic signs, vehicular underpass (VUPs), pedestrians underpass (PUPs),
and return walls, miscellaneous items, robs, flyovers, and overpasses, toll plazas, and street
lighting in urban areas. For evaluation of the performance of the ANN-based model, the
authors compared the predicted value for each input item with its corresponding actual
cost and duration. The ANN architecture consisted of a first layer with 10 neurons and
trainlm as the training function, followed by 10 hidden layers and one output layer. The
whole implementation of the ANN-based model was done using the MATLAB R2013a
software. According to the simulation results, it was observed that the model gave MAPE
scores of 0.57% and 0.27% for cost and duration, respectively; thus, it was found to be ideal
for use by construction companies for the accurate prediction of project cost and duration
with less information.

The authors in [82] stressed upon the importance of correctly predicting and estimating
the cost of a project in its early stages to help in winning bids and making perfect bids
while considering their profits and margins. To do this, the authors used ANN on a dataset
featuring 132 completed engineering service-related projects with 16 different inputs which
were assigned different weights according to their importance. Some of the input factors
considered for cost prediction by the authors are shown in Table 3. MAPE was used
for evaluating the performance of the ANN-based cost predictive model, and, from the
simulation results, it was clearly observed that ANN-based models can easily be applied to
produce accurate predictions even with little input.

Table 3. Some input parameters for cost prediction.

Input Parameter Description

Scale of work Actual cost of construction

Project phases Master plan
Basic design/detailed

Conceptual design
Detailed design

Project duration No. of days the project will take

Scope of work List of activities included in the contract

Type of work Modification/maintenance or new construction

Client’s expertise The level of experience on client’s side

Size of project team No. of team members

Multidisciplinary nature No. of disciplines involved

Type of client How demanding client is for standard

Main market type
Oil and gas
Chemicals
Energy and environment

Infrastructure
Industrial property
Public sector

Attitude toward design
changes Cooperative or noncooperative

Project manager’s experience The number of hours of experience

Contract type Fixed price or reimbursable

Intensity Average hours that the team members work

Other research work available in the literature for the prediction of cost and duration
of a construction-related projects using AI techniques is mentioned in Table 4.
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Table 4. Artificial intelligence for project cost estimation.

Ref. Application AI Techniques
Used

Construction
Parameter
Computed

Dataset Used Input Parameters Performance
Metrics

Simulation
Software Used Performance Results

[78]
Prediction of
road building
cost

Neural network
and genetic
algorithms

Budget cost
estimate of a
project

Bids of 18 different
national highway
projects submitted
over the span of 5
years in the office
of Public Works,
Services and
Transportation, St.
John’s,
Newfoundland,
Canada

• Descriptors of project
size

• Project type
subclassified as (i)
bridge, (ii) highway,
and (iii) others

• Construction season,
i.e., winter, summer, or
fall

• Location
• Duration of project in

months
• Size of highway/road

in km
• Capacity, e.g., 2 lanes

or 2 lanes divided,
• Water body (yes or

no),
• Soil condition

• Error in cost
estimation

• Prediction
error

• Sensitivity
analysis

• Microsoft
Excel

Weighted errors

• Backpropagation:
10.4%

• Simplex
optimization: 1.0%

• Genetic algorithm:
21.8%

[79]

Prediction of
road building
cost and
duration

Genetic algorithm
(GA), multiple
regression,
artificial neural
network
(ANN), and
case-based
Reasoning (CBR)

Budget cost
estimate of a
project

Bid invitation and
bid award data of
98 bridge
construction
projects obtained
from Taiwan
Public Const.
Commission
database from
June 2008 to May
2009

• Design drawings
• Unit price analysis

tables
• Detailed price quotes
• Construction contracts

• Mean absolute
percentage
error (MAPE)

• ANN using
Decision
Tools
Software

• Evolver
Software for
GA modeling

MAPE values

• GA–ANN: 7.526%
• CBR: 8.83%
• Linear regression:

9.149%
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Table 4. Cont.

Ref. Application AI Techniques
Used

Construction
Parameter
Computed

Dataset Used Input Parameters Performance
Metrics

Simulation
Software Used Performance Results

[80]

Prediction of
road building
cost and
duration

ANN and SVM Project cost and
duration estimate

166 completed
construction
related projects
carried out
between January
2005 and
December 2012 in
Novi Sad,
Republic of Serbia

• Amount of crushed
stone

• Number of curbs
• Amount of asphalt

base layer
• Amount of asphalt

surface layer
• Amount of concrete

prefabricated elements
• Percentage share of

work positions
• Preparation works
• Earthworks
• Drainage works
• Traffic signalization

works
• Other works
• Work realization zone
• Project category

(values of up to and
over 40,000,000)

• MAPE
• Statistica 12

software
package

SVM outperformed the
ANN-based model in
calculation of estimate
cost in terms of MAPE
with values of 7.06%
and 25.38%, respectively.
For estimate of project
duration, which proved
to be a challenge, SVM
and ANN produced
MAPEs of 22.77% and
26.26%, respectively.
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Table 4. Cont.

