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Abstract: One of the most dangerous kinds of attacks affecting computers is a distributed denial
of services (DDoS) attack. The main goal of this attack is to bring the targeted machine down and
make their services unavailable to legal users. This can be accomplished mainly by directing many
machines to send a very large number of packets toward the specified machine to consume its
resources and stop it from working. We implemented a method using Java based on entropy and
sequential probabilities ratio test (ESPRT) methods to identify malicious flows and their switch
interfaces that aid them in passing through. Entropy (E) is the first technique, and the sequential
probabilities ratio test (SPRT) is the second technique. The entropy method alone compares its
results with a certain threshold in order to make a decision. The accuracy and F-scores for entropy
results thus changed when the threshold values changed. Using both entropy and SPRT removed the
uncertainty associated with the entropy threshold. The false positive rate was also reduced when
combining both techniques. Entropy-based detection methods divide incoming traffic into groups of
traffic that have the same size. The size of these groups is determined by a parameter called window
size. The Defense Advanced Research Projects Agency (DARPA) 1998, DARPA2000, and Canadian
Institute for Cybersecurity (CIC-DDoS2019) databases were used to evaluate the implementation
of this method. The metric of a confusion matrix was used to compare the ESPRT results with the
results of other methods. The accuracy and f-scores for the DARPA 1998 dataset were 0.995 and
0.997, respectively, for the ESPRT method when the window size was set at 50 and 75 packets. The
detection rate of ESPRT for the same dataset was 0.995 when the window size was set to 10 packets.
The average accuracy for the DARPA 2000 dataset for ESPRT was 0.905, and the detection rate was
0.929. Finally, ESPRT was scalable to a multiple domain topology application.

Keywords: distributed denial of services attack; entropy; sequential probability ratio test; confu-
sion matrix

1. Introduction

With the rapid development of technology, new devices are being connected through
the internet each day. Many companies, organizations, universities, hospitals, banks,
government units, and other associations have become dependent on computer technology
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to serve their needs through the internet. However, attackers exploit vulnerabilities that are
available in devices, networking connections, or applications to carry out their malicious
activities. Cyber-attacks are very dangerous when they are appropriately applied. These
kinds of activities can be used to destroy, steal, or breach sensitive information belonging to
public or private institutions. These activities can also be used to gain unauthorized access
and important data. Many kinds of malicious activities can be performed in computer
networks. One of these is a distributed denial of services (DDoS) attack [1].

The detection of DDoS attacks is very challenging [2]. DDoS attacks are kind of
cyber-attack that target a specific machine or server and lead them to stop providing their
services to the devices that are connected to this machine. Attackers in DDoS attacks can
form a botnet [1,3]. A botnet is a very large number of malicious devices that are called
bots. All of these devices are controlled by a main attacker called a botnet master. A botnet
master is responsible for choosing and detecting these compromised devices. Attackers
carry out four steps in order to form a botnet. These steps involve identifying vulnerable
devices, compromising agents to act as bots, using a C&C channel between the attacker
and the bots, and targeting victim using the bots, as shown in Figure 1.

Figure 1. Preparing a botnet for a DDoS attack.

Attackers identify all the expected vulnerable machines in the network and induce or
direct them to forward attacked packets or flows toward a specific machine or server. These
vulnerabilities can be discovered by means of tools or techniques such as a worm, backdoor,
or Trojan horse. They can be identified by sending an email containing a malicious code,
such as a virus [4]. This leads to the infection of the machines in the network to create
what is called zombies or agents. In turn, zombies can find other vulnerable devices in
the network to expand the number of attack teams. The main attacker or bot master can
communicate and manage these zombies by using protocols. They obey the attacker’s
orders through the command and control (C&C) server [5].

Furthermore, all of these zombies send malicious packets toward the server with
the incitement of attacker, whereas the real attacker uses a spoofed IP in order to hide
his identity and slow down his discovery. The attacker with its agents sends a very
large number of low-rate packets or flows toward the targeted victim. This leads to the
server being overloaded with useless packets and prevents legitimate users from getting
services [6]. It is similar to unexpected cars or trucks crossing over a highway, which
prevents normal cars from passing over the road and causing a traffic jam.
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Moreover, a DDoS attacks lead to increase in the processing rate on the targeted
side. One way to do this is by exhausting the targeted machine resources, such as CPU,
bandwidth, address bus, data bus, control bus, RAM, socket, or hard drive bandwidth.
The attackers who targeted the SCO Group website attempted to exhaust the connection of
legal users by consuming connection network resources, bandwidth, or switching process
capacity [7].

In addition, amplification or reflection is another form of DDoS attack. The attacker
sends requested traffics to its zombies, then zombies convert or amplify the received traffic.
The converted traffic is larger in size than the original traffic, and they then send this to
the victims. Smurf, NTP, DNS amplification, and Fraggle attacks are all examples of these
kinds of methods [6].

Moreover, E-business or other large companies are the biggest losers from these kinds
of attacks because they lose large amounts of money if users cannot reach their services [8].
For example, Yahoo faced its first DDoS attacks in February 2000. These attacks brought
Yahoo’s services down for almost two hours, which led to a decrease in its revenue [7].
Attackers targeted the SCO Group website in 2004 using DDoS attacks, leading it to stop its
services. These attacks happened because the system was vulnerable to the Mydoom virus.
This virus contained a program that allowed a very large number of machines to target
the SCO main computer at the same time. This virus was also retargeted at bank units
and public news websites in the United Stated of America and South Korea in 2009. DDoS
attacks also launched popular financial websites such as post-finance, master card, PayPal,
and Visa card websites. In 2012, popular bank websites in the USA, such as PNC bank,
Bank of America, Capital One bank, Fifth Third bank, and Citigroup bank were affected by
DDoS attacks. Famous electronic shopping companies have also been exposed to DDoS
attacks, such as Amazon, e-bay, and Buy.com [7].

