
sensors

Article

FGFF Descriptor and Modified Hu Moment-Based Hand
Gesture Recognition

Beiwei Zhang 1,* , Yudong Zhang 2 , Jinliang Liu 1 and Bin Wang 1

����������
�������

Citation: Zhang, B.; Zhang, Y.; Liu, J.;

Wang, B. FGFF Descriptor and

Modified Hu Moment-Based Hand

Gesture Recognition. Sensors 2021, 21,

6525. https://doi.org/10.3390/

s21196525

Academic Editor: Junseop Lee

Received: 20 August 2021

Accepted: 28 September 2021

Published: 29 September 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 School of Information Engineering, Nanjing University of Finance and Economics, Nanjing 210023, China;
liujinliang@vip.163.com (J.L.); wangbin@nufe.edu.cn (B.W.)

2 School of Computing and Mathematical Sciences, University of Leicester, Leicester LE1 7RH, UK;
yudongzhang@ieee.org

* Correspondence: zhangbeiwei@nufe.edu.cn

Abstract: Gesture recognition has been studied for decades and still remains an open problem.
One important reason is that the features representing those gestures are not sufficient, which may
lead to poor performance and weak robustness. Therefore, this work aims at a comprehensive and
discriminative feature for hand gesture recognition. Here, a distinctive Fingertip Gradient orientation
with Finger Fourier (FGFF) descriptor and modified Hu moments are suggested on the platform of
a Kinect sensor. Firstly, two algorithms are designed to extract the fingertip-emphasized features,
including palm center, fingertips, and their gradient orientations, followed by the finger-emphasized
Fourier descriptor to construct the FGFF descriptors. Then, the modified Hu moment invariants with
much lower exponents are discussed to encode contour-emphasized structure in the hand region.
Finally, a weighted AdaBoost classifier is built based on finger-earth mover’s distance and SVM
models to realize the hand gesture recognition. Extensive experiments on a ten-gesture dataset were
carried out and compared the proposed algorithm with three benchmark methods to validate its
performance. Encouraging results were obtained considering recognition accuracy and efficiency.

Keywords: FGFF descriptor; Hu moment invariants; finger thickness; hand gesture recognition;
weighted AdaBoost classifier

1. Introduction

Hand gestures carry rich information and provide a natural yet important method for
different people to interact in their daily life. They have been used as a friendly interface
between humans and computer systems, which enables an intuitive and convenient human–
computer interaction, and have found many applications in natural human–computer
interaction, such as intelligent robot control, smart homing, virtual reality, computer games,
and some quietness-required environments. In [1], the authors explored the recognition
application of handwritten Arabic alphabets by tracking and modeling the motion of the
hand. To this end, recent years have witnessed an active research interest in the field of
hand gesture recognition and human action recognition.

Traditional vision-based recognition algorithms mainly utilize the information of color
or texture from 2D RGB camera, which is typically affected by external environments such
as illumination, skin color, and cluttered background. Their limitation is the loss of 3D
structure information, which obviously decreases their robustness and accuracy. In order
to improve the robustness and simplify the hand localization and segmentation, some
researchers suggested the use of a colored glove or black belt on the wrist of the gesturing
hand [2]. Furthermore, accelerometers, magnetic trackers, and data gloves are involved
in obtaining the three-dimensional information of gesture for easy image processing and
3D motion capturing at the granularity of the fingers. However, these strategies are only
suitable for handling some simple gestures. When the gesture becomes more complex, it
will obviously reduce the recognition accuracy. Furthermore, it impedes the invisibility of
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the interface for the users and brings increased inconvenience and can be cumbersome in
some cases in which many cables may be involved [3].

Thanks to the development of inexpensive depth cameras, e.g., the Kinect sensor, a
new and desirable method is provided to extract motion and visual information for human
activities. Instead of wearing data gloves or any other auxiliary equipment, the gesturing
hand can be detected and segmented efficiently with the Kinect sensor. Therefore, more
and more research has paid attention to this platform in recent years, and the authors
can be referred to [4,5] for a comprehensive review work. Basically, all of the existing
algorithms can be classified into two categories, i.e., skeleton-based algorithms and depth-
based algorithms, depending on the types of input data. The former uses 3D coordinates
of the joints to represent the model of full human body. The method proposed by Thanh
and Chen [6] falls into this type, which extracted the discriminative patterns as local
features to classify skeleton sequences in human action recognition and the key frames
were constructed based on skeleton histogram. Many other works tried to study the spatial-
temporal descriptions from Kinect skeleton data, e.g., the angular representation [7] and
skeletal shape trajectories [8]. As the skeleton information carries little details and is only
suitable for human body tracking, it is difficult to detect and segment a small object, such
as a human hand, which occupies a very small portion of the image with more complex
articulations [9]. In practice, this type of work also suffers from contour distortions since
little noise or slight variations in the contour would severely perturb the topology of its
skeletal representation.