Ref. Application AI Techniques
Used

Construction
Parameter
Computed

Dataset Used Input Parameters Performance
Metrics

Simulation
Software Used Performance Results

[81]

Prediction of
road building
cost and
duration

ANN Project cost and
duration estimate

2 completed
projects having the
same set of
resources

• Site clearance
• Earthwork
• Sub-base works
• Bituminous works
• Culverts
• Major and minor

bridges
• Drainage works
• Junctions and curbs
• Traffic signs
• Miscellaneous items
• VUPs, PUPs, and

return walls
• Flyovers, robs, and

overpasses
• Toll plaza
• Street lighting in

urban areas

• MAPE
• Sensitivity

analysis

• MATLAB
R2013a
software

Average MAPE values
for total cost and
construction period
were 0.57% and 0.27%,
respectively.

[82]

Prediction of
road building
cost and
duration

ANN
Engineering
service-related
cost prediction

132 projects

• Scale of work
• Project duration
• Type of work
• Level of experience on

client’s side
• Size of project team
• Multidisciplinary

nature
• Type of client and

requirements
• Project manager

experience
• Intensity
• Pre-contract design
• Main market type
• Contract type

• Correlation
coefficient

• MAPE

• Not
mentioned

ANN can be used for
accurate cost prediction
even with little
available input.
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Table 4. Cont.

Ref. Application AI Techniques
Used

Construction
Parameter
Computed

Dataset Used Input Parameters Performance
Metrics

Simulation
Software Used Performance Results

[59]
Prediction of
road building
cost

ANN models, i.e.,
MLP, GRNN, and
RBFNN

Project cost and
duration estimate

Database of roads
projects
constructed in the
region of Republic
of Croatia

• Project scope
• Project type
• Road length
• Road width
• Planned construction

duration (days)
• Planned construction

cost
• Actual construction

cost

• MAPE
• Coefficient of

correlation
• DTREG

GRNN gave the best
accuracy with MAPE =
13% and coefficient of
correlation = 0.9595.

[83]
Prediction of
road building
cost

Multiple
regression analysis
(MRA) and ANN

Project cost
estimate

966 projects of
Montana Dept. of
Transportation
awarded between
2006 and 2015

• Roadway area
• Length in km
• Width in meters
• Urban area indicator
• Bridge type
• Expected contract time

in months
• No. of bridges
• Geographical

complexity

• MAPE • NeuralTools

Top-down models offer
a way to boost the
predictive accuracy of
cost estimate for
projects having higher
complexity levels and
smaller sample sizes.

[84]
Prediction of
road building
cost

ANN Project cost and
duration estimate

1022 data from 51
highway projects
of Thailand
between 2002 and
2007

• Traffic volume
• Topography
• Weather conditions
• Contract duration
• Construction budget
• % of planned and

expected completion
• Work starting and

evaluation date

• MAPE • Not
mentioned

Results showed that the
ANN gave accurate
predictions in terms of
MAPE in comparison to
learned methods.
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Table 4. Cont.

Ref. Application AI Techniques
Used

Construction
Parameter
Computed

Dataset Used Input Parameters Performance
Metrics

Simulation
Software Used Performance Results

[85]
Prediction of
road building
cost

ANN Project cost
estimate

Expressway
contract data of
Iraq collected
between 2010 to
2014

• Length in km
• No. of stream

crossings
• Capacity (no. of

standard width lines)
• No. of expressway

interchanges
• Pavement material

(flexible or rigid)

• Coefficient of
correlation

• MAPE
• Neuframe

Coefficient of
correlation: 90%Average
accuracy %: 89
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5. Important Input Parameters, AI Techniques, and Performance Metrics for the
Estimation of Cost, Time, and Shear Strength

As seen in previous sections, the great success obtained when using different types of
ANN-based models in various construction-related applications such as early prediction
of project cost and duration and estimation of soil shear strength is quite evident. In
all these applications of AI models for the accurate prediction and estimation of crucial
construction-related parameters, certain inputs with a huge impact on the prediction
accuracy are required.

The influential factors of cost are elements that reflect a building’s features and impact
its cost. A project is characterized by influential factors, and it is possible to characterize
a project more accurately as the number of influential factors increases. Nevertheless,
if the number of significant variables is high, the number of cases for estimation is also
high. Furthermore, increasing the number of input variables for cost prediction will not
necessarily increase the accuracy of the calculation. Therefore, it is necessary to select the
correct number of factors to enhance the effectiveness of estimation.

In this section, the limited information that can be used for construction-related
predictions is discussed. The variables were identified and defined through an intensive
literature review and expert interaction for input into some ANN-based models. Different
applications require specific input information for prediction. For instance, for computing
the expected duration of a project, crucial parameters such as the project size, labor size,
type of project, and terrain type are usually considered. Similarly, for computing soil shear
strength, inputs such as clay percentage are taken into consideration.

For the selection of these inputs, various construction engineers and contractors were
consulted, and variables identified through a literature review with a higher frequency of
usage and availability at the early stage were considered for selection.

Additionally, there are other factors that can help in improving the accuracy of these
early cost and duration prediction models, as listed below [86–92].