According to Akamai, gaming industries have struggled with DDoS attacks. Akamai
noted almost three thousand unique DDoS attacks in the gaming industry from July 2019
till June 2020, making it the largest target for DDoS attacks among other industries. This
situation was worsened during COVID-19 lockdowns [9].

The contribution of the paper can be summarized in three points. First, we implement
a combination of entropy and SPRT (ESPRT) methods developed to detect DDoS flows and
determine infected switch interfaces using Java. Second, we evaluate the detection model
and compare it with other detection models using confusion matrix metrics and several
datasets, specifically, the DARPA 1998, DARPA 1999, DARPA 2000, and CIC-DDoS2019
datasets. Thirdly, we tested the scalability of the ESPRT and compared it with other
detection models. The rest of the paper is organized as follows: related works are discussed
in the second section, methodology in the third section, results in the fourth section, and
conclusions in the last section.

2. Related Works

There are many kinds of techniques that have been adopted to detect a DDoS attack
in its early stage. These methods can be categorized into two main groups—application-
and network-based detection. Application-based detection is based on monitoring and
controlling DDoS attacks in the user application layer, whereas network-based detection is
based on monitoring attacks by using network protocols in different layers [10]. Network-
based detection can be classified into two methods: the signature-based method and the
anomaly-based method. The signature-based method depends on previously identifying
known attack patterns and comparing new samples with saved patterns to discover a
match or known attacks. This method needs to be updated by adding new patterns of
attacks, and it is not able to detect new patterns that are not available in this method [6].

Anomaly-based detection assumes that there is a known model for the benign behavior
for the system and any deviation from that behavior is considered malicious. It explains the
benign behavior for certain information and performs a deducible test to detect unknown
patterns or anomalies [11]. Anomaly-based detection involves offline and online detection
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methods. Offline detection methods identify attacks after they have occurred, whereas
online detection methods identify attacks at the beginning of the attack’s occurrence.
Anomaly-based detection can be categorized into many types, such as statistical approaches,
data mining, machine learning, deep learning, or combining more than one technique [4,6].

2.1. Statistical-Based Detection Techniques

Statistical approaches are a type of mathematical model. They search to find common
connections between one or more non-random and/or random variables. The connections
of variables are used to predict the results. Statistical approaches to the detection of
anomalies provide a deeper analysis per packet in computer networks. They enable the
observation and analysis of information per specific time in a very fast time [6]. A number
of studies have used these techniques to detect DDoS attacks. In this subsection, related
works that have used entropy-based detection and the combination of entropy and other
methods are explained and described in this subsection. The entropy approach is a common
way to generate features that can be used to classify network flows. These features can be
extracted based on calculating entropy for packet fields such as source IP, destination IP,
source port, destination port, protocol name, etc. Recently, it has been widely used in the
detection of DDoS attacks. Entropy calculation is used to discover randomness in network
traffic. If entropy values are high, packets are random and, vice versa, when entropy values
are low, packets are not random. The randomness of packets is an indicator of benign
behavior, as stated in [12]. The entropy-based detection approach is better than other
methods in identifying DDoS attacks for many reasons. It involves simple calculations. It
also provides a high detection rate, a low fall-out rate, and high accuracy [13].

Abigail et al. proposed a method to extract many features from packets and to
calculate entropy for these features in order to increase accuracy and recall [13]. Ma
and Chen presented a method to detect anomalies using entropy chaos analysis and the
Lyapunov exponent [14]. This method has two steps. First, they monitor the source and
destination IP for incoming packets and calculate the Tsallis entropy of these two fields. In
general, the entropy-based method relies on the calculated values of the traffic fields and
ignores relationships between each field. This is why the authors proposed a second step,
which uses the Lyapunov exponent. The Lyapunov exponent is used to determine the rate
of distribution of the two trajectories. Finally, the authors validated their method using the
MIT dataset; they found that their model had a TPR of 98.56 and an FPR of 0.42 FPR [14].

Hoque et al. proposed a method based on statistics called the Feature Feature Score
(FFS) method. This method has two benefits. The first is its ability to identify attacks and
benign traffic. The second is its ability to distinguish between normal and low-rate traffic.
This method has three steps. First, features from normal traffic, such as packet rates, the
entropy of the source IP, and the diversity of the source IP, are extracted and stored to form
a normal profile. Second, the same calculations from the first step are carried out for new
incoming packets. Third, the method is used to find similarities and dissimilarities between
the normal profile generated in step one and the profile generated in the second step, using
a deviation vector and the mean of the extracted features. If the value of the third step
is larger than a specific threshold, then the observed traffic is normal; otherwise, there
is an attack. Normal and low rates can be distinguished by using a standard deviation
vector that defines a variation in the extracted features for a specific sample. The normal
samples have a predicted number of traffics, whereas attack samples have an unpredicted
number of samples [15]. Linhai and Xiao in [16] used both entropy and SPRT to detect
DDoS attacks in software-defined network (SDN) environments. They tested the model
using data that were generated using the Scapy tool. They found that their model needs
further adjustment in order to prevent or eliminate false positive rates.

2.2. Data Mining-Based Detection Techniques

Data mining is a process of reproducing new and useful patterns from a very large
amount of data. It can be performed through human intrusion using algorithms and
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programming tools. It helps to make unknown collected data more usable and clearer.
Data mining techniques can be used also to detect DDoS anomalies. For example, Bista
and Chitrakar suggested a new approach to identify DDoS attacks based on data mining
techniques. They used a clustering method called a heuristics clustering algorithm that is
unsupervised learning and followed by a classification method, the naive Bayes method.
They used naive Bayes because some malicious traffic contains large numbers of benign
packets that cannot be identified using only the heuristics clustering algorithm. Thus, the
authors used both methods to handle this issue. They also used multiple datasets in order
to validate their proposed method, such as DARPA 2000 and the CAIDA UCSD DDoS
Attack 2007 dataset. They used some confusion matrix metrics in order to evaluate their
system as well, such as accuracy, the false positive rate, and the true positive rate. Finally,
they claimed that their system has good accuracy and a low false positive rate [17].

