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Abstract: The possibility of understanding the dynamics of human mobility and sociality creates
the opportunity to re-design the way data are collected by exploiting the crowd. We survey the last
decade of experimentation and research in the field of mobile CrowdSensing, a paradigm centred
on users’ devices as the primary source for collecting data from urban areas. To this purpose, we
report the methodologies aimed at building information about users’ mobility and sociality in the
form of ties among users and communities of users. We present two methodologies to identify
communities: spatial and co-location-based. We also discuss some perspectives about the future of
mobile CrowdSensing and its impact on four investigation areas: contact tracing, edge-based MCS
architectures, digitalization in Industry 5.0 and community detection algorithms.

Keywords: mobile CrowdSensing; IIoT; mobile edge; network mobility

1. Introduction

About ten years ago, the availability of the precursors of modern smartphones—in
brief, devices hosting computing, communications, and sensing capabilities—boosted the
birth of seminal initiatives in mobile phone sensing and, soon after that, mobile CrowdSens-
ing (MCS) [1,2]. The core and common idea are the reliance on smartphones to sense the
pulse of smart cities through the development of apps and the involvement of several users
in large living labs, with studies typically lasting several months [3–5]. A very significant
first-of-its-kind effort in this direction was the Nokia Mobile Data Challenge (MDC Nokia)
that, from 2009 to 2011, involved 185 users in sensing the Lake Geneva region (Switzerland)
by equipping them with a Nokia N95 phone [6,7]. The main goal of this and similar
seminal works was twofold: on the one hand, to build consistent and large data sets, and
on the other hand, to inspect technical issues due to the intense use of phones as sensor
platforms. In particular, the MDC Nokia data set explores the possibility of collecting
sensing information from personal devices, with the substantial involvement of volunteer
users in a wide geographical region. The collected data come from mobile devices designed
about 10 years ago, and hence is not optimized to act as a proper sensing platform. The
technical issues arising from such experiment can be summarized as follows:

• The design of a mobile app able to periodically collect heterogeneous data from mobile
devices. In this respect, several technical issues have to be considered, such as the
non-intrusiveness of the monitoring app, the management of power consumption,
the memory requirements and a broadband connection with a lower bandwidth with
respect to modern network links.

• The organization of a user recruitment strategy aiming at involving the maximum
number of people and at keeping them engaged during the experiment. This aspect is
particularly important as it determines the success of the MCS initiative.
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• The heterogeneity of the collected data: the MDC Nokia data set collected several
kinds of data covering different human domains: social sensing data, location data,
media creation and usage data and behavioural data.

A few years later, also motivated by the larger diffusion of more advanced smart-
phones available as consumer devices at a lower cost, several research projects started to
address non-technical social issues also related to the active involvement of humans as
enablers of this new sensing paradigm. The most distinguishing ingredient of the MCS
paradigm, in addition to modern smartphone sensing platforms [8], is the crowd, that acts
as a mobile data provider in urban areas. People joining an MCS data collection campaign
are generally equipped with a dedicated smartphone app bridging data to and from the
back-end. The app is designed to receive sensing requests to be completed; such requests
are also referred to as (sensing) tasks. More advanced applications trigger tasks as soon as
a device enters a specific region, e.g., a square, a street, or any generic point of interest. In
this case, the back-end can selectively submit tasks only to those devices roaming in such
areas or, differently, incentive mechanisms can also be applied [9–11].

A crucial issue of the MCS paradigm is the definition of strategies for the recruitment
of volunteers and for the scheduling of the tasks assigned to the end-users as well. Of
course, several strategies with different goals have been defined and tested in the last ten
years of experiments, but as expected, each MCS data collection campaign operates in
its own specific context that makes it differ from the other MCS campaigns in terms of
the demographics, the number of users recruited, the sensing region and, ultimately, the
type of data required. Significant examples of task scheduling include maximizing the
quality/quantity of collected data, reducing the energy consumption of the mobile devices,
or minimizing number of people involved [12].

More recently, however, researchers are considering a new methodological approach
to the design of such kind of strategies that consists of exploiting knowledge of users’
mobility and sociality. In this work, we review the (re)evolution of the MCS paradigm,
starting from the pioneering initiatives in mobile phone sensing conducted by Pentland’s
research staff in 2004 [13], and ending with the massive data collection campaign of 2016
led by the University of Copenhagen [14] (see Section 2).

We dig into the user’s mobility by reviewing some key metrics useful for the tuning
phase of an MCS initiative as well as into approaches to reveal the crowd with community
detection algorithms, with the goal of capturing the dynamics of humans in their natural
context. More specifically, we show social-aware and social-oblivious techniques useful for
identifying groups of people linked by long-lasting social ties.