On the other hand, depth-based algorithms employ depth information for action
recognition which shows its advantages in many situations. Joongrock and Sunjin [10]
propose an adaptive local binary pattern from depth images for hand tracking. There are
some researchers apply the dynamic time warping algorithm for hand gesture recognition
with the extracted finger lets, stroke lets, or other characteristics from its depth informa-
tion [11]. Their work shows that a concise and effective feature descriptor is critical for the
recognition performance. Kviatkovsky [12] and Chang [13] suggest the use of covariance
descriptors to encode the statistics of temporal shape and motion changes in a low dimen-
sional space with an efficient incremental update mechanism. Zhang and Yang et al. [14]
presented a low-cost descriptor via computing 3D histograms of textures from a sequence
of depth maps. In their work, the depth sequences were first projected onto three orthogo-
nal Cartesian plane to form three projected maps, then the sign-based, magnitude-based
and center-based descriptor salient information were extracted, respectively. Similarly in
Reza [15], the weighted depth motion map was proposed to extract the spatiotemporal
information by an accumulated weighted absolute difference of consecutive frames and the
histogram of gradient and local binary pattern were exploited for the feature descriptor.

Despite many algorithms and solutions in applying the Kinect for hand gesture and
action recognition, it still is an open problem in practical applications considering the
robustness, accuracy, and computational complexity. As the above-reviewed algorithms
cannot process nonlinear and high dimensional data, some researchers tried to solve this
problem via the recent advances in convolutional neural network [16–19]. The advantage of
the deep neural network lies in that it is able to automatically extract hierarchical features
to hold more abstract knowledge from video sequences and thus reduce the need for
feature engineering. However, it requires a long time to train and a huge amount of
labeled training data, which may not be available in some cases. For small human action
recognition datasets, the deep learning methods may not provide satisfactory performance.
The extracted features lack of specific physical meaning, thus it is difficult to analyze
their characteristics.

It is known that the hand gesture delivers its meaning by the movement of a hand.
Different hand gestures are mainly differentiated by the postures of the fingers. When
the fingers display different postures, their contour shapes can be differentiated clearly.
Therefore, many researchers focus on the extraction of various features [20–27]. Ren
et al. [23] employed time series curves to characterize the Euclidean distance between the
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hand contour and the palm center, where the starting point of the curve is not easy to
track without any auxiliaries. Huang and Yang in [24] suggested a multi-scale descriptor
including area of major zone, length of major segment, and central distance. In their
method, it is important to choose a proper scale number and a starting point to align
all points on the shape contour. Wang [25] constructed features with peak values and
valley values from the trend of slope difference distribution of the contour points. The
robustness and accuracy for extracting the peak and valley values are prone to be disturbed
by various noise. Multiple types of features such as the rotation of joints and fingertip
distances were proposed in [26], where the positions of 20 joint points were required to
extract from the depth map according to the characteristics of the hand model. Obviously,
their computational complexity is high and the extraction accuracy is not easy to control. In
practice, it is desired that the feature descriptor possesses the properties of scale, translation,
and rotation invariants [28,29]. For example, the contour of the hand region was extracted
with Moore neighbor algorithm and the convex hull by Graham scan algorithm, and then
the Hu moment invariants for hand gesture recognition were estimated in [28]. However,
this algorithm is sensitive to noise and the computational load is heavy.

Basically, the major problem in the surveyed methods lies in that the features represent-
ing those gestures are not sufficient, which leads to poor performance and weak robustness.
Therefore, this work aims at a comprehensive and discriminative feature for hand gesture
recognition. Here, a new framework for hand gesture recognition is proposed by combing
Fingertip Gradient orientation and Finger Fourier (FGFF) descriptor together with the
modified Hu moments using the depth information collected by a Kinect sensor, where the
former concentrates on the details of fingers and the latter encodes the structure of hand
contour. According to the characteristics of hand depth image, two efficient procedures
are suggested to segment the hand and extract fingers. Taking 10 types of hand gestures
representing the digital numbers from zero to nine as an example, a weighted AdaBoost
classifier is constructed based on the finger-earth mover’s distance (FEMD) method and
SVM model. Extensive experiments on a ten-gesture dataset collected in our lab were
carried out to validate the proposed algorithm. Compared with three benchmark methods,
our work achieves a better performance in terms of recognition accuracy, robustness and
computational complexity (a 96.6% mean accuracy on the challenging 10-gesture dataset
with average 0.05 s per frame).

The remainder paper is structured as follows. Two algorithms for the hand region
segmentation and finger extraction are discussed in Section 2. Section 3 elaborates the
FGFF descriptor and modified Hu moments. The weighted AdaBoost classifier for hand
gesture recognition is introduced in Section 4. Section 5 presents some experimental results
and analysis. Finally, this paper is concluded briefly in Section 6.