2.3. Machine Learning-Based Detection Techniques

Machine learning involves the use of algorithms and techniques to train machines
with historical datasets in order to perform a prediction analysis or classification on a new
dataset. Machine learning techniques can be used in the detection of DDoS attacks. For
example, Polat et al. proposed a method of detecting DDoS attacks in software-defined
networks (SDNs). They extracted important features from SDNs for datasets with and
without DDoS attacks and stored results in a new dataset. Then, they tested the new
dataset (with features) and the old dataset (without features) on multiple different methods
of machine learning to discover their detection ability. They used naive Bayes (NB) and
K-nearest neighbors (KNN) classification models, and support vector machine (SVM) and
artificial neural network (ANN) methods. Based on their experiment results, they found
that the KNN classifier had the highest detection results, at approximately 98.3% [18]. Joao
et al. in [19] proposed a novel method to identify DDoS anomalies based on two phases.
The first phase is filtering out the mean values of popular features from the data using
higher order singular value decomposition (HOSVD). The output of the first step was
used as an input for machine learning techniques in order to make a decision about attack
availability. They used the CICDDoS2019 and CICIDS2017 Datasets in their evaluation, and
found that the accuracy for their proposed detection method was almost 98.94%. Finally,
the detection rate for their proposed method was 97.7%, whereas the false positive rate
was 4.35% [19].

On the other hand, machine learning algorithms may be vulnerable to adversarial
examples [20,21]. In general, adversarial examples can be created by adding subtle pertur-
bations to the training set in order to mislead the machine learning and prevent it from
making the right decision. This can also be accomplished through many other techniques,
such as but not limited to changing the training set, inserting poisoning attacks into the
training set, and creating backdoor attacks during the training phase. Rahim et al. pro-
posed a defense method with two steps in order to identify attacks in regard to adversarial
examples in the dataset. They evaluated their method based on three different datasets.
They found that the detection rate increased to fifty percent when they used the generative
adversarial network (GAN) method [20]. Rahim et al. in [21] also proposed two methods
for phone programs in the internet of things (IoT) environment against an adversarial
attack to a malware detection system. The first method is a combination of the nearest
neighbor (C4C) and ConvNet (CNN) approaches. The second method is Robust-NN. They
found that accuracy metrics increased to 94.94% and 96.03% when using their proposal
detection method [21].

2.4. Deep Learning-Based Detection Techniques

Deep learning is a kind of machine learning. It uses complex techniques that were
inspired by the way the human brain works. It can handle a very large number of unstruc-
tured data and generate an accurate output without being told which attribute to look for.
However, users need to convert unstructured data to structured data, and data take a long
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time to be processed in machine learning. Waleed et al. in [22] proposed a technique to
detect DDoS attacks based on the use of token embedding in order to improve elicited
features from session initiation protocol (SIP) texts in VoIP. They also discussed recurrent
neural networks (RNNs), which is a deep learning technique that was developed to identify
DDoS attacks. Features extracted in their previous stage provided the input for their RNNs.
They found that their proposed method could be executed in a short time, and it had high
detection accuracy. Wang and Liu proposed a method based on information entropy and
deep learning to detect DDoS anomalies in SDNs. This method involves a two-level system
of detection. The first is carried out by the controller of SDN to filter suspicious packets in
order to increase accuracy by calculating entropy for the important fields of these packets.
The second step is to use a deep learning technique—the convolutional neural network
(CNN) method—in order to separate benign from malicious traffic. This method can be
used in image classification. However, in that study, the authors converted packets to
images, then used the CNN to detect DDoS attacks. Finally, they found that the accuracy
of their method was 98.98% [23].

2.5. Combination-Based Detection Techniques

Recently, researchers used combined techniques to improve the detection of anomalies.
For example, they used machine learning techniques and statistical approaches. They found
that delays in malicious identification could be appropriately solved. They also found
that the identification of low rates could be tackled as well [6]. Researchers can also
combine statistical approaches and artificial intelligence to improve the detection results.
Daneshgadeh et al. implemented a method that combined two different techniques—
statistical and machine learning—in order to detect DDoS attacks. They used a support
vector machine (SVM) and two other statistical techniques, Shannon entropy and kernel
online anomaly detection (KOAD). They found that Shannon entropy showed improved
results when combined with the other two methods in recognizing DDoS attacks and flash
events [24]. Ozcelik and Brooks reported a method called CUSUM-Entropy to detect DDoS
attacks. They used two statistical methods, consisting of the cumulative algorithm invented
by Page and entropy values for traffic features. They calculated entropy features for packets
such as the source IP address, the destination IP address, the source port address, and
the destination port address. They used both methods in order to improve the detection.
Finally, they found that their method had low fall-out and a high true positive rate [25].

3. Methodology

Statistical approaches for the detection of anomalies offer a deeper analysis per packet
in computer networks. They can observe and analyze information per specific time.
Statistical methods for the detection of anomalies are also better than other methods
because they are faster than others and work properly in real time [6]. Thus, entropy and
SPRT were implemented in this paper to detect DDoS attacks.

3.1. Flowchart of ESPRT

Packets have many fields, such as the source IP address, destination IP address,
source port address, destination port address, protocol type, flags, header size, connection
duration, services, and so on. Flows are a group of packets that have the same specifications
such as the source IP address, destination IP address, source port address, destination port
address, and protocol type. Incoming packets toward the interfaces of server switches are
gathered based on these specifications to form unique flows.