We believe that a deep understanding of mobility and sociality offers the opportunity
to reshape the context regarding how to collect data with a participatory approach. Under
this last aspect, we argue that spatial data about users play a key role in the possibility of
making informed decisions about the scheduling of the sensing tasks.

We also note that such an understanding of users’ mobility and sociality passes
through a strong abstraction of MCS data: at the bottom level, there are raw data, that
are highly heterogeneous and come from different physical (e.g., GPS, Bluetooth, Wi-Fi,
etc.) and logical sensors (e.g., Google Location APIs, etc.); at a higher level, it is possible
to interconnect them to obtain meaningful mobility traces and then to extract useful
information from them to better define both single and gregarious users’ behaviours, as
well as users’ social interactions.

The mantra of the MCS paradigm is “do more with less”, meaning that it is necessary
to design systems able to build high-quality data sets at low costs in terms of the number
of users recruited and user’s impact. At the same time, some more recent efforts, following
a similar perspective, aim to build and infer high-quality data from a large set of possibly
low-quality measurements [15–17]. This last aspect seems to be the major barrier to the
diffusion of the MCS paradigm so far. In fact, when not properly trained, end-users
are sceptical about joining MCS initiatives as they are required to install a third-party
application that drains their devices’ batteries and that collects “mysterious” data. Instead,
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the MCS paradigm requires a full and transparent involvement of the end-users to the
objectives of the experiment, that is, collecting data to understand the complex dynamics of
people in urban environments. The recent contact tracing app designed to limit the COVID-
19 pandemic demonstrates an ineluctable example of the benefits of the participation of
a massive crowd. The more people who allow to app to track their contacts, the higher
the possibility of interrupting the never-ending contagious chain. Under this aspect, we
take into account the fact that contact-tracing apps are a very specific use case of the MCS
paradigm, in which the data set to be collected is the temporal evolution of social contacts.

We briefly review some notable MCS experiments conducted in the last 10 years by
focusing on some qualitative markers showing the growing scale of the experiments, as
reported in Section 2. We then focus on how mobility can be analysed and how communities
can be detected with two representative approaches, spatial and co-location-based as
reported in Section 3. Lastly, we frame four application scenarios that highlight the
exploitation of the techniques we reviewed with an outlook to the near future in Section 4.

2. A 10-Year Journey in Mobility Analysis

The optimization of an MCS data collection campaign requires the initial understand-
ing of how people move and how they interact. Such a level of understanding opens up
the possibility of optimizing several aspects, such the selective assignment of sensing tasks
to the end-devices, the assignment’s scheduling during the day and the identification of
geographical areas covered by the data provided by the users’ devices.

Recent works addressed the goal of understanding and modelling human mobility in
urban areas [18–22] at different depths. Such kinds of break-through analyses are possible
thanks to the collection of massive mobility data sets that realistically reproduce mobility
flows at high-resolution temporal scales. The accuracy of these data sets, however, greatly
depends on the technology adopted to localize the users.

Human mobility is traditionally studied by analysing Call Detail Record (CDR) and
GPS logs [23–26]. CDRs report information about the incoming/outgoing calls of a device.
The information generally exploited for the mobility analysis includes the timestamp, the
cell tower to which the device is connected with, and the duration of the call. As a result,
the location of a device is inferred by using the location of the connected cell tower. A
CDR-based data set approximates a significant sample of a population well, since mobile
devices are extremely diffused. Furthermore, no action is required from end-users, as the
CDRs are generated by the network providers [27]. However, such approximation leads to
a possible inaccuracy of the data set. Indeed, a device might be linked with a cell tower far
away from the device itself. In addition, the device position can be estimated only during
an incoming or outcoming call, while the position is not known during time periods of
inactivity of the device. We also observe that such data sets are generally not publicly
available, since their analysis can offer strategic information typically preserved by the
network providers.

Human movements can also be studied by analysing GPS traces provided by wearable
devices, such as smartphones, tablets, and smart watches [28]. GPS traces report the device
position with a reference system (e.g., WGS84 coordinates) and with higher accuracy
than inferences obtained with CDR logs. The accuracy of the GPS technology in outdoor
environments is generally bound in the order of a few meters, while in indoor environments,
the accuracy rapidly decreases, since the strength of the GPS signals tends to reduce or
completely disappear. Differently from CDR logs, the time resolution of GPS traces depends
on the update frequency of the device: the higher the frequency, the higher the accuracy of
the collected traces. However, the GPS traces require the active involvement of the devices
to perform the localization and to upload the position to a back-end server.