2. Hand Segmentation and Finger Extraction

This section firstly elaborates the technique for hand segmentation to obtain the
interior points (mHand) and contour points (mContour) of a hand, then suggests two
algorithms for extracting the palm center, fingers, and fingertips, denoted as mFingers and
mFingertips, respectively. The flowchart of the hand segmentation and finger extraction
from its depth image can be summarized in Figure 1.

Figure 1. The flowchart of the hand segmentation and finger extraction.
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2.1. Hand Region Segmentation

In order to effectively segment the hand region from its depth image, Ren et al. [23]
suggested wearing a black belt to highlight the boundaries between the hand and the wrist.
It is well known that the gray value of each pixel in the depth image represents the distance
between the point and the sensor. The smaller the value is, the closer the distance becomes,
and vice versa. Without loss of generality, it can be assumed that the hand is located in
the front of the body when performing the gesture and there are no obstacles between the
Kinect sensor and the performer. Therefore, the distance between the hand area and the
sensor is the closest in this scenario. Considering that there is a certain range of hand size
for general adults, this paper proposes a double-threshold-based region growing method to
realize the segmentation of hand region and enable a natural mode of interaction without
wearing any auxiliary object.

Firstly, the nearest point to the Kinect sensor denoted as Mmin, is searched in the depth
image. With Mmin as a seeding point, the eight-neighborhood region growing method is
iteratively performed. Here, we set three iterative conditions for the growing point as:
(1) this point has not been grown before; (2) its difference with the depth value of the
preceding point is less than the threshold value of Th1; (3) the difference with the average
value of the point set that has been grown is less than Th2. When the iteration process ends,
the proper hand region is obtained as

H =
{

Mx,y

∣∣∣dMmin < dMx,y < dMmin + dth

}
s.t. |area(H)− A0| < Ath (1)

where dMx,y and dMmin , respectively, denote the depth value of the point Mx,y and Mmin
in the depth image, while dth represents the depth range of the detected hand region
considering the general size of human hand. A0 and Ath denote the area of average hand
region and its range estimated from the training dataset who helps to remove the contam-
ination regions or fake hand regions from the depth image. The parameter Th1 is used
to keep consistency and smoothness in the ROI while Th2 decides whether oversegmen-
tation is involved or not. Their values are set empirically and used to ensure the local
and global consistency when growing the hand region. Our experimental results show
that some holes may exist when the value of Th1 is set too high or the value of Th2 is too
low. Oversegmentation will happen for a larger value of Th2, e.g., part of the wrist may
be included as the hand region if a larger Th2 is used. Satisfactory results are obtained
when Th1 ranges from 3 to 4 and Th2 ranges from 8 to 10. Figure 2 shows different effects
of various threshold values in the hand region segmentation. Here, Th1 and Th2 are,
respectively, set 5 and 7 in Figure 2b, while the empirical instructions are followed for the
thresholds in Figure 2c,d. Obviously, better results are obtained in the latter two cases. This
observation is critical where oversegmentation is needed to obtain part of the wrist as an
anchor point to regularize the local features in the next section.

Figure 2. Different effects of the good and bad threshold values in segmentation: (a) gives the depth
image while (b–d) show different segmentation results using different threshold values.

Compared with the traditional threshold-based segmentation, the advantage of this
mechanism is that the boundary of the hand region is relatively smooth and there are fewer
holes, as will be shown later. Therefore, it is easy for subsequent processing. A point is
deemed as the interior point if its 3 × 3 neighborhood is also in the hand region, otherwise
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it is the contour point. In this manner, the hand region H can be divided into interior point
set and contour point set, respectively, denoted by mHand and mContour.

2.2. Extraction of Palm Region

In general, the area of the palm as well as its roundness is larger than those of the
fingers for any hand gesture. Based on this observation, the palm region and its center can
be found mathematically as the largest inscribed circle in the hand region. Initially, the
palm center and the maximum radius of inscribed circle are assumed as M0 and R0. The
process for the solution can be summarized as Algorithm 1.

Algorithm 1 Calculating the center and maximum radius of the palm region

Input: Interior point set mHand and contour point set mContour
Output: The radius R0 and center of the palm center M0
Begin

Step1: Set R0 = 0 and M0 = [] initially.
Step2: For one point in mHand, compute its distances from all the points in mContour.

Step3: Find the minimum distance value, update it as R0 and the corresponding point as M0 if
it is larger than R0.

Step4: Go to Step2 and repeat until all the points in mHand are iterated.
Step5: Finally, the R0 and M0 are obtained as the radius of the inscribed circle of the palm

region and its center.
End

2.3. Fingertip Extraction

When performing a gesture, different meanings are conveyed by different finger
shapes and their relative positions, thus representing different digital gestures. It is obvious
that the fingertip is the point farthest from the palm center in the contour point set. With
this observation, the average distance between the palm center and those points in the
contour point set is used to limit the scope of the fingertip and finger extraction to reduce
the computational complexity, which means that those points within the average distance
will be ignored. Assuming that all the fingers and fingertips are, respectively, denoted as
mFingers and mFingertips, the proposed solution is briefly summarized as Algorithm 2.