The destination IP addresses of the first packet of each flow are monitored and
gathered based on a certain window size. This window size can be determined based on
the number of packets or the timeframe. The interface number of the switches (MAC) that
allow these flows to pass through will also be recorded in order to locate infected interfaces.
These flows will be forwarded towards the entropy stage. The output of the entropy stage
is used as the input for the second step, which is SPRT. Finally, a decision can be made for
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all flows and their interfaces to determine whether they are infected or not at the end of the
SPRT detection process. The flow chart for this combination method is shown in Figure 2.

1 
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no 

no 

D>= upper 

bound? 

Normal and 
stop test 

D<= lower 

bound? 

Malicious 
and stop test 
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occurrence of each unique 

destination address  
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Applying SPRT method for incoming 
entropy values to find (D) values 

Start by monitoring 
incoming packets 

Forming flows  

Identify first packet in each unique 
flow and its’ interface and gather 

them in specified window size 

Figure 2. Flowchart for the ESPRT method.

3.2. First Phase (Entropy)

The entropy approach was used in the first step in the detection process. Entropy can
be calculated to identify the randomness of packets. If entropy values are high, packets
are random and, vice versa, when entropy values are low, packets are not random. The
randomness of packets is an indicator of benign behavior, as stated in [12].
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Destination IP addresses for each flow are grouped in a hash table. These destination IP
addresses are inserted into the first column of the table, and the number of their appearances
are added to the second column. For example, consider that the first destination IP address
packet in each flow is (A), and the number of their appearances is (B). When (A) is new
and not available in the hash table, it will be added to the first column, and count one is
added to the second column. However, when (A) is available in the table, then counter (B)
in the second column of this address is incremented by one, as shown in Equation (1) [12]:

W = {(A1, B1), (A2, B2), (Ai, Bi), . . . } (1)

The entropy method depends on the window size, and this window is calculated
based on the timeframe or number of packets. Thus, the above equation will be sliding over
incoming flows based on window size. Then, the probability (Prob) of an IP destination’s
appearance (B) can be calculated for each window as shown in Equation (2) below [12]:

Prob(i) = B(i)/n (2)

where (n) is the total number of packets per window. Finally, entropy values (E) for each
window can be calculated based on Equation (3) [12]:

E = −
n

∑
i=0

prob(i) log2 prob (i) (3)

3.3. Second Phase (SPRT)

The output for first step (E) is used as an input for the second step in the detection
process. The second step is the sequential probability ratio test (SPRT). SPRT was first
introduced and developed by Waled in 1947. It is based on mathematical calculation. It
has two main components, which are two hypotheses, either the normal hypothesis Y0 or
the infected hypothesis Y1. The switch of the server has many interfaces. The goal is to
identify an infected interface, Y1, that has been injected with malicious flows and a normal
interface, Y0, that has normal flows [26].

The SPRT detection method sometimes makes two wrong decisions. This happens
when a malicious interface, Y1, is falsely identified as a normal interface, Y0. This error is
called a false negative error. The other mistake happens when a normal interface, Y0, is
identified as a compromised interface, Y1. This error is called a false positive error. Two
values were used to tackle these errors. The variable (a) was used to bypass false positive
mistakes, and the variable (b) was used to bypass false negative mistakes. The values of
these errors should not be greater than these values.

SPRT is designed to monitor a series of entropy observations (E0, E1, . . . En) that are
coming from the first step. The detection Equation (Di

n) is a likelihood function of these
observations being compromised over these observations being normal, targeting a specific
interface (i). Therefore, Equation (4) is expressed as follows [26].

Di
n= ln

prob (E i
1, . . ., Ei

n |Y1

)
prob ( E i

1, . . ., Ei
n |Y0)

(4)

Consider Ei
n as identically distributed and independent. Then, Di

n is expressed as
follows [26]:

Di
n =

m

∑
n=1

ln
prob (E i

n |Y 1

)
prob ( E i

n |Y0)
(5)

Assuming Ei
n as Bernoulli distribution values, then [26]:

prob ( 0 ≤ Ei
n ≤ 0.5 |Y 0) = 1− prob ( E i

n > 0.5 |Y 0) = µ0 (6)
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prob ( 0 ≤ Ei
n ≤ 0.5 |Y 1) = 1− prob ( E i

n > 0.5 |Y 1) = µ1 (7)

where µ1 is larger than µ0 because compromised Ethernet is more likely to be infected
with malicious flows. When the values of entropy decreased until they reaches zero, it
is more likely that the interface has been injected with malicious flows. When Ei

n values
fall into a range between 0 and 0.5, the probability is that the interface is more likely to be
infected with DDoS attacks. However, when Ei

n values are greater than 0.5, the probability
is that the interface is more likely to be normal.

Di
n =


Di

n−1+ ln
prob (E i

n |Y 1

)
prob ( E i

n |Y0

) , 0 ≤ Ei
n ≤ 0.5

Di
n−1+ ln

prob (E i
n |Y 1

)
prob (E i

n |Y 0

) , Ei
n > 0.5

(8)

By substituting Equations (6) and (7) into Equation (8), the detection function can be
expressed as follows (where Di

0 = 0):

Di
n =

{
Di

n−1+ lnµ1
µ0

, 0 ≤ Ei
n ≤ 0.5

Di
n−1+ ln 1−µ1

1−µ0
, Ei

n > 0.5
(9)

{
A = ln b

(1−a)

B = ln (1−b)
a

(10)

The generated results for Di
n are matched with an upper (A) and lower (B) threshold.

These two thresholds were computed based on the variables (a) and (b) that were calculated
to bypass the false negative rate and false positive rate errors. A and B values were
computed as shown in Equation (10). When Di

n is larger or equal to the (A) value, Ethernet
switch and flow are normal, and testing is stopped. When Di

n is smaller or equal to the
(B) value, Ethernet switch and flow is considered to be infected and testing is stopped.
However, if none of the above two conditions are met, the test continues with another
observation.