We finally mention a third option to construct a mobility data set, namely the use
of information obtained from Social Networks (SNs). These traces are also referred to
as Location-Based Social Networks [29,30]. The majority of SNs enable the possibility of
localizing their users when they check-in or when they check-out of a point of interest.
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The location of a device can be determined not only with GPS, but also with the location
information provided by the Wi-Fi hot spots and probes [31] or cellular base stations, or
with a combination of them all. The major drawback of SN-based solutions derives from
the fact that only specific kinds of places are monitored (e.g., restaurants, shops, museums,
etc.); therefore, it is not possible to constantly track users as is possible with GPS traces.

For these reasons, we focus on GPS-based data sets, and we describe a 10-year-long
journey of initiatives devoted to collecting mobility data sets, with the goal of understand-
ing, with a data-driven approach, the all-human tendency to move and interact with others.
We restrict the scene to six experiments ranging from 2004 to 2016 based on GPS traces
gathered with mobile devices of different historical periods. For each of the data sets, we
consider three metrics which provide a first rough indication of the quality and represen-
tatives of the data set. The described metrics are extracted from the meta-information
released with the data set or by analysing the data set itself. The considered metrics are:

• The number of recruited or monitored users: the number of users varies along with
the time, but we consider the maximum or the declared number of users participating
in the MCS initiative.

• The duration of the experiment expressed in months: the duration refers to the time
elapsed from the first to the last observation.

• The types of data collected: this information describes the number of different data
types provided by the data set; hence, it provides a measure of the variety of the
collected information. As a representative example, we consider GeoLife, which
provides three types of information: timestamp, device coordinates (latitude and
longitude) and the altitude (we do not consider the Transportation mode labels in this
case, which are not always available, as described in [32,33]).

We compare the six experiments with respect to the described metrics in order to
show how they evolve along with the time. Figure 1 reports such evolution from which we
observe two main trends: The increasing number of users recruited and the improvement
of the sensing capabilities of the devices. Their combination led to an increase in the
heterogeneity of the gathered data, as described in the following.
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Figure 1. Evolution of the mobility data sets in terms of: number of users, time duration and
heterogeneity of collected data.

The Reality Mining Data Set [13] involved about 75 students or faculty in the MIT
Media Lab, Boston, MA, USA. Users were equipped with a Nokia 6600 device able to
detect proximity with nearby devices by using the Bluetooth discovery protocol. The data
collected comprised call logs, Bluetooth contacts, localization, identifier of the cell tower,
usage the apps and phone status. The GeoLife data set [32,33] was organized by Microsoft
Research Asia, with about 182 users in very long period, ranging from April 2007 to August
2012. The data collected only included the device position (latitude, longitude, and altitude)
and, in some cases, the type of transportation used by the volunteer users. The devices used
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varied from GPS tracker to GPS phones, with most of them being located in the Beijing area.
The MDC Nokia [6,7] was the result of a joint initiative between Idiap and NRC-Lausanne
from 2009 to 2011. The data set involved about 200 users of different demographics moving
in the Lake Geneva region, Switzerland. The data collected comprised the device’s locations,
SMS, calls, picture photos, devices in proximity detected with Bluetooth discovery protocol,
Wi-Fi scans and several sensing data such as accelerometer, audio samples, calendar, etc.
ParticipAct [34] was a pure MCS living lab designed by the University of Bologna, Italy.
The project involved about 180 students roaming in the Emilia Romagna region, and
mostly moving in the Bologna area. The data collected included device position (i.e.,
latitude and longitude), and data about the task’s competition such as pictures, feedback,
questionnaires, etc. Students were equipped with a smartphone and the location was
obtained by combining different sources of information. The authors of [17] describe a
massive passive data collection study in the area of Greater Boston, MA, USA (G-Boston).
G-Boston aimed to quantify the degree of asymmetry of the followed users’ routes, to
compare and estimate those factors influencing the choice to change route and finally
“assessing the veracity of passively collected smartphone data to understand pedestrian
route choices”, as reported in [17]. Data were collected with a smartphone-based mobile
application designed to track the daily routines of the participants. The app passively
collected the users’ movements by tracking the device position. Positions were obtained
by exploiting assisted GPS, the tower-based position of the network operator and satellite-
based GPS. The collected data covered a period of 12 months (15 May 2014 to 1 May 2015),
with a total of 263.670 trips (filtered down to 103.835) from 6.424 unique users. Finally,
the SensibleDTU large-scale experiment [35] was organized by the Technical University
of Denmark and the consortium of researchers from the University of Copenhagen. The
project organized two data collection campaigns, scaling up to 1.000 volunteers (mostly
students). The data collected included device positions and devices in proximity detected
with Bluetooth, as well as different kinds of Wi-Fi data.