Algorithm 2 Extraction of fingertips and fingers

Input: The palm center M0 and contour point set mContour
Output: The mFingertips and mFingers
Begin
Step1: Initialize the sets of candSet, mFingertips and mFingers;

Step2: Calculate the average distance Ravg from M0 to all the points in mContour;
Step3: Add those points to candSet, if their distances from M0 greater than or equal to

Ravg;
Step4: For each of the elements in candSet, compute its distance from M0. Then find the

one corresponding to the largest distance and move it to both mFingertips and mFingers, and
move all the rest points that are connected with it in the candSet to mFingers;

Step5: Go to Step4 and repeat until candSet is empty;
Step6: The fingertips and fingers are obtained in mFingertips and mFingers.

End

Figure 3 shows the original depth image and its segmented hand region. The palm
center and inscribed circle extracted with the first algorithm are referred to the red dot
and circle in the right figure. For comparison, the central moment of the hand region is
estimated and denoted as black cross. Obviously, the extracted palm center has a higher
quality than the central moment. The blue circle shows the average distance between the
palm center and the contour point set. From this figure, it is observed that the fingertips,
fingers, and wrist of this hand gesture can be easily obtained with the second algorithm.
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Figure 3. The depth image (left) and extracted elements (right): palm center with a higher quality
denoted by RED point versus central moment of the hand by BLACK cross where the red and blue
circles, respectively, represent inscribed and averaging circles.

On the whole, it can be seen that the hand area, contour, palm center, and fingertips are
correctly extracted, and their boundaries are fairly smooth and graceful. It is worth to note
that the wrist should be extracted as one finger with the above algorithm and its remote
point as one fingertip since oversegmentation is involved, as discussed in Section 2.1. We
will show how to identify it next.

The wrist can be determined considering that the wrist visually has the largest thick-
ness compared with the fingers. Let the average circle of hand region be denoted as
mAvgcircles. Mathematically, the remote point in the wrist can be defined as

Mwr = {M|M ∈ mFingertips}
s.t. argmaxM1,M2∈mFingers∩mAvgcirclesdist(M1, M2)

(2)

where M1 and M2 are two elements in mFingers associated with M and dist(M1, M1)
represents their Euclidean distance. Once the wrist point is found, it can be used as a
benchmark for ordering the point sequences of the fingers since it is stationary for hand
gestures. Finally, the fingertips and their related fingers can be easily identified.

3. FGFF Descriptor and Hu Moments
3.1. FGFF Descriptor

The FGFF descriptor consists of fingertip-emphasized and finger-emphasized com-
ponents, i.e., the fingertip gradient orientations and finger Fourier descriptor. Let the
palm center M0 be

[
xp, yp, dp

]
with xp and yp as image coordinates and dp its depth value.

Similarly, the i-th fingertip in mFingertips can be expressed as M f i =
[

x f i, y f i, d f i

]
. The

gradient orientation can be constructed for each fingertip

FGi = (xi, yi, di)
T (3)

where xi = x f i−xp, yi = y f i−yp, and di = d f i−dp. The relative position is used here to
eliminate the differences from different performers and avoid the distortions of some
gestures. In Equation (3), the descriptor encodes the position and the depth value, as well
as the orientation information for each fingertip, which is invariant to translation, rotation,
and scale transformation with normalization.

On the other hand, the finger part associated with each fingertip is obviously connected,
which can be represented as a point sequence. Let s = {x(k), y(k)|k = 0, 1, 2, · · · , L} be the
i-th finger. In complex space, it is formulated as 1-D problem

s(k) = x(k) + jy(k) s.t. j2 = −1 (4)
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With 1-D discrete Fourier transform, the spectrum in frequency domain is obtained.
The left and right figures in Figure 4, respectively, give the point sequences of fingers and
distribution of FF descriptor. It is observed that its energy is mainly concentrated with
the lower frequencies and decreases rapidly with the increasing frequency. In this work,
we find that more than 80 percent of energy is carried by the first seventeen magnitudes.
Therefore, the Fourier descriptor denoted as FFi, is assigned, considering a small range of
lower frequencies. Finally, the FGFF descriptor for the finger can be constructed with FGi
and FFi.

Figure 4. The fingers and distribution of FF descriptor vs. frequencies.

3.2. Modified Hu Moments

The Hu moment is an important feature used to describe image shape based on
moment transform. The invariants of translation, rotation, and scale are preserved by
the operations of centralization and normalization of the Hu moments for continuous
functions. In gesture recognition, there are differences in action amplitude, hand size, and
relative positions with respect to the sensor among different performers. Therefore, Hu
moment invariants show unique advantages in such cases and can be used to encode the
contour of a whole hand. However, different from the continuous function, the hand region
is extracted as discrete data. We will first show that the Hu moments do not satisfy the
scale invariant and then provide our modification in what follows.