The values of variable (a) and variable (b) should be between 0.01 and 0.05 in order to
maintain optimum false positive and false negative values for the detection model. Their
specific values are chosen based on calculating the minimum number of observations
required to identify compromise flows. Figure 3, shown below, explains how to find the
best values for (a) and (b). When (a) is 0.05 and (b) is between 0.01 and 0.05, the minimum
number of observations of the detection method required to detect malicious flows is only
five observations. Therefore, we set (a) to be 0.05 and (b) to be between (0.01 to 0.05) in the
evaluation.
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Figure 3. Method of finding the best values for (a) and (b) variables.

4. Results

ESPRT was implemented using a Java program and the results are discussed in this
section. Other detection methods such as SPRT, Entropy, CUSUM were reimplemented
using Java as well. The results were compared with the ESPRT method. The DARPA
dataset and confusion matrix were used to evaluate the performance of these detection
models [27,28].

4.1. Confusion Matrix

The confusion matrix has four main metrics, which are true positive (TP), false positive
(FP), true negative (TN), and false negative (FN). From these metrics, other metrics such
as accuracy, F1-score, true positive rate (TPR), false positive rate (FPR), true negative rate
(TNR), and false negative rate (FNR) can be computed. TPR or sensitivity is the rate of
infected flows that were correctly identified as infected flows. TPR can be calculated using
the following Equation:

TPR =
TP

TP + FN
(11)

FPR or fall-out is the rate of normal flows that were detected falsely as malicious flows.
This metric can be calculated as shown in Equation (12) below:

FPR =
FP

FP + TN
(12)

TNR or specificity is the rate of normal flows that were detected correctly as normal
flows. This metric can be calculated as shown in Equation (13).

TNR =
TN

TN + FP
(13)

FNR or miss rate is the rate of infected flows that were falsely recognized as normal
flows. It can be calculated as shown below:

FNR =
FN

TP + FN
(14)
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Accuracy and F1-scores can be calculated as shown below:

Accuracy =
TP + TN

TP + TN + FN + FP
(15)

F1 score = 2 · K + TPR
K + TPR

(16)

where K is the following equation:

K =
TP

TP + FP
(17)

4.2. DARPA (Friday_1998 Dataset)

DARPA is based on the Defense Advanced Research Projects Agency. This agency
has an impact on different fields of research, such as cybersecurity, communication, and
engineering. The MIT Lincoln laboratory, which belongs to this agency, captured datasets
that contain DDoS attacks during 1998, 1999, and 2000. The Friday of the 5th week of the
DDoS attack in 1998 was one dataset chosen to perform our evaluation. To make it easy, we
refer to it as the (Friday_1998) dataset. This dataset has (1,253,312) packets. These packets
were gathered into (256,055) flows, as shown in Figure 4. Of these, (1054) were ICMP flows,
and (253,397) of these flows were TCP flows. The rest (1596) were UDP flows.

As mentioned earlier, a flow is a group of packets that have the same specifications.
Flows can be classified to low flows and normal flows. The number of packets classified
as low flows was smaller than three packets. However, the number of packets classified
as normal flows was larger than three packets. This is because attackers were trying to
overload servers with a very large number of low flows to consume their resources. Back
to the Friday_1998 Dataset, there were a very large number of low flows starting to occur
at (17:27:07), and this was due to the ‘neptune’ attack. The ‘smurf’ attack also produced a
large number of low flows, starting at (18:00:15), as shown in Figure 5.
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Figure 4. Number of benign and malicious flows per timestamp for the Friday_1998 dataset.
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4.3. Results and Comparison Based on the Friday_1998 Dataset

Both entropy and SPRT methods were used to detect DDoS attacks. However, entropy
depends on two elements—threshold and window size. Entropy values have to compare
their results with a certain threshold (thr) in order to make decisions about attacks. We
chose 0.2 and 1.31 as thresholds because the authors in [12,26] used them to generate their
results. Other threshold values were picked randomly to test the efficiency of the detection
models. The accuracy and F-scores changed when the threshold values changed, as shown
in Tables 1 and 2. These two tables show values of accuracy and F-scores for different
window sizes and threshold values. For example, when the window size is five packets,
the accuracy of ESPRT is 0.987. However, the accuracy of entropy with the same window
size is 0.986 when the threshold is 0.2, and the accuracy is 0.972 when the threshold is 1.5.
The accuracy values of the ESPRT and entropy methods for different window size values
are shown in Table 1. Finally, the accuracy and F-scores of entropy improved when entropy
was merged with SPRT, as shown in Tables 1 and 2.

Table 1. Accuracy of ESPRT and entropy for different window sizes and thresholds.

Window
Size

Accuracy of
ESPRT Detection

Accuracy of Entropy Detection

(Thr = 0.2) (Thr = 0.5) (Thr = 1) (Thr = 1.31) (Thr = 1.5)

5 0.987 0.986 0.986 0.980 0.979 0.972
10 0.990 0.986 0.989 0.984 0.980 0.978
25 0.988 0.991 0.992 0.989 0.986 0.984
50 0.995 0.987 0.994 0.992 0.990 0.989
75 0.995 0.986 0.994 0.993 0.991 0.989
100 0.993 0.984 0.994 0.993 0.992 0.990

Table 2. F-score of ESPRT and entropy for different window sizes and thresholds.

Window
Size

F-Score of ESPRT
Detection

F-Score of Entropy Detection

(Thr = 0.2) (Thr = 0.5) (Thr = 1) (Thr = 1.31) (Thr = 1.5)

5 0.993 0.993 0.993 0.990 0.989 0.986
10 0.994 0.993 0.994 0.991 0.990 0.989
25 0.994 0.995 0.996 0.994 0.993 0.991
50 0.997 0.993 0.997 0.996 0.994 0.994
75 0.997 0.993 0.997 0.996 0.995 0.994
100 0.996 0.992 0.996 0.996 0.995 0.994

Confusion metrics were used to explain the differences between ESPRT and other
mathematical models. Other methods are entropy, SPRT, and CUSUM. The window size
that was used to generate results for the detection methods that require window size was
10 packets. The threshold values for the detection method fell in the range of 0 to 1.9.
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We used threshold values larger than one because other methods used thresholds greater
than one in their detection methods, such as the entropy method. ROC curves, shown in
Figures 6 and 7, were drawn to show the differences in terms of TPR, FPR, TNR, and FNR.