In the next sections, we focus on two orthogonal aspects that can be leveraged to
optimize the design of an MCS data collection campaign, namely measuring features of
human mobility (Section 2.1) and extracting information about people’s contacts from the
mobility traces (Section 2.2).

2.1. Extracting Mobility Features

For the purpose of this section, we consider an analysis of a subset of the mobility
metrics of interest for the MCS objectives. The metrics analysed are obtained from the
ParticipAct data set [34], a representative MCS experiment conducted by the University of
Bologna in 2014.

A typical MCS architecture requires remote servers to periodically assign tasks to users.
Tasks can directly involve the users (e.g., providing feedback or answering a questionnaire),
or they can be autonomously completed without any human intervention. In this respect,
it is worth noting that tasks that do not require any intervention from the user allow one to
collect sensing information from a device, e.g., collecting GPS position, sampling ambient
light, measuring noise intensity or assessing the signal strength of Wi-Fi networks. In
both cases, it is important to schedule the right task at the right moment so as to increase
the probability of successfully retrieving data from the target users. Furthermore, we
also consider the possibility of sending so-called geo-referenced tasks to users. These
are tasks that can be completed by users roaming in a specific geographical region and
that can be completed in a certain time period. As a representative example, we refer to
the possibility of collecting pictures from a historical square for one week. To this end,
understanding the pattern of visits of volunteer users might ease the task of scheduling. It
is worth noting that the metrics described in the remainder of this section are computed
by analysing all the data available for a considered snapshot of length ∆t. As a result, the
possibility of predicting the user’s behaviour in terms of the analysed metrics is based on
the assumption that users will act similarly in the next snapshot. In Figure 2, we report a
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graphical representation of ParticipAct and in Figure 3, the aggregated time series of the
users’ visits monthly.
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Figure 3. Number of visits during 7 months of mobility for ParticipAct data set. The graph reports
the time periods with high and low numbers of visits. The inset graph shows a typical pattern of
visits for a representative week.

The graph shows a significant variation in the number of visits during the year. We
observe time periods during which users move more frequently (e.g., April to May 2014)
and other periods when the mobility slightly decreases (e.g., late in 2014). The inset graph
in Figure 3 further details the users’ visits on an hourly basis. From the inset graph, it is
possible to observe the daily pattern of mobility, e.g., working hours followed by off-time
hours. Such information can be exploited in order to predict the optimal time period for
the assignment of tasks to the end-devices. As a representative example, we refer to a MCS
data collection campaign designed to submit tasks to users only during working days in
the hour range of 9 AM–6 PM.
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Task assignment is also influenced by the locations that the users visit most. More
specifically, we argue that spotting crowded areas helps to give tasks to those users visiting
high-density places at the right time, such as, e.g., train stations, squares, or other points
of interests. In Figure 4, we report a heatmap showing two detailed levels: on the one
hand, it shows the top-most crowded locations, and on the other hand, it shows when
such locations become active in terms of users’ visits. High-density locations are identified
with the method proposed by Hariharan and Toyama (2004) and implemented with the
Scikit-mobility library [36]. In particular, given a geo-referenced data set, we identify
the so-called stop-location characterizing regions where users spend x minutes within a
distance of y km from a given trajectory point. Such regions are identified by considering
the median latitude and longitude of the user’s previously identified stop-locations. The
black arrows reported in Figure 4 show when such regions become active along time. More
precisely, it is possible to identify the stop-locations on an hourly basis for one working
day, so as to obtain 24 distinct snapshots and recombine them by only linking together the
top-most crowded locations.
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Finally, we mention the possibility of understanding, in an aggregated and anonymized
way, the mobility features of the users. In particular, we refer to the geographical distance
travelled by users. Certain users tend to commute regularly, following repetitive flows (e.g.,
home to work, home to school, etc.), while other users explore new locations far from their
homes. The authors of [19] investigate the impact of “recurrent mobility” with a GPS-based
data set. Being able to profile the users in terms of such mobility attitudes allows one to
select the best target users for a certain task. For example, if the goal of an MCS task is to
monitor some environmental parameters in a bounded region during working hours, then
the users to consider are those visiting such regions on a regular basis. In this respect, two
metrics are useful to characterize such features:

• The radius of gyration, rg.
• The maximum travelled distances of users, Md.

It is worth noting that the time period used to compute the two aforementioned metrics
greatly affects the obtained results. Our objective is to characterize users during a significant
time period, e.g., months, so as to capture their mobility patterns. To this purpose, the two
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metrics are computed by analysing all the mobility traces for the considered data set so as
to extract a pattern useful for planning an MCS data collection campaign.