1. Project complexity: A project whose cost and duration is to be estimated must be
analyzed properly to check for all potential cost-incurring activities. The complexity
of a project can be determined in terms of the number of repetitive tasks, its size, the
kind of work, the number of operations involved, etc. The project’s complexity has
an impact on its duration and eventually on the overall construction cost. A more
complex project requires more time and, thus, incurs a greater cost. Similarly, the
size of a project also has a great impact on its cost. If the size of a project (calculated
in terms of square feet or meters) increases, the amount of labor that needs to be
employed to get the work done also increases, which eventually adds to the cost of
the project [65,93,94].

2. Clear specification: A clear and detailed specification can prevent any information from
being missed, thus improving the cost and duration prediction accuracy.

3. Prior experience of the contractor and staff for cost estimation: An experienced contractor
and an experienced team are very crucial for cost estimation.

4. Equipment requirements: The choice of equipment is very crucial for governing the cost
and duration of the project. Any later change in the list of equipment due to factors
such as unavailability or poor performance can affect the overall cost and duration of
the project.

5. Clear scope definition: A clear definition of scope is critical to focus on the client’s
specifications and requirements. This allows deciding the correct project team to
manage the expense and length of the project. The project team and estimators
should, therefore, remove any uncertainty in the scope and make it transparent and
understandable.

6. Consideration of site constraints: The estimator should consider different site constraints
such as access to resources, storage, and services as these could incur extra charges
in certain scenarios in comparison to the original cost estimate. The site is critical to



Sensors 2021, 21, 463 29 of 44

the project; thus, its constraints should be fully analyzed for cost elements which are
unique with the greatest impact on the estimate of costs.

7. Availability of material: When making the cost and duration estimate, the estimator
should check for the availability of material to be used in the project. Unavailability of
material during the project can force the contractor to purchase from another supplier,
which can add to the project costs that were not included in the initial estimate, while
also impacting the duration of the project.

8. Availability of and consultation with previous similar bids: The estimator should consider
previous similar bids and should try to identify the necessary activities along with
their prices before making the cost estimation of a project.

9. Change in currency exchange rate: Fluctuations in the currency exchange rate can
sometimes affect the cost of the project and lead to the issue of cost overrun.

10. Number of competitors: According to various studies [91,95–99], it was observed that
increases in the level of competition lead to excessive cost overrun. The number of
competitors can be computed as the total number of bidders who file their bid for a
project. Bidders often quote unrealistic values for a project in order to achieve the
lowest bid for the project, leading to cost overrun during the project at later stages.

11. Type of client: Since each construction project has its own ideas, tasks, and goals
in accordance with the client, the specifications of every contract and the bidding
behavior are majorly influenced by the type of client. There exist different types
of client such as the government, large developers, medium/small-scale retailing
organizations, large-scale commercial organizations, and other public- and private-
sector clients [65,100].

12. Financial status of the contractor and owner: Construction work requires high daily
expenses, and, when payments are overdue, most contractors are unable to meet these
expenses. Due to delays in payments by the client, work progress can be slowed owing
to insufficient cash flow to cover the contractor’s construction expenses. This problem
is particularly serious for contractors who are not economically viable [96,101,102].

13. Frequent changes in design specification: Frequent changes in the design specification
of the project as per the demand of the client and/or designer usually adds new
modules during construction, leading to wastage of time and material and subsequent
cost overrun.

14. Material costs and their fluctuation: Correct and prior selection of material in terms of its
cost has a huge impact on the cost of the project; thus, the choice of the material should
be made wisely considering the cost, availability, ease of use, and performance factors.
Thus, any optimal method employed for material selection will reduce wastage and
improve the project cost. Similarly, fluctuation in prices after bid approval can lead
to cost overrun of the project. This may be due to monopoly, supply and demand,
inflation, and political scenario [96,103,104].

15. Awarding the contract to the lowest bidder: Owners generally grant project contracts to
the lowest bidders; however, these are typically poorly skilled contractors who are
tight on funds. This leads to poor results and delays in completing the job, thereby
increasing the overall cost and duration of the project. Pre-qualification criteria and
policies followed when granting the project need to be strengthened to prevent this
problem. This can also lead to cost overrun [96,105].

5.1. Crucial Parameters Affecting Estimation of Soil Shear Strength in a Construction Project

1. Clay content: Clay is an important geotechnical engineering material and comes
under the category of fine-grained soil. Clay generally has numerous issues such as a
high level of volumetric changes, high compressibility, and low strength. Thus, clay
needs to be improved before actually using it for the construction of roads, dams,
waste landfills, and slurry walls, etc. Enhanced gradation, reduction in plasticity
and swelling capacity, and increased strength and workability typically enhance
clay stability [106]. The content of clay in the soil affects its plasticity and, thus,
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reduces its shear strength [71,107]. Clay content can be mathematically calculated as
follows [108]:

ClayContent =
m0.005

m
, (1)

where m is the mass of the soil sample, and m0.005 is the mass of soil particles falling
through the 0.005 mm sieve.