Supposing the performer executes the same hand gesture at two different positions
successively, the point coordinates on his hand in depth image will change from (x, y)
to (x′, y′). Let the scale factor be ρ, then x′ = ρx, y′ = ρy. According to the definition of
moment, we have

x′ − x′c = ρx−
∑x,y ρx f (x, y)

∑x,y f (x, y)
= ρ(x− xc) (5)

and similarly
y′ − y′c = ρ(y− yc) (6)

Then we get

µ′pq = ∑x,y

(
x′ − x′c

)p(y′ − y′c
)q f ′

(
x′ − y′

)
= ρp+qµpq (7)

According to the normalization formula of centralized moment, we obtain

∅′pq =
µ′pq

µ′r+1
00

= ρp+q∅pq (8)

where r = p+q
2 . It can be seen from the above formula that the normalized central moment

of discrete data is a function of the scale factor and the power of the moments. As a result,
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the Hu moment is no longer scale invariant. To eliminate the scale factor, a group of new
formula of Hu moments is suggested here:

a1 = lg

∣∣∣∣∣h1

h2
0

∣∣∣∣∣a2 = lg
∣∣∣∣ h2

h0h1

∣∣∣∣a3 = lg
∣∣∣∣ h3

h0h1

∣∣∣∣a4 = lg
∣∣∣∣ h4

h2h3

∣∣∣∣a5 = lg
∣∣∣∣ h5

h0h2

∣∣∣∣a6 = lg
∣∣∣∣h6

h4

∣∣∣∣ (9)

where h0, h1, · · · , h6 represent functions of ∅’
pq.

Compared with the forms of Hu moment with sixth power reported in the litera-
ture [28], the power degree in Formula (9) is much lower and hence has higher robustness
to noise. In this manner, a 6-D Hu moment descriptor denoted as Hu can be formulated for
each gesture from its depth image, which is also invariant to translation, rotation, and scale
transformation.

4. Weighted AdaBoost Classifier

As shown in the above section, the number of extracted local finger features may be
different when performing different types of hand gestures. Therefore, the finger-earth
mover’s distance (FEMD) method is used to estimate the similarity between two gesture
images with their FGFF descriptors. For the modified Hu moment invariant features, this
work employs a support vector machine to train and test those gesture images. Finally, the
recognition results of these two methods are merged together with the weighted AdaBoost
Classifier to perform the gesture recognition algorithm.

4.1. The Finger-Earth Mover’s Distance

The finger-earth mover’s distance method originated from the classical transportation
problem and updated by Ren et al. [23] as FEMD. Let Rc refer to the FGFF descriptor
extracted from an arbitrary hand gesture depth image with cth category in the training
dataset. Let T represent the testing hand gesture, whose category can be determined by the
category of the training sample with the highest similarity, which is defined as:

c∗ = argmincmin{FEMD(Rc, T)|Rc is a sample in category c} (10)

where the parameter c ranges over all categories and c∗ denotes the category corresponding
the training sample with the highest similarity.

Suppose there are m fingers in the mFingers set for a training sample and its lo-
cal feature descriptor can be represented as Rc = {(r1, wr1), · · · , (rm, wrm)}, where ri
and wri , respectively, denotes the i-th finger and its weight factor. In the same man-
ner, the feature descriptor for a testing hand gesture with n fingertips is denoted as
T = {(t1, wt1), · · · , (tn, wtn)}.

Let D =
[
dij
]

be the distance matrix between Rc and T, in which its element can be
computed as dij = ri − tj2. Their FEMD distance is defined as the least work moving the
earth piles from Rc to T plus the penalty on the empty hole that is not filled with earth

FEMD(Rc, T) = βEmove + (1− β)Eempty

=
β ∑m

i=1 ∑n
j=1 dij fij+(1−β)

∣∣∣∑m
i=1 wri−∑n

j=1 wtj

∣∣∣
∑m

i=1 ∑n
j=1 fij

(11)

where the element fij in matrix F represents the workload of transporting ri to tj and
∑m

i=1 ∑n
j=1 fij as the normalization factor. The parameter β modulates the importance

between Emove and Eempty. The sensitivity of this parameter to the recognition algorithm
had been discussed in [23] and showed that the best results could be obtained when β falls
in the range of 0.3 and 0.6. As the FEMD depends on the matrix F, its objective function
and constrains is given as what follows



Sensors 2021, 21, 6525 9 of 16

F = argminWORK(R, T, F) = argmin
m

∑
i=1

n

∑
j=1

dij fijs.t.



fij ≥ 0 i = 1, · · · , m; j = 1, · · · , n
m
∑

i=1
wri ≤ wtj

n
∑

i=1
wtj ≤ wri

m
∑

i=1

n
∑

j=1
fij = min

(
m
∑

i=1
wri ,

n
∑

i=1
wtj

) (12)

In this manner, the finger-earth mover’s distances of the testing gesture with all the
training samples are obtained. According to Formula (10), the category of the gesture is
assigned to that of the training sample corresponding to the minimum finger-earth mover’s
distance. It should be noted that the proposed FGFF descriptor used here is completed as it
encodes the relative position information of one fingertip, palm center, and wrist point, as
well as the structure of the finger.