More specifically, the radius of gyration quantifies the “typical distance travelled by
an individual” [19], providing an indication of the mobility pattern of a given user. The
radius is computed as follows, as implemented in [36]:

rg =

√
1/N ∑

i∈L
ni(ri − rm)

2

where L is the set of locations visited by a user, ri are the coordinates of the i-th location,
rm is the centre of mass of the user’s trajectories, ni is the visitation frequency of the i-th
location and N is the total number of the user’s visits. In Figure 5, we report the two
aforementioned metrics.
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Figure 5. Radius of gyration and distance travelled by users for ParticipAct data set.

The distribution of rg peaks around 25 km, which indicates that, on average, users
tend to travel in a radius of 25 km from their centre of mass, e.g., their home location.
Moreover, the ParticipAct users mainly take trips at a maximum of 0–100 km from their
home location, as reported in the histogram of Md.

Concerning the possibility of predicting the users’ locations, it is possible to compute
the distribution of the locations visited and the real entropy, as reported in Figure 6. In
the first graph, we report the distribution of the number of locations users visit, while in
the second graph, we report the real entropy, E. The purpose of the real entropy metric is
to measure not only the frequency of visitations, but also the order in which locations are
visited so as to capture the “the full spatiotemporal order present in a person’s mobility
patterns” [37]. More specifically, for the ParticipAct data set and for the selected period, we
compute the real entropy, E, for each of the users and in Figure 6, we plot the probability
density function (PDF) of the observed values. From the distribution, we observe that the
mean value of E ≈ 0.6, meaning that the next location of a randomly chosen user can be
found in 20.6 ≈ 1.51 locations. In other words, and only for the data set considered, it is
possible to predict the next location with relatively high accuracy. This kind of information
can in turn be exploited to figure out the visited locations and hence to plan a data collection
campaign from a set of locations. We further analyse the potentialities of predictability
metrics, and we also analyse the location entropy of the visited locations. More specifically,
from the considered data set, we extract all the locations visited at least once by the end-
users, namely the set LE. For every location, j ∈ L, we then compute the random location
entropy, LE(j), which measures the predictability of j under the assumption that each user
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visits j with the same probability. The location entropy is computed as follows (as reported
in [36]):

LE(j) = log(Ni)

where Nj represents the number of distinct users visiting j. In Figure 7, we report a heatmap
showing the LE(j) value for all the considered locations. From the figure, it is possible to
clearly identify highly predictable locations (marked with yellow gradient); hence, such
locations can be considered as targets for an MCS data collection campaign.
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It is worth pointing out that the effectiveness of the above user location prediction
process depends on the accuracy of the mobility information in use. The ParticipAct data
set provides mobility information with a time resolution of 2.5 to 5 min. Such a sampling
rate can vary according to several factors, such as the absence of location information,
unavailability of the device and the presence of energy-saving applications preventing the
use of Wi-Fi or broadband connections. Furthermore, the accuracy of the user’s location
depends on the quality of the GPS signal, or the location information used to localize the
device. It follows that the higher the sampling rate and the accuracy of the user’s locations,
the higher the quality of the extracted mobility features.
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2.2. Extracting Co-Location Traces from Mobility Traces

Mobility is not the only feature of interest for the design of an MCS data collection
campaign. An orthogonal dimension of humans is extracting information about the
temporal dynamics of people. In this section, we cover features of interest for the MCS
scenarios that are derived from the study of co-location traces. Users are co-located when
they are in the same place at the same time. Co-location can be studied by analysing
co-location traces which, generally, report the timestamp and the users in contact. Such
traces can be obtained either with proximity sensors or by processing mobility traces. In
the first case, the trace is obtained as a direct output of the sensor used. Examples are
the Bluetooth Low Energy (BLE) protocol and the Radio-Frequency IDentification (RFID)
technology that allow one to periodically scan the surrounding environment and to track
proximity with nearby devices in the range of few meters (from distances of 0 m to 10 m).
We refer to the SocioPattern (http://www.sociopatterns.org, accessed on 1 September 2021)
project for a high-quality collection of co-location data sets.

Data are collected with RFID sensors capable of detecting proximity between users
in the range of 1 m to 1.5 m (approximately) at a high temporal rate. In the second case,
co-location is obtained indirectly by analysing the position of the user’s devices and by
detecting those in the range of ∆l meters for at least ∆t seconds. Obviously, such inference is
prone to errors as location inaccuracy can lead to false positive and false negative proximity
between users’ devices.