Figure 6. Sensitivity vs. fall-out for different detection methods for the Friday_1998 dataset.

When the values of TPR metrics are close to one and the FPR values are close to zero
for a certain detection method, this means the detection is good, and vice versa. The value
of TPR for ESPRT was 0.995 and for SPRT it was 0.999. However, entropy and CUSUM
have different values of TPR and FPR based on changing threshold values. The FPR value
for entropy fell in the range of 0.171 and 0.767, based on change in the threshold values.
Thus, entropy detection alone generates higher FPRs, and the FPR value of entropy can be
reduced when combined with the SPRT method, as shown in Figure 6.

FNR should be closed to zero. FNR was close to zero for ESPRT, entropy, and SPRT.
Entropy has different FNR values when the thresholds change, as shown in Figure 7. The
TNR value should be close to one for better detection. The TNR for SPRT was 0.940, and
ESPRT had a TNR value of 0.802. However, the TNR for entropy fell in the range of 0.08
and 1, based on threshold values. Results for TNR vs. FNR for different methods shown in
Figure 7.

4.4. Results and Comparison Based on DARPA 2000 Dataset

To further validate the implementation of ESPRT, its results were compared with
the results of other researchers’ implemented methods. The DARPA 2000 dataset, used
by those researchers, was used to show the differences among these methods in terms
of TPR, FPR, FNR, and accuracy. Most methods mentioned in the table have ranges of
values, depending on their thresholds or window sizes. We mentioned the minimum and
maximum values of the range that were computed by those authors. The average of the
range was computed in order to make the comparison easier. For example, the accuracy of
ESPRT falls in the range of 89.6% to 93.2% when the window size falls in the range of 5
to 120 packets. The average of the accuracy was 90.5%, which is better than the others, as
shown in Table 3.
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Figure 7. Specificity vs. fall-out for different detection methods for the Friday_1998 dataset.

Table 3. Comparison with other approaches based on the DARPA 2000 dataset.

Method Accuracy DR or TPR FPR FNR Window Size Thr

ESPRT 89.6% to 93.2%
(average = 90.5%)

0.914 to 0.957
(average = 0.929)

0.154 to 0.270
(average = 0.207)

0.042 to 0.078
(average = 0.069)

Window size
range between 5
and 120 packets

No need for Thr
in this method.

Real-time DDoS
attack [29]

22% to 100%
(average = 90.3%)

NA to 1
(They mentioned

the maximum
value only)

0 to NA 0.18 to NA
No need for

window size in
this method.

Threshold values
range between 0.1

and 0.9 (22%
when thr = 0.3,
70% when thr =
0.4, 100% when

thr = 0.5 or
higher).

Chaos theory [30] NA 0.88 to 0.94
(average = 0.907)

0.05 to 0.45
(average = 0.233) NA

No need for
window size in

this method.

Threshold values
range between 0.1

to 0.9

HCA with
Labelling [17,31]

41% to 95%
(average =

72.42%)

0.048 to 0.383
(average = 0.166)

0.167 to 0.523
(average = 0.237) NA

Window size
range between 10
and 120 packets

No need for Thr
in this method.

HCA with Naïve
Base

Classification [17]

58% to 100%
(average = 86.73)

0.560 to 1
(average = 0.591)

0 to 0.352
(average = 0.119) NA

Window size
range between 10
and 120 packets

No need for Thr
in this method.

H-IDS [32] NA 0.921 0.18 NA
No need for

window size in
this method.

No need for Thr
in this method.

NA: not available, DR: detection rate, TPR: true positive rate, FPR: false positive rate, FNR: false negative rate, Thr: threshold.

Finally, the average detection rate for the ESPRT method was 0.929. Cepheli et al.
in [32] had a DR average of 0.921. The average detection rate for Chonka et al. in [30] was
0.907, whereas the average DR for Sarmila [31] was 0.166. However, Bista et al. in [17]
produced a DR average of 0.591. The DR value for the detection model should reach 1
in order to be perfect. The ESPRT method had a higher value, as mentioned earlier and
shown in Table 3. The FPR average for ESPRT was 0.207. This value should be close to 0
for certain detection methods. The FPR values for other researchers can be seen in Table 3
as well. FNR should also be close to zero. The FNR average for ESPRT was 0.069.

4.5. Results and Comparison Based on (CIC-DDoS2019) Dataset

In addition, another experiment was carried out using the Canadian Institute for
Cybersecurity (CIC-DDoS2019) dataset [33] in order to reflect the security assurance of
entropy-based methods. The system topology, kinds of DDoS attacks, traffic volume, and
other important information are all available in [33]. The datasets were captured for two
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days. These datasets contain many files per day. Random samples were picked, and an
experiment was run on ESPRT. Table 4, presented below, shows the confusion matrix results
for ESPRT based on the CIC-DDoS2019 dataset.

Table 4. The confusion matrix results for ESPRT, based on the CIC-DDoS2019 dataset.

Dataset Accuracy F1-Score DR or TPR FPR FNR

Sample#1 (SAT-03-11-2018_0137) 0.997 0.998 0.997 0 0.002
Sample#2 (SAT-03-11-2018_010) 0.997 0.998 0.997 0 0
Sample#3 (SAT-03-11-2018_030) 0.975 0.987 0.975 0.287 0.024
Sample#4 (SAT-03-11-2018_070) 0.974 0.997 0.994 0.320 0.005

Sample#5 (SAT-03-11-2018_0110) 0.993 0.996 0.993 0.1 0.006

4.6. Scalability of ESPRT

To measure the scalability of the ESPRT method, the DARPA 1999 dataset was used.
DARPA 1999 has multiple domains that can communicate with each other. The ESPRT,
SPRT, and entropy detection models can monitor and detect DDoS attacks on all available
domains in the network. This helps to measure scalability on multiple domains. The
execution time in seconds for ESPRT, SPRT, and entropy methods was calculated per
specified packet numbers, as shown in Figure 8. The memory RAM size of the device
that was used to conduct the experiment is 16 GB. The CPU was 2.70 GHZ. The values
of execution time for these three models were close to each other. In other words, ESPRT
shows scalability, as shown in Figure 8.