4.2. Support Vector Machine

Support vector machine (SVM) is a generalized linear classifier based on supervised
learning for binary classification on the testing data. For multi-class problems, there are
various deformations using SVM, e.g., one-to-one method, one-to-remainder method,
and binary-tree method. Among those, the one-to-one method has the characteristics
of high correct recognition rate, simplicity, and efficiency. Its basic idea is: Given an N-
class classification problem, firstly training N(N−1)

2 support vector machines, and then the
classification result of the testing data can be determined by voting principle with all the
SVMs. For the recognition of 10 kinds of digital hand gestures in this paper, the one-to-one
method is employed and hence a total of 45 support vector machines are trained, then
the classification results are statistically analyzed and fused with those from Section 4.1.
Finally, the category of the testing data could be determined.

4.3. Weighted AdaBoost Classifier (WAC)

The FGFF descriptor and modified Hu moment invariants are deemed as local detailed
features and global structural features extracted from the hand gesture depth images. The
finger-earth mover’s distance method and support vector machine model are used as the
base classifiers to recognize the hand gesture with those features. During training, the
performance of each of the classifiers can be obtained with the training set. Given one test
sample, say Ti, its category can be decided with the following weighted AdaBoost classifier

Label(Ti) = ∑ αjGj(Ti) (13)

where Gj ∈{FEMD method, SVM model} is the j-th basis classifier with the weighted factor

αj =
1
2

log
P
(
Gj(Ri) = Label(Ri)

)
1− P

(
Gj(Ri) = Label(Ri)

) (14)

As can be seen from the above equation, the weighted factor αj is an increasing
function of the recognition accuracy of a base classifier. When the recognition accuracy
is more than 50%, we have αj > 0. With the increasing accuracy, its relative role in the
AdaBoost classifier becomes more and more important. In this manner, we highlight
the excellent classifier in our algorithm. Our experiments also show that the accuracy
and stability will be strengthened by constructing the combination model with such an
addition mechanism.

5. Experiments and Analysis

This section presents our experimental results on the ten-gesture dataset collected in
our lab to validate the proposed hand gesture recognition algorithm. Some details and
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insights in the algorithm are discussed together with comparison with three benchmark
methods to demonstrate the improvement of our algorithm.

5.1. Experimental Dataset

Figure 5 shows the 10 kinds of hand gestures to be recognized in this work, from left
to right, respectively, representing the digital numbers from zero to nine. To collect their
depth images, ten students are invited to perform those gestures before the Kinect sensor
at about three different positions, say 80 cm, 120 cm and 150 cm considering the effective
range of the sensor. Their hands are placed in the front of their body for the ease of hand
region segmentation. Each kind of hand gestures is repeated 20 times by one person. In
this manner, the experimental dataset contains a total of 2000 samples.

Figure 5. The predefined hand gestures for numbers from zero to nine.

5.2. Hand Region Segmentation and Feature Extraction

As the depth value instead of color information is used in the hand region segmen-
tation, it is comparably easy to distinguish the hand gesture from its environment in the
depth image. Figure 6 shows the depth images of one group of gestures followed by
their hand regions segmented by the method suggested in Section 2.1. It can be observed
from these figures that the interior of the regions is relatively uniform, and its boundary
is very smooth. Only a very small empty hole is found in the region of gesture seven,
and few noisy branches are kept. Therefore, the suggested hand segmentation algorithm
works well.

Figure 6. One group of depth images and segmented hand region: the depth images given in the
first and third rows with corresponding hand in the second and fourth rows.

5.3. Invariants of Modified Hu Moments

This section validates the rotation and scale invariants of the modified Hu moments as
its translation invariant is apparent. The first column in Figure 7 shows the depth images of
two different gestures, while the second to fourth columns present their scales by 0.5, 0.75,
and 1.5, and the last four columns demonstrate their rotations of 30◦ and 15◦ in clockwise
as well as anti-clockwise motions. Figure 8 gives the estimations of six elements in the
modified Hu moments with Formula (9), where the left and right figures, respectively,
mark the results from the first and second gestures. It is observed that these estimations
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are fairly steady against those transformations, with low standard deviations of 0.0069
and 0.0278. This validates the rotation and scale invariants of the modified Hu moments
both qualitatively and quantitatively. To demonstrate their discrimination ability, Table 1
presents the Euclidean distances of the modified Hu moments from those pairwise images
whose order numbers are marked from #1 and #2 to #16. Strong discrimination ability can
be observed from this table since the first eight images and the remainders belong to two
different categories.

Figure 7. The gestures with their scale and rotation transformations.

Figure 8. Distributions of the Hu moments via different transformations, in which the elements of
a1–a6 are computed by the Formula (9): (a,b) respectively present the values of Hu moments for
gestures of Two and Four.