2. Plastic limit: The plastic limit also has an impact on the soil shear strength. It is
defined as the percentage of water and the moisture content at which the soil starts
to crumble and change from a semisolid state to a plastic state [109]. An increase in
plastic limit causes a decrease in soil shear strength [71,107]. The plastic limit can be
mathematically calculated as follows:

PlasticLimit% =
massplastic

mass o f particles in sample
× 100, (2)

where massplastic is the mass of water content in the sample at which the soil starts to
change from a solid to plastic state.

3. Moisture content: The moisture content of soil can be defined as the ratio of the
amount of water held in the soil to that in dry soil [110]. The mass of water can be
computed as the difference before and after drying the soil. Moisture content has an
impact on the soil shear strength, whereby a greater moisture content leads to lower
cohesion between the soil particles and, thus, a weaker soil.

MoistureContent% =
mass o f water in soil

mass o f particles in sample
× 100. (3)

4. Specific gravity: The specific gravity of a soil is defined as the ratio of its particle
density to the density of its water content. Soils with a higher specific gravity have a
high shear strength as heavy particles are present in the soil, thus leading to compact
and strong structures [111]. This parameter can be calculated using the following
mathematical equation:

Speci f icGravity =
density o f soil particles

density o f water
. (4)

5. Liquid limit: The liquid limit is defined as the moisture level at which the soil’s
state begins to change from plastic to liquid [112]. The soil shear strength decreases
with an increase in the liquid limit [71,107]. It can be calculated using the following
mathematical equation:

Liquid Limit =
mliquid

mass o f soil particles
× 100, (5)

where mliquid is the mass of water in the soil at which its state begins to change from
plastic to liquid.

6. Silt percentage: Silt is medium in size and has a smooth texture. This parameter refers
to the amount of silt in the considered soil sample.

7. Sand percentage: Sand, silt, and clay are types of soil, and the difference lies in their
size. Sand is the largest type and feels gritty, whereas silt is of medium size with a
smooth texture, and clay has the smallest particles and is sticky in nature [113]. Sand
percentage refers to the sand content in the sample soil.

8. Plastic index: The plastic index is an indicator of the soil’s plasticity, defined as the
water content at which the soil shows plastic properties. The plastic index is calculated
as the difference between the liquid limit and the plastic limit. Soil having a high
plastic index tends to be clay, while soil with a low plastic index tends to be silt. A
plastic index of 0 indicates the presence of very little or no silt or clay. Thus, the
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plastic index basically allows determining the type of soil and the degree of cohesion
it exhibits.

Plastic Index = Liquid Limit− Plastic Limit. (6)

9. Liquid index: This is the ratio of the difference between a given soil’s natural moisture
content and the plastic limit to the difference between the liquid limit and the plastic
limit.

Liquid Index =
Soil′s Moisture Content− Plastic Limit

Liquid Limit− Plastic Limit
. (7)

10. Dry density: Dry soil density reflects the ratio of total dry soil mass to total soil
volume. Dry density is correlated with the degree of compaction of the soil surface. A
high degree of compaction denotes a high dry density of the soil.

Dry Density = Wet Density− Moisture Content. (8)

Figure 10 and Table 5 list various commonly used input parameters for the estimation
of soil shear strength, along with their usage frequency in the existing literature. It can
be seen that input parameters such as the percentage of clay, plastic index, liquid limit,
percentage of sand in soil, silt percentage, and dry density are the most frequently used
and crucial parameters in deciding the soil shear strength.

Table 5. List of commonly used input parameters for deciding the strength of a clay/soil.

Input Parameter Usage Frequency Reference

Percentage of clay 9 [64,66–69,71,73,75,76]

Plastic index 9 [64,66–69,73–76]

Liquid limit 7 [64,66,68,69,72,74,76]

Sand percentage 6 [66,67,72,73,75,76]

Plastic limit 5 [66,71–73,76]

Wet density of soil 4 [64,66,73,75]

Silt percentage 4 [64,67,75,76]

Dry density 4 [64,67,73,75]

Specific gravity 3 [66,71,74]

Gravel percentage 3 [64,67,76]

Sample depth 2 [66,73]

Percentage of loam 2 [66,73]

Liquid index 2 [66,73]

Void ratio 2 [71,73]

Moisture content 2 [71,73]

Soil bulk density 2 [72,75]

Shearing rate 1 [72]

Fine content 1 [72]

Coarse content 1 [72]
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Figure 10. Usage frequency of input parameters for soil shear strength.

5.2. Crucial Input Parameters Affecting Cost Prediction in a Construction Project

By consulting engineers and experts, the authors in [114] came up with 12 sets of
input cost variables, which are believed to be crucial in the preliminary cost prediction of a
highway construction project, especially in the case of the Ethiopian highway construction
industry. These variables are listed below.

• Project type;
• Project complexity;
• Project location;
• Project scope;
• Project size;
• Site topology;
• Bridge type;
• No. of bridges;
• Existence of ground water;
• Soil type;
• Inflation rate;
• Project duration.