Given the co-location trace, the analysis of some temporal features of the device
contacts reveals interesting properties. The literature in this area typically focuses on three
state-of-the-art metrics [38]: the distribution of the inter-contact time, the distribution of the
contact duration, and the number of contacts. Given a pair of individuals, the inter-contact
time measures the time elapsed between two successive contacts of a dyad. The shorter
the inter-contact time, the more frequently a dyad meet. Contact duration measures how
long contacts last. Long-lasting contacts generally give rise to voluntary interactions, while
short contacts are typical of involuntary gatherings. The number of contacts measures how
many contacts an individual has with others. The number of contacts characterizes the
social attitude of a person. More specifically, users with a high number of long-lasting
contacts are typically gregarious individuals. It is worth pointing out that in MCS, terms
such as long-lasting contacts and gregarious behaviours are referred to as contacts and
bonds between users that do not necessarily share a parental relationship but habitually
stay for a relatively long period of time in proximity with each other. It follows that such
meanings are intended in a broad way, also considering the relationships between strangers
that share common habits as gregarious. Examples include students that wait at the bus
stop for the school bus daily, or workers committed in a common long-term project. The
examination of the routine of contacts allows for the detection of co-location information
between individuals.

Co-location traces also allows one to reveal communities, namely a group of users
proxied by their end-devices linked with a high number of contacts. Such structures can
be detected with community detection algorithms designed to capture the gregarious
attitudes of humans.

3. Finding the Crowd with Community Detection Algorithms

People generally exhibit gregarious behaviours. In fact, we tend to establish relation-
ships with others according to the natural attitude of preferring “similar” ties instead of
dissimilar ones [39,40]. Similarity is also referred to as homophily, namely the tendency of
people to bind with others with similar profiles such as, e.g., interests, visited locations,
acquaintances, or opinions.

Homophily shapes our social relationships in many contexts, such as our working
environment and private life. Being able to spot similarities between individuals and
cluster them is not an easy task. To this purpose, in this section, we report some results
of the vast literature investigating community detection strategies that can be adopted

http://www.sociopatterns.org
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to optimize an MCS experiment [41]. The interested reader can find two general and
comprehensive surveys of community detection algorithms for general networks in [42]
and [43]. Indeed, an MCS data collection campaign might require the collection of data
from specific target users, such as students of a specific academic year, commuters sharing
public transport, or colleagues working in the same office.

The current literature reports several definitions of the term community, as the concept
itself may assume different connotations based on the domain it is applied in [41,44]. As
a result, many community detection algorithms are available, with the goal of detecting
clusters of nodes by analysing different features of the network. In the next subsections, we
report a subset of the methods available, algorithms based on the analysis of the locations
visited by the users (see Section 3.1) and algorithms based on the analysis of the contacts
between them (see Section 3.2). In the first case, the goal is to identify clusters of users
roaming in a specific location for a time period (also referred to as stop-place detection),
without considering the ties binding them.

Differently, in the second case, the goal is to detect clusters of users by analysing the
number, magnitude, and links among them. More specifically, we focus on those algorithms
able to analyse dynamic networks, namely networks with links connecting nodes that
appear and disappear as time progresses. Figure 8 shows an example of such dynamic
evolution. This feature is extremely important for the MCS domain, since communities
may evolve over time, creating, splitting, merging, destroying, and creating again.
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Figure 8. Representation of a single and of a multi-layer network. With a single network layer, the
temporal dimension is not considered, giving rise to a single connected component spanning for
30 min. Instead, the multi-layer network shows the active links during each of the 3 layers of 10 min
duration.

3.1. Spatial-Based Approaches

Among the main community detection algorithms that only exploit spatial infor-
mation, DBSCAN [45] represents a popular approach. DBSCAN (Density-Based Spatial
Clustering Algorithm with Noise) is an unsupervised learning approach used to identify
clusters; it is possible to also adopt such an approach to detect communities of users’
devices by identifying high-density locations. DBSCAN identifies groups of points (i.e.,
clusters) in proximity in the space. Typically, for community detection purposes, the
points represent the locations visited by the users and they are identified by geo-spatial
coordinates. DBSCAN detects clusters of points using two main parameters: the spatial
density and the distance threshold. The spatial density sets the minimum number of
points required to form a cluster, while the distance threshold determines the maximum
distance for the algorithm to identify two points as belonging to the same cluster. DBSCAN
computes the distance between all the points and assigns a label to each cluster. Another
spatial-based approach for community detection is given by partitional algorithms, among
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which one of the most known is k-means [46]. Briefly, k-means is a spatial clustering
algorithm and one of the simplest unsupervised learning approaches based on partitions.
It operates by first splitting n observations into k clusters and by assigning the observations
to each cluster according to a given heuristic. Afterwards, it computes the centroid of each
cluster and creates new partitions by reassigning each observation based on the nearest
average distance of the observation from the cluster centroid. The procedure is iterated
until the algorithm converges. The objective of the clustering performed with k-means is
the minimization of the total intra-cluster variance.