Table 1. Distance of modified Hu moments from pairwise images.

#1 #2 #3 #4 #5 #6 #7 #8 #9 #10 #11 #12 #13 #14 #15

#2 0.025

#3 0.005 0.021

#4 0.021 0.034 0.023

#5 0.011 0.028 0.012 0.020

#6 0.007 0.023 0.008 0.019 0.016

#7 0.010 0.029 0.012 0.024 0.006 0.016

#8 0.010 0.031 0.014 0.022 0.007 0.016 0.004

#9 0.459 0.465 0.460 0.477 0.464 0.462 0.458 0.458

#10 0.460 0.465 0.460 0.479 0.463 0.464 0.457 0.458 0.110

#11 0.443 0.449 0.444 0.461 0.448 0.446 0.442 0.442 0.027 0.109

#12 0.465 0.472 0.466 0.483 0.469 0.468 0.463 0.464 0.028 0.114 0.053

#13 0.454 0.460 0.455 0.472 0.458 0.457 0.452 0.453 0.031 0.102 0.050 0.021

#14 0.458 0.464 0.459 0.476 0.463 0.461 0.457 0.457 0.019 0.108 0.041 0.017 0.014

#15 0.490 0.496 0.491 0.508 0.495 0.493 0.489 0.489 0.033 0.126 0.053 0.040 0.053 0.041

#16 0.494 0.500 0.495 0.512 0.499 0.497 0.492 0.493 0.043 0.123 0.069 0.030 0.044 0.038 0.028
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5.4. Discrimination of Confused Gestures

Generally speaking, the smaller the distance between the gesture performer and the
Kinect sensor, the bigger the image size of the hand region and the larger the distance
value extracted from the fingertip to the palm center, and vice versa. In order to overcome
this influence, the FGFF descriptor for each hand gesture is normalized with its Mmin.
To validate the discriminative ability of the weighted AdaBoost classifier for confused
gestures, the feature descriptors for gesture 1, gesture 7, and gesture 9 are firstly studied.
Figure 9 shows three different samples for each type of gestures and the results of hand
region segmentation. With the proposed fingertip extraction procedure, just one fingertip
is extracted from each of those gesture images, corresponding to one finger clustering
information. The thickness of gesture 7 is obviously larger than those of the other two.
Therefore, its weight factor of is bigger and the finger-earth mover’s distance method
exhibits a strong distinguishing ability for gesture 7 while it is weak for the remaining two
gestures since their weight factors are close to each other. In this case, the SVM model
with modified Hu moments shows its advantage. For better visualization, Figure 10 shows
the Euclidean distance between the Hu moment features of the nine gesture samples. It
can be seen from this figure that the interdistances between different gestures are larger
compared with those intradistances. This demonstrates strong recognition ability of the
support vector machine and hence the weighted AdaBoost classifier.

Figure 9. Nine samples from three different types of gestures and extracted hand regions.

Figure 10. Larger interdistances and smaller intradistances among hand gestures.

5.5. Gesture Recognition and Analysis

We firstly test the effect of different volumes of training dataset on the performance
of the proposed algorithm, where its training samples were randomly chosen to keep
consistent distribution, varying from 25% to 75% of the whole dataset. The remainders are
used as the testing samples. Table 2 gives the accuracy of hand gesture recognition versus
volumes of training dataset. From this table, we can see that the accuracy is increased with
the increasing volume and an acceptable balance is obtained when a half dataset is used
for training the proposed classifier.
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Table 2. The recognition accuracy vs. different volumes of training dataset (%).

Volumes 0 1 2 3 4 5 6 7 8 9 AVG acc.

25% 100 89.3 91.3 92.6 92.0 94.0 90.0 94.0 91.3 90.6 92.5

40% 100 93.3 94.1 95.8 96.7 96.7 94.1 96.7 95.8 93.3 95.6

50% 100 96.7 96.0 97.0 98.0 98.0 97.3 96.0 96.0 97.0 97.2

75% 100 96.7 97.3 98.6 98.0 98.0 97.3 96.7 97.0 98.0 97.7

Different distances between the performer and the Kinect sensor will affect the size of
hand region and produce a scale in the depth image. Subsequently, the accuracy of image
processing and gesture recognition are affected. In order to validate the robustness of the
weighted AdaBoost classifier against different scales, we test it under different distances.
Here, thirty samples, respectively, from 80 cm distance and 120 cm distance together with
forty samples from 150 cm distance were randomly chosen for testing and the rest for
training. Table 3 shows the recognition results of those gestures where the last row gives
average accuracy.

Table 3. The recognition accuracy vs. different distances from the sensor (%).

Distances 0 1 2 3 4 5 6 7 8 9 AVG acc.