Figure 8. Execution time in seconds per specified number of packets for ESPRT, SPRT, and entropy methods.

5. Conclusions and Future Works

DDoS attacks are very dangerous. They can bring down targeted servers and prevent
users from accessing their services. Statistical approaches for the detection of anomalies
provide perfect tools to analyze and observe flows. They are faster than other techniques
and can be performed in real time. Therefore, the ESPRT method was implemented in
order to identify DDoS attacks. ESPRT is a combination of two detection methods—the
entropy and SPRT methods. DARPA databases were used to evaluate their implementation,
and confusion metrics were used to compare ESPRT results with those of other methods.

In addition, using both entropy and SPRT removed the uncertainty involved in the
entropy threshold, and improved the entropy results. The accuracy and F-score values for
entropy changed when the threshold values changed. The results of other metrics also
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changed when the threshold values changed, such as the true positive rate (TPR), false
positive rate (FPR), true negative rate (TNR), and false negative rate (FNR).

Finally, ESPRT showed an accuracy value of 0.995 when the value of the window size
was 50 and 75 packets. It had an F-score of 0.997 when the value of the windows size was
50 and 75. It had a true positive rate of 0.995, and a true negative rate of 0.802. However, it
had a false positive rate of 0.197, and a false negative rate of 0.004. ESPRT also showed an
average accuracy of 90.5% and a detection rate of 0.929 when applied on the DARPA 2000
dataset. Finally, ESPRT was scalable onto multiple-domain topology.

For the sake developing of this study in the future, we are going to dig deeper into
the adversarial example field. Adversarial examples cause machine learning techniques
to make wrong decisions. We will evaluate the detection rate of ESPRT method when
encountering adversarial examples. Finally, the development of methods for the extraction
of other features from packets and their effects on the ESPRT method will be also explored.

Author Contributions: Conceptualization, B.H.A., N.S., S.A.R.A.-H. and R.A.; methodology, B.H.A.,
N.S., S.A.R.A.-H., R.A. and S.L.M.H.; software, B.H.A. and N.S.; validation, B.H.A., N.S., S.A.R.A.-H.,
R.A. and S.L.M.H.; formal analysis, B.H.A., N.S., S.A.R.A.-H. and R.A.; investigation, B.H.A., N.S.,
S.A.R.A.-H. and R.A.; resources, B.H.A., N.S., S.A.R.A.-H., R.A., S.L.M.H. and M.A.; data curation,
B.H.A. and N.S. writing—original draft preparation, B.H.A.; writing—review and editing, B.H.A.,
N.S., S.A.R.A.-H., R.A., S.L.M.H. and M.A.; visualization, B.H.A., N.S., S.A.R.A.-H., R.A. and M.A.;
supervision, N.S., S.A.R.A.-H., R.A., and S.L.M.H.; project administration, N.S., S.A.R.A.-H., R.A.
and S.L.M.H. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data obtained during the study are publicly available online. These
datasets belong to the MIT Lincoln Laboratory. The 5th week of the DDoS attack in the 1998 dataset
was one dataset chosen for evaluation, and it is available online at https://archive.ll.mit.edu/ideval/
data/1998/training/week5/index.html (accessed on 2 July 2021). Another dataset is DARPA 2000,
and it is available online at https://archive.ll.mit.edu/ideval/data/2000/LLS_DDOS_2.0.2.html
(accessed on 2 July 2021). Another dataset is (CIC-DDoS2019) Dataset, and it is available online at
https://www.unb.ca/cic/datasets/ddos-2019.html (accessed on 29 August 2021).

Acknowledgments: This work supported by the University Putra Malaysia.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Alarqan, M.A.; Zaaba, Z.F.; Almomani, A. Detection Mechanisms of DDoS Attack in Cloud Computing Environment: A Survey.

In International Conference on Advances in Cyber Security; Springer Nature: Penang, Malaysia, 2020.
2. Jaafar, A.G.; Ismail, S.A.; Abdullah, M.S.; Kama, N.; Azmi, A.; Yusop, O.M. Recent Analysis of Forged Request Headers

Constituted by HTTP DDoS. Sensors 2020, 20, 3820. [CrossRef]
3. Bhatia, S. Ensemble-Based Model for DDoS Attack Detection and Flash Event Separation. In Proceedings of the Future Technolo-

gies Conference, San Francisco, CA, USA, 6–7 December 2016.
4. Bhuyan, M.H.; Bhattacharyya, D.; Kalita, J. An empirical evaluation of information metrics for low-rate and high-rate DDoS

attack detection. Pattern Recognit. Lett. 2015, 51, 1–7. [CrossRef]
5. Gupta, B.B.; Badve, O.P. Taxonomy of DoS and DDoS attacks and desirable defense mechanism in a Cloud computing environment.

Nat. Comput. Appl. Forum 2017, 28, 3655–3682. [CrossRef]
6. Nooribakhsh, M.; Mollamotalebi, M. A Review on Statistical Approaches for Anomaly Detection in DDoS Attacks. Inf. Secur. J. A

Glob. Perspect. 2020, 29, 118–133. [CrossRef]
7. Zargar, S.T.; Joshi, J.; Tipper, D. A Survey of Defense Mechanisms against Distributed Denial of Service (DDoS) Flooding Attacks.