An exhaustive list of input parameters for project cost prediction is given in Table 6,
along with their frequency of usage in the literature. A graphical depiction is shown in
Figure 11. According to the analysis, it was observed that parameters such as project
duration, type of project (e.g., bridge, highway, or other), size, and geographical location
are the input parameters widely used by researchers for the prediction of project cost.
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Table 6. List of input parameters deciding the construction cost of a road project.

Input Parameter Usage Frequency Reference

Duration of project 5 [59,78,83,84,114]

Project type subclassified as (i) bridge, (ii) highway,
and (iii) others 4 [59,78,80,114]

Project size in km 3 [78,83,114]

Geographical complexity 3 [83,84,114]

Earthworks 2 [80,81]

Drainage works 2 [80,81]

Traffic signalization works 2 [80,81]

Location 2 [78,114]

Water body (yes or no) 2 [78,114]

Soil condition 2 [78,114]

Road length 2 [59,83]

Road width 2 [59,83]

Bridge type (concrete, steel, or pre-stressed concrete) 2 [83,114]

No. of bridges 2 [83,114]

Project scope 2 [59,114]

Planned construction cost 2 [59,84]

Amount of crushed stone 1 [80]

Number of curbs 1 [80]

Amount of asphalt base layer 1 [80]

Amount of asphalt surface layer 1 [80]

Preparation works 1 [80]

Work realization zone 1 [80]

Construction season, i.e., winter, summer, or fall 1 [78]

Capacity (e.g., 2 lanes or 2 lanes divided) 1 [78]

Year 1 [78]

Site clearance 1 [81]

Sub-base works 1 [81]

Street lighting in urban areas 1 [81]

Toll plaza 1 [81]

Flyovers, robs, and overpasses 1 [81]

VUPs, PUPs, and return walls 1 [81]

Junctions and curbs 1 [81]

Major and minor bridges 1 [81]

Bituminous works 1 [81]

Culverts 1 [81]

Weather condition 1 [84]

Urban area indicator 1 [83]

Actual construction cost 1 [59]

Traffic volume 1 [84]

Site topology 1 [114]

Inflation rate 1 [114]



Sensors 2021, 21, 463 34 of 44

Sensors 2021, 21, x FOR PEER REVIEW  34 of 43 
 

 

Road width  2  [59,83] 

Bridge type (concrete, steel, or pre‐stressed concrete)  2  [83,114] 

No. of bridges  2  [83,114] 

Project scope  2  [59,114] 

Planned construction cost  2  [59,84] 

Amount of crushed stone  1  [80] 

Number of curbs    1  [80] 

Amount of asphalt base layer    1  [80] 

Amount of asphalt surface layer    1  [80] 

Preparation works    1  [80] 

Work realization zone  1  [80] 

Construction season, i.e., winter, summer, or fall  1  [78] 

Capacity (e.g., 2 lanes or 2 lanes divided)  1  [78] 

Year  1  [78] 

Site clearance  1  [81] 

Sub‐base works  1  [81] 

Street lighting in urban areas  1  [81] 

Toll plaza  1  [81] 

Flyovers, robs, and overpasses  1  [81] 

VUPs, PUPs, and return walls  1  [81] 

Junctions and curbs  1  [81] 

Major and minor bridges  1  [81] 

Bituminous works  1  [81] 

Culverts  1  [81] 

     

Weather condition  1  [84] 

Urban area indicator  1  [83] 

Actual construction cost  1  [59] 

Traffic volume  1  [84] 

Site topology  1  [114] 

Inflation rate  1  [114] 

 
0 1 2 3 4 5 6

Amount of crushed stone

Amount of asphalt surface layer

Drainage works

Project Size in Km

Location

Water Body (yes or no)

Site Clearance

Toll Plaza

Junctions and Kerbs

Culverts

Road Width

No. of bridges

Urban Area Indicator

Actual Construction Cost

Inflation Rate

Usage Frequency

Figure 11. Usage frequency of input parameters for construction cost prediction.

5.3. Crucial Input Parameters Affecting Cost Prediction in Maintenance of a Building

The input parameters that can be used for the prediction of costs involved in building
maintenance can be categorized as initial input costs and base costs. A list of useful
parameters for deciding the maintenance cost of an existing building is shown in Table 7.
Various parameters contributing to the initial input costs are as follows:

1. No. of floors: This is the total number of floors of a building in a construction site that
requires maintenance. A greater number of floors leads to a higher maintenance cost.

2. Floor height: The floor height is another crucial parameter for computing the cost
required for project maintenance.

3. Total building area: This is another important parameter with a huge impact on
deciding the maintenance and construction cost of a building. It is calculated as the
sum of the floor area of all floors in all buildings on a site.

4. Year of build: The year the structure was constructed (i.e., how old the constructed
building or project is) can be used to determine the level of maintenance required for
that structure. Older buildings or structures require additional effort, labor, material,
and cost in comparison to newly constructed projects.

5. Structure type: The structure type can be categorized as steel-framed wall or concrete-
bearing wall.

6. Envelope type: The building envelope is a complicated yet integral entity and com-
prises all the exterior components of a building, including its roof, walls, below-grade
waterproofing, windows, and skylights. The building envelope must be correctly
engineered, constructed, and maintained to avoid the absorption of water and air
through the envelope and to restrict condensation.