We also mention an interesting algorithm to identify the stop-places, namely locations
where users stop for a while. InfoStop [47] implements a stop-place detection algorithm that
overcomes the limitations of the DBSCAN. InfoStop implements a flow-based approach by
leveraging the network community detection algorithm InfoMap [19,20]. The identification
of the stop-places consists of two steps: it firstly labels each of the user’s trajectories as a
trip or stay trajectory. The second step aims at clustering the points previously detected
by using the InfoMap algorithm (see Section 3.2). In particular, the network generated
is composed by nodes representing the trajectories labelled as stay (first step) and links
connecting the nodes are added if a pair of nodes are at a given distance.

3.2. Co-Location Based Approaches

A different approach is adopted by community detection algorithms that leverage
the co-location information between users. As previously reported, we focus on some
algorithms able to detect communities on dynamic networks. Figure 8 reports an example
of a dynamic network represented as a multilayer network, where each layer of the network
reports the contacts between nodes (e.g., the user’s devices) in a time bin of ∆t (in the figure,
each time bin corresponds to 10 min). Nodes can be linked inside each layer (intra-layer
links) and across different layers (inter-layer links). For example, node x is linked with
node y from layer 1 to layer 2, meaning that a link spanning two different layers exists. In
this section, we describe three algorithms designed to detect communities by considering
such dynamic structures.

Two interesting social-based approaches to community detection are represented by
TILES (Temporal Interactions Local Energy Strategy) and iLCD (intrinsic Longitudinal
Community Detection) [48,49]. The former implements an online iterative procedure and
explores the flow of interaction between people through a domino-effect strategy and a
label propagation procedure. The latter recreates the network of contact by processing each
chronologically ordered piece of co-location information step-by-step and then determining
new communities based on a minimal community pattern (e.g., a 3,4-clique).

The InfoMap [14,50] algorithm can also be adopted to detect communities with time-
evolving networks by exploiting the multilayer network support (see Figure 8). InfoMap
detects such flows connecting nodes within and across different layers. In particular, the
algorithm runs a random walker, visiting nodes with a probability given by links connecting
nodes. The walker periodically performs a jump to other nodes and a jump to other layers.
As a result, the random walker visits the whole network spanning across multiple layers.
However, the walker more frequently visits tightly connected nodes and thus remains
“trapped” in clusters of nodes with a high number of connections. The random walker
describes the path followed by using codewords based on a set of codebooks. The goal of
InfoMap is to compress such description by minimizing the map equation [50] framework.
As a result, the problem of detecting communities is solved my minimizing the length of a
set of codewords describing the visits performed by a random walker.

Communities (or clusters) can be measured to characterize very different properties,
such as cohesion, the amount of information represented, the stability of the partitioning,
etc. [51]. A first aspect to be considered is the existence of the ground truth, namely the real
structure of the communities. If this information is available, then it is possible to compare
how much the algorithm used to detect the communities reflects the real structure. Under



Sensors 2021, 21, 6397 13 of 19

this aspect, we refer to the Adjusted Rand Index, a family of metrics based on Mutual
Information, and metrics assessing the homogeneity and completeness of the communities.

These representative examples allow one to compare the difference between what is
obtained from what is expected. Unfortunately, the ground truth is not always available. In
these cases, some metrics can still be used to assess the properties of interest in the detected
communities, for example, how much communities overlap, how stable they are along
time or how free they are from noisy data, etc. As a result, we argue that it is not possible to
provide a rule of thumb for a quantitative assessment of communities; rather, its evaluation
highly depends on the scenario considered.

4. Usage Scenarios and Beyond

The information regarding the interaction among volunteers of the MCS platform and
their communities can be exploited in several ways. Here, we review four scenarios for the
use of this information, namely contact tracing with community detection, edge selection,
and finally, prediction of the behaviour of communities, starting with the most realistic and
perhaps current, up to the most futuristic.

The first scenario (contact tracing with community detection) emerged with the recent
COVID-19 pandemic as a means to prevent the diffusion of the epidemic through the active
contribution of the crowds; the second aims at optimizing the MCS platform itself and
emerged in the recent scientific literature; the third scenario refers to the possibility of
improving digitalization applied to manufacturing processes. Finally, the last scenario may
also be applied to the optimization of the MCS platform itself, but it may adapt to new
application scenarios.