IEEE Commun. Surv. Tutor. 2013, 15, 2046–2069. [CrossRef]
8. Innab, N.; Alamri, A. The Impact of DDoS on E-Commerce. In Proceedings of the IEEE 21st Saudi Computer Society National

Computer Conference (NCC), Riyadh, Saudi Arabia, 25–26 April 2018.
9. McKeay, M.; Ragan, S.; Tuttle, C.; Goedde, A.; LaSeur, L. Gaming—You Can’t Solo Security. Available online: https:

//www.akamai.com/content/dam/site/en/documents/state-of-the-internet/soti-security-gaming-you-cant-solo-security-
report-2020.pdf (accessed on 4 July 2021).

https://archive.ll.mit.edu/ideval/data/1998/training/week5/index.html
https://archive.ll.mit.edu/ideval/data/1998/training/week5/index.html
https://archive.ll.mit.edu/ideval/data/2000/LLS_DDOS_2.0.2.html
https://www.unb.ca/cic/datasets/ddos-2019.html
https://www.unb.ca/cic/datasets/ddos-2019.html
http://doi.org/10.3390/s20143820
http://doi.org/10.1016/j.patrec.2014.07.019
http://doi.org/10.1007/s00521-016-2317-5
http://doi.org/10.1080/19393555.2020.1717019
http://doi.org/10.1109/SURV.2013.031413.00127
https://www.akamai.com/content/dam/site/en/documents/state-of-the-internet/soti-security-gaming-you-cant-solo-security-report-2020.pdf
https://www.akamai.com/content/dam/site/en/documents/state-of-the-internet/soti-security-gaming-you-cant-solo-security-report-2020.pdf
https://www.akamai.com/content/dam/site/en/documents/state-of-the-internet/soti-security-gaming-you-cant-solo-security-report-2020.pdf


Sensors 2021, 21, 6453 17 of 17

10. Gulisano, V.; Callau-Zori, M.; Fu, Z.; Jiménez-Peris, R.; Papatriantafilou, M.; Patiño-Martínez, M. STONE: A streaming DDoS
defense framework. Elsevier Expert Syst. Appl. 2015, 42, 9620–9633. [CrossRef]

11. Fortunati, S.; Gini, F.; Greco, M.S.; Farina, A.; Graziano, A.; Giompapa, S. An Improvement of the State-of-the-Art Covariance-
based Methods for Statistical Anomaly Detection Algorithms. Signal. Image Video Process. 2016, 10, 687–694. [CrossRef]

12. Mousavi, S.M.; St-Hilaire, M. Early Detection of DDoS Attacks against SDN Controllers. In Proceedings of the 2015 International
Conference on Computing, Networking and Communications, Communications and Information Security, Anaheim, CA, USA,
16–19 February 2015; pp. 77–81.

13. Koay, A.; Chen, A.; Welch, I.; Seah, W.K.G. A New Multi Classifier System Using Entropy-Based Features in DDoS Attack
Detection. In Proceedings of the 2018 International Conference on Information Networking (ICOIN), Chiang Mai, Thailand,
10–12 January 2018; pp. 162–167. [CrossRef]

14. Ma, X.; Chen, Y. DDoS Detection Method Based on Chaos Analysis of Network Traffic Entropy. IEEE Commun. Lett. 2014, 18,
114–117. [CrossRef]

15. Hoque, N.; Bhattacharyya, D.K.; Kalita, J.K. FFSc: A novel measure for low-rate and high-rate DDoS attack detection using
multivariate data analysis. Secur. Commun. Netw. 2016, 9, 2032–2041. [CrossRef]

16. Meng, L.; Guo, X. A Detection Method for DDoS Attack against SDN Controller. Adv. Eng. Res. 2017, 146, 292–296.
17. Bista, S.; Chitrakar, R. DDoS Attack Detection Using Heuristics Clustering Algorithm and Naïve Bayes Classification. J. Inf. Secur.

2018, 9, 33–44.
18. Polat, H.; Polat, O.; Cetin, A. Detecting DDoS Attacks in Software-Defined Networks through Feature Selection Methods and

Machine Learning Models. Sustainability 2020, 12, 1035. [CrossRef]
19. Maranhão, J.P.A.; da Costa, J.P.C.L.; Freitas, E.P.d.; Javidi, E.; Júnior, R.T.d.S. Error-Robust Distributed Denial of Service Attack

Detection Based on an Average Common Feature Extraction Technique. Sensors 2020, 20, 5845. [CrossRef]
20. Taheri, R.; Javidan, R.; Shojafar, M.; Vinod, P.; Conti, M. Can machine learning model with static features be fooled: An adversarial

machine learning approach. Clust. Comput. 2020, 23, 3233–3253. [CrossRef]
21. Taheri, R.; Javidan, R.; Pooranian, Z. Adversarial android malware detection for mobile multimedia applications in IoT environ-

ments. Multimed. Tools Appl. 2021, 80, 16713–16729. [CrossRef]
22. Nazih, W.; Hifny, Y.; Elkilani, W.S.; Dhahri, H.; Abdelkader, T. Countering DDoS Attacks in SIP Based VoIP Networks Using

Recurrent Neural Networks. Sensors 2020, 20, 5875. [CrossRef] [PubMed]
23. Wang, L.; Liu, Y. A DDoS Attack Detection Method Based on Information Entropy and Deep Learning in SDN. In Proceedings of

the IEEE 4th Information Technology Networking. Electronic and Automation Control Conference (ITNEC 2020), Chongqing,
China, 12–14 June 2020; pp. 1–5.

24. Daneshgadeh, S.; Kemmerich, T.; Ahmed, T.; Baykal, N. An Empirical Investigation of DDoS and Flash Event Detection Using
Shannon Entropy, KOAD and SVM Combined. In Proceedings of the 2019 International Conference on Computing, Networking
and Communications (ICNC), Honolulu, HI, USA, 18–21 February 2019.
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