Parameters categorized as base costs include equipment costs, contractor fees, ar-
chitecture fees, and furnishing costs. They can vary from one geographical location to
another. The initial cost and the base cost define the total cost required for a maintenance-
related project.
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Table 7. List of input parameters deciding the maintenance cost of a building.

Input Parameter Reference

No. of floors (ground and underground) [115,116]

Floor height [115]

Total building area [115,116]

Year of built [115]

Structure type [115,116]

Envelope type [115]

Building type (flat, tower, both) [116]

No. of elevators [116]

Roof type [116]

Type of public area (hall, corridor) [116]

No. of pilotis [116]

Table 7 lists the commonly used input parameters when deciding the maintenance
cost of a building.

5.4. Discussion

According to the analysis drawn from the literature review with a focus on the
prediction of soil shear strength and pre-project cost and duration using AI techniques,
it was observed that most authors used performance metrics such as RMSE, correlation
coefficient, MAPE, and MAE for validating the efficiency of their proposed AI-based
prediction models. A complete list of performance metrics along with their usage frequency
is shown in Table 8 and Figure 12.

Table 8. Most commonly used performance metrics for deciding the soil shear strength and pre-
project cost and duration.

Performance
Metric Used Usage Frequency Reference

RMSE 10 [66–69,71–76]

Correlation coefficient (R) 9 [59,67–69,71,74,75,82,85]

MAPE 8 [59,66,79–85]

MAE 6 [68,69,71,73,74,76]

Coefficient of determination (R2) 3 [66,72,73]

VAF 2 [66,76]

AAE 2 [68,69]

Nash–Sutcliffe coefficient of efficiency 1 [68]

CRM 1 [72]

Cohesion equation 1 [74]
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Figure 12. Commonly used performance metrics in the prediction of soil shear strength and project cost.

Furthermore, according to the usage frequency of various AI-based models, it was
found that ANN topped the list for the prediction of soil shear strength and pre-project cost
and duration, followed by regression- and SVM-based models. A complete list of AI-based
models used by various articles on the basis of their usage frequency is shown in Table 9
and Figure 13.

Table 9. Most commonly used AI techniques for predicting the soil shear strength and pre-project
cost and duration.

AI Technique Used Usage Frequency Reference

ANN 16 [59,67,69,72–76,78–85]

Regression 5 [67,76,79,83]

SVM 3 [69,71,80]

Genetic algorithm 2 [78,79]

LSSVM 1 [66]

CSO 1 [66]

PNN 1 [64]

FNN 1 [68]

Dragon fly Algorithm 1 [73]

Whale optimization Algorithm 1 [73]

Invasive weed optimization 1 [73]

CBR 1 [79]

RBFNN 1 [59]

GRNN 1 [59]

MLP 1 [59]
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6. Challenges in the Use of AI in Construction-Related Activities

In this section, various challenges that can act as barriers in the performance of AI for
the estimation of soil shear strength and initial project cost, along with the limitations found
in existing work, are presented. These challenges need to be considered and addressed for
improving the overall performance of prediction systems in geoscience and construction
applications.

• Availability of the same parameters in all projects: The parametric cost prediction of
projects in the early stages has some serious issues and challenges which require
consideration. The first challenge is the nonavailability and applicability of the same
cost estimation parameters in all projects. Some parameters which are marked as
crucial in one project for the cost modeling and training of the prediction framework
may not be applicable or available in other projects. Furthermore, these parameters
may vary with geographical area. Thus, the AI model is expected to adapt on its own
through a sensitivity analysis to generate the most accurate cost with fewest prediction
errors.

• Not much work on prediction of project duration: According to the literature review of
AI applications in construction-related projects, it was observed that not much work
has been done on the prediction and estimation of construction project duration, in
contrast to cost estimation. Moreover, most existing databases used by researchers
for estimating project duration failed to break the project down into specific work
activities, instead presenting the duration estimate of the whole project.

• Sensitivity analysis of the model: It is well known that, for an AI-based prediction model
to work, certain input parameters with a huge impact on the prediction need to
be included. However, certain crucial input parameters may not be present; thus,
the model should be made sensitive enough such that the absence of certain input
parameters does not affect its prediction result.

• Standard validation methods: There should be a standard validation method for evaluat-
ing the performance and accuracy of cost estimation and soil shear strength calcula-
tions. No uniformity was observed in the choice of performance metrics by researchers
in the literature. As such, standard validation metrics for measuring the performance
of AI-based prediction models should be developed such that their performance can
be computed at a similar level.

• Standard input parameters for estimation: According to the survey conducted, it was
observed that different input parameters were used by different researchers in their
work for shear strength estimation and pre-construction project cost estimation. It is
well known that very limited prior information is available during the estimation of
these factors. However, there should be a list of some standard input parameters that
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are believed to be crucial for the prediction of the abovementioned applications, along
with their importance, allowing potential replacements for unavailable parameters.