80 cm 100 96.7 96.7 96.7 96.7 96.7 93.3 93.3 96.7 96.7 96.3

120 cm 100 100 96.7 96.7 100 100 96.7 96.7 96.7 96.7 98.0

150 cm 100 95 95 97.5 95 97.5 92.5 97.5 95 92.5 95.7

AVG.acc 100 97 96 97 97 98 94 96 96 95 –

As can be seen from Table 3, the average recognition accuracy for the hand gestures is
above 94%. Among them, the accuracy for gesture zero is always the highest, which can be
correctly recognized in all tests, since this is the simplest gesture and the performer can
make this action more easily and accurately. The procedure for its image segmentation and
feature extraction is also the most stable and reliable. The recognition accuracy for the other
hand gesture is slightly lower, but more than 92%. Better performance is observed when
the distance between the gesture executor and the Kinect is positioned at about 120 cm.
With the increasing distance, the recognition accuracy decreases slightly. This is because
the hand region in the depth image becomes smaller, which brings the difficulty of image
processing and hand region segmentation.

Figure 11 shows the confusion matrix of recognition for these ten hand gestures to go
into some details. As can be seen from this figure, the hand gestures for six, seven, and nine
are easy to be confused. The recognition accuracy for gesture six is the lowest, which is
due to the fact that the little finger in this gesture is easily overlapped in some viewpoints.
This may lead to confusion with gesture one or gesture seven since their thicknesses are
somewhat near to each other. For gesture seven, its degree of aggregation and curvature of
the fingers is different from one performer to another, which makes the feature extraction
of fingertips a bit more difficult. In this case, the weighted AdaBoost classifier shows its
advantages against any single classifier. The degree of curvature in gesture nine is also
performer-dependent and prone to be affected by different viewpoints, which may lead to
confused recognition.

5.6. Comparison with Benchmark Algorithms

For comparison of recognition performance, we implement the proposed algorithm
and three benchmark methods, including Ren [23], Huang [24], and Pu Xingcheng [28]
as they follow a similar mechanism. To be a fair game, all the experiments are carried
out on the same dataset collected in our lab. The finger-earth mover’s distance method
with time-series curve representation of the hand contour was suggested in [23], while
similarity measures through the Mahalanobis distance among the Hu moment features
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were used in [28]. In [24], different scales of circle regions centered at each of the contour
points were employed to extract the area, major segment, and distance information as
characteristics of the hand gesture. Basically, it is a multi-resolution analysis along the
hand contour. Different ranges of finger motion as well as the noise on the contour have a
considerably negative effect on the algorithm. For comparison, the FGFF descriptor and
modified Hu moment in the proposed algorithm are independently tested, followed by
their combinations with the weighted AdaBoost classifier, as given in the fifth, sixth, and
eighth rows of Table 4. It is seen from Table 4 that our algorithm gives the highest accuracy
with lower standard deviation since both finger-related and contour-related information is
employed, followed by Huang [24] with 96.1% mean accuracy and 1.8 standard deviation.
Since detailed shapes of the fingers are ignored in the algorithms from [23,28], their recog-
nition accuracy is lower with an average accuracy of 95% and 95.5%, respectively. On the
whole, the proposed method overcomes the shortcomings of the Benchmark methods and
can obtain higher and more stable recognition accuracy.

Figure 11. Digital gesture recognition confusion matrix.

Table 4. Comparison of the proposed algorithm with Benchmark methods on our dataset (%).

Different Gestures 0 1 2 3 4 5 6 7 8 9 AVG acc.

Ren [23] 100 96 93 95 94 96 93 95 93 95 95.0

Huang [24] 100 96 96 95 96 98 94 96 96 94 96.1

Pu [28] 99 95 96 96 95 97 94 94 95 94 95.5

FGFF+FEMD 100 96 94 96 95 96 94 94 95 94 95.4

Hu+SVM 98 96 96 96 95 97 93 95 96 95 95.7

Proposed Algorithm 100 97 96 97 97 98 94 96 96 95 96.6

6. Conclusions

We have talked about a new hand gesture recognition algorithm based on the Kinect
sensor, taking the recognition of ten digital gestures from zero to nine as an example. The
region growing method with double thresholds is employed to segment the hand region
from its depth image where the influence of different thresholds is discussed and overseg-
mentation is suggested. Then, fingertip-emphasized features including palm center and
fingertips together with their orientations are estimated, followed by the finger-emphasized
Fourier descriptor to construct the FGFF descriptors. The modified Hu moment invariants
with much lower exponents are discussed to encode the contour structure in the hand
region. Finally, a weighted AdaBoost classifier is constructed based on FEMD and SVM
model to realize the hand gesture recognition. The characteristics and applicability of the
classifier are analyzed and compared with the three Benchmark methods reported in the
literature. The results show that the proposed algorithm outperforms those algorithms with
better robustness and higher recognition accuracy. Future work includes exploring more
representative features and further improving the robustness of the algorithm, developing
some interesting HCI applications and deploying it on our mobile robot to perform some
routine housework under the instructions of hand gestures.
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