• Lack of proper scientific justification: It was observed that, in some studies, there was a
lack of proper scientific justification for the results obtained after the application of AI
models. Moreover, details on features with the greatest and lowest contribution to the
result were found to be missing.

• Handling of missing data: Missing data were often not properly managed, thus necessi-
tating clean databases.

• Small datasets for model training: It is well known that AI models are trained using
existing databases. For an AI-based model to make correct predictions, there must
be ahigh-quality dataset covering all possible cases of the problem for which it was
trained. However, it was observed that, in most studies, the size of the database was
not adequate.

• Cost and duration overrun: Cost overrun is one of the major challenges faced by construc-
tion projects due to the various factors mentioned in Section 5. AI-based prediction
models can be efficient for pre-project cost and duration estimations; however, highly
dynamic factors such as geolocation, climatic changes, and natural disasters can
hugely affect these prediction models. Thus, it is very much required to train the AI
models using datasets from that specific location only.

• Issues of AI-based models: AI models suffer from various issues such as overfitting,
underfitting, hyperparameter selection, and optimization issues. Therefore, in order
to deal with such issues and obtain the most accurate results, multiple cost prediction
models using different AI techniques are required to be developed and considered,
such that the prediction results of each are compared to obtain the best model with
the most accurate result for the chosen scenario.

• Factors affecting the construction project cost and duration differ from location to location:
It is well known that parameters for project cost and duration estimation differ from
location to location, e.g., the cost of labor and materials. Thus, a model trained with
a dataset of past projects from a country such as Norway may lead to cost overrun
and misquotation in another country such as the United Arab Emirates. Thus, such
challenges need to be addressed.

7. Conclusions

In this study, an attempt was made to highlight the capability of AI in the field of
geotechnical and civil engineering. AI has already revolutionized our day-to-day life,
and its applicability can easily be seen in various important sectors such as healthcare,
robotics, defense, intelligent transportation systems (ITS), and agriculture, due to its ability
to solve complex problems with great performance and efficiency. AI can also be used for
making accurate and quick predictions of cost and duration in various construction-related
applications through the use of various inputs. This prior information is usually limited in
nature; however, pre-project cost and duration estimations play a very important role for
both bidders and clients in construction tasks. This can greatly help in making the best and
most genuine bid for a project after including the profit margin, preventing the common
issue of cost overrun. Similarly, the estimation of soil shear strength before construction is
very crucial for determining its capability to withstand high external forces such as floods
and earthquakes. Accordingly, in this article, the focus was laid on the use of various
powerful AI models for the estimation and prediction of these two important applications
of geotechnical engineering.

Various existing research articles related to the use of AI for the prediction of soil shear
strength and pre-project cost and duration were studied, and various input pre-project
parameters were enumerated. According to the survey conducted, it was found that,
among the various AI models and techniques, ANN was the most used model followed by
regression and SVM. This is due to ANN’s ability to provide a generalized optimal solution
with high accuracy and in less time; they have huge support and can be implemented easily.
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In the performance evaluation of various AI models in the prediction of soil shear strength
and pre-project cost and duration, metrics such as RMSE, correlation coefficient (R), MAPE,
MAE, coefficient of determination (R2), VAF, and AAE were the most used metrics.

It is well known that the knowledge of pre-project parameters is limited; however,
they play a very crucial role in the accurate estimation of the abovementioned applications.
Thus, according to the literature review, it was found that, for the estimation of soil shear
strength, input parameters such as the percentage of clay, plastic index, liquid limit, sand
percentage, plastic limit, wet density of the soil, silt percentage, and dry density are crucial.
On the other hand, the project duration, project type (bridge, highway, or others), project
size, location, geographical complexity, road length and width, soil condition, etc. are
crucial input parameters greatly affecting the project cost.

Various factors, both internal and external, that can lead to issues such as cost overrun,
were also listed in this article. A sensitivity analysis was performed by several authors to
see how an AI model would perform if one or more input parameters were not available.
An AI model should be robust and adaptive enough to work without greatly affecting its
performance, even in the absence of some input parameters.

Lastly, various challenges and issues facing the prediction of these geotechnical appli-
cations, which can affect the performance of these AI-based models, were presented. This
article can serve to motivate and assist researchers and geotechnical engineers using pow-
erful AI technology in various applications of civil and geotechnical engineering. Future
aspects of this study can be to explore more applications of AI in civil and geotechnical
engineering, as well as in construction applications, to enumerate real-time challenges.
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AAE Absolute average error
AI Artificial intelligence
ANN Artificial neural network
BRNN Bayesian regularization neural network
CBR Case-based reasoning
CoD Coefficient of determination
CPWD Central Public Work Department
CRM Coefficient of residual mass
CSO Cuckoo search optimization
DENN Differential evolution neural network
DL Deep learning
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FFNN Feed-forward neural network
FNN Functional neural network
GA Genetic algorithm
IoT Internet of things
KDA Kernel discriminant analysis
LSSVM Least square support vector machine
LSZ Landslide susceptibility zonation
MAE Maximum average error
MAPE Mean absolute percentage error
ML Machine learning
MLP Multilayer perceptron
MRA Multiple regression analysis
PNN Probabilistic neural network
RBFNN Radial basis function neural network
RMSE Root-mean-square error
RNN Recurrent neural network
SVM Support vector machine
VAF Variance accounted for
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46. Sušanj, I.; Ožanić, N.; Marović, I. Methodology for Developing Hydrological Models Based on an Artificial Neural Network to
Establish an Early Warning System in Small Catchments. Adv. Meteorol. 2016, 2016, 1–14. [CrossRef]

47. Anitescu, C.; Atroshchenko, E.; Alajlan, N.; Rabczuk, T. Artificial Neural Network Methods for the Solution of Second Order
Boundary Value Problems. Comput. Mater. Contin. 2019, 59, 345–359. [CrossRef]

48. Hung, C.W.; Mao, W.L.; Huang, H.Y. Modified PSO Algorithm on Recurrent Fuzzy Neural Network for System Identification.
Intell. Autom. Soft Comput. 2019, 25, 329–341.

http://doi.org/10.32604/cmc.2019.05990
http://doi.org/10.32604/cmc.2019.06207
http://doi.org/10.32604/cmc.2019.08269
http://doi.org/10.1155/2012/145974
http://doi.org/10.1007/s00366-019-00753-w
http://doi.org/10.1007/s00366-020-01076-x
http://doi.org/10.1007/s00366-020-01137-1
http://doi.org/10.1007/s00366-020-01059-y
http://doi.org/10.1007/s00366-017-0547-5
http://doi.org/10.1007/s00366-016-0451-4
http://doi.org/10.32604/cmc.2019.03708
http://doi.org/10.32604/cmc.2019.04589
http://doi.org/10.32604/cmc.2019.05882
http://doi.org/10.32604/cmc.2019.06209
http://doi.org/10.32604/cmc.2019.06144
http://doi.org/10.31209/2018.100000034
http://doi.org/10.32604/cmc.2019.07948
http://doi.org/10.1088/1755-1315/189/2/022055
http://doi.org/10.1016/j.compgeo.2007.06.001
http://doi.org/10.1142/S0129065707000890
http://doi.org/10.1016/j.eswa.2010.12.076
http://doi.org/10.1016/j.scient.2011.03.007
http://doi.org/10.1155/2017/4191789
http://doi.org/10.1155/2016/4615903
http://doi.org/10.1155/2016/9125219
http://doi.org/10.32604/cmc.2019.06641


Sensors 2021, 21, 463 42 of 44

49. Li, X.; Zhu, Q.; Meng, Q.; You, C.; Zhu, M.; Hu, Y.; Huang, Y.; Wu, H.; Zheng, D. Researching the Link between the Geometric and
Renyi Discord for Special Canonical Initial States Based on Neural Network Method. Comput. Mater. Contin. 2019, 60, 1087–1095.
[CrossRef]

50. Tan, L.; Li, C.; Xia, J.; Cao, J. Application of self-Organizing Feature Map Neural Network Based on K-Means Clustering in
Network Intrusion Detection. Comput. Mater. Contin. 2019, 61, 275–288.

51. Shen, C.; Chen, Y.; Chen, B.; Xie, J. A Compensation Controller Based on a Nonlinear Wavelet Neural Network for Continuous
Material Processing Operations. Comput. Mater. Contin. 2019, 61, 379–397. [CrossRef]

52. Chen, C.-H.; Chen, C.-Y.; Liu, N.-Y. Hardware Design of Codebook-Based Moving Object Detecting Method for Dynamic Gesture
Recognition. Intell. Automat. Soft Comput. 2019, 25, 375–384. [CrossRef]

53. Liu, P.; Liu, X.; Luo, Y.; Du, Y.; Fan, Y.; Feng, H.-M. An Enhanced Exploitation Artificial Bee Colony Algorithm in Automatic
Functional Approximations. Intell. Automat. Soft Comput. 2019, 25, 385–394. [CrossRef]

54. Wu, L.; Liu, Q.; Lou, P. Image Classification Using Optimized MKL for sSPM. Intell. Automat. Soft Comput. 2019, 25, 249–257.
[CrossRef]

55. Dargan, S.; Kumar, M.; Ayyagari, M.R.; Kumar, G. A Survey of Deep Learning and Its Applications: A New Paradigm to Machine
Learning. Arch. Comput. Methods Eng. 2019, 27, 1071–1092. [CrossRef]

56. Marugán, A.P.; Márquez, F.P.G.; Perez, J.M.P.; Ruiz-Hernández, D. A Survey of Artificial Neural Network in Wind Energy Systems.
Appl. Energy 2018, 228, 1822–1836. [CrossRef]

57. Asteris, P.G.; Roussis, P.C.; Douvika, M.G. Feed-Forward Neural Network Prediction of the Mechanical Properties of Sandcrete
Materials. Sensors 2017, 17, 1344. [CrossRef] [PubMed]

58. Zhang, J.; Wang, X.W. The Application of Feed-Forward Neural Network for the X-ray Image Fusion. J. Phys. Conf. Ser. 2011, 312,
062005.
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