4.1. Contact Tracing and Community Detection

The first usage scenario concerns the use of contacts among users and of communities
to the purpose of finding spatial relationships among users. The recent COVID-19 pandemic
has seen a rise in the use of large-scale apps for contact tracing, as a means to automatically
track infected people [52,53]. Such apps are an interesting example of the MCS paradigm,
as users’ devices periodically upload their contacts with proximity-sensing interfaces. The
analysis of collected data is extremely useful to re-build the contact network, with higher
accuracy than self-reporting tools (e.g., questionnaires or surveys) [52,54]. In this respect,
we consider the possibility of employing predicting tools to infer information useful for
tracing contacts and to detect communities as a valuable option [55]. More specifically, we
refer to the possibility of:

• Identifying communities of users that regularly meet;
• Predicting the next visited community and the location of such meeting.

We argue that these kinds of techniques increase the possibility of improving preven-
tion policies limiting or controlling contacts in crowded areas. The goal is not to track a
single user, but rather to observe the benefits of the actions on a large population on a
higher scale. Similarly to some studies showing the impact of a lockdown period to the
vehicular and pedestrian mobility [56], it might be possible to study how users’ mobility
and sociality changed before/after a quarantine period, by analysing, e.g., the reduction
in contacts and the contraction of communities and locations where such contacts occur.
Concerning the large variance introduced by such tools, we acknowledge that this might
represent an issue. However, all statistical tools inherit a certain degree of inaccuracy. Our
opinion is that the quality of the data set, the demographic, the duration and the performed
analysis are all factors that can contribute to limiting the inaccuracy of the predictability.
A further step to support the prevention of COVID-19 disease consists of determining
communities of users to analyse the spread of infection spread within a community over
time, as suggested in [57]. Moreover, understanding the membership of humans to com-
munities, the spatial scale of their human interactions, and how the network of human
communities’ changes over time is a powerful tool to target interventions to at-risk areas
without unnecessarily restricting areas at low risk of resurgence [58]. Even if a user does
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not interact with all the community’s members, the domino effect might quickly spread
a virus to all the members in short time. Such diffusion might be brutally aborted with
an aggressive policy that alerts all the members of an infected subject in advance. A key
aspect in this scenario is the number of users participating to the MCS campaign, which, if
too low, may prevent the effectiveness of contact tracing. Beyond common strategies for
users’ recruitment [59], a different approach in this regard comes from social amplification
strategies [60] that aim to implicitly collect data from non-subscribers. In this scenario,
each subscriber implements the concept of social amplification by collecting, by means of
its sensor or interfaces (such as smart watches and smart devices), information about the
presence of other people in its surrounding, thus enabling the construction of aggregated
data about gatherings (e.g., the construction of temporal maps of the crowds).

4.2. Extending the MCS Architecture with an Edge Layer

A traditional MCS architecture implicitly assumes that data provided by user’s devices
can be gathered with an end-to-end connection (e.g., 5G broadband links) between the
device and the back-end server located on the cloud.

Most recent deployments, however, also introduce an additional, intermediate edge
layer between the back-end and the end-devices. Such a layer has the goal of easing the
data collection and the distribution of tasks to the end-devices with a bridge to/from
the back-end. This edge layer is deployed in proximity to the base stations providing
connectivity, so as to be close to the end-devices and hence to reduce the communication
latencies. Such a paradigm is also known as Multi-access Edge Computing (MEC) [61].

A further enhancement of this architecture, which has been envisioned in several
recent works [38], consists of configuring some of the end-devices to act as (mobile) edges
themselves. Indeed, Multi-access Mobile Edges (M2ECs) of a MEC architecture are regular
end-devices that exploit opportunistic communications with other devices to perform
two basic operations: retrieving data to be uploaded to the back-end and propagating
MCS tasks to the end-devices. The two operations can be achieved by exploiting wireless
short-range ad hoc communications through, e.g., direct Wi-Fi, Bluetooth or ultra-wide
bands, short-range links that generally are free-of-charge. This enhancement trades the
costs of broadband communications (both in terms of energy and subscription costs) with
an increased latency in the communications between the end-devices and the back-end
servers, and it is suitable for applications that require an off-line analysis of collected data.

One of the key issues of such layered architecture is how to select the end M2EC
devices among all the devices of the MCS subscribers [62]. Clearly, the selection of M2ECs
should be carried out in such a way to increase the opportunities of (short- range) commu-
nication between them and the other end-devices. In this regard, a consolidated approach
consists of exploiting the knowledge of MCS user communities to identify the leaders that
may act as proxies for the members of the community they represent [62]. Since members
of a community interact periodically, the resulting dynamic network can be analysed to
measure the centrality of its members (e.g., betweenness, eigenvector, k-core scores). The
higher the score adopted, the more “central” a device is to the communications among
members of its community [44].

4.3. Digitalization and Industry 5.0

The possibility of retrieving data from IoT-ready devices is enabling the digitalization
process envisioned with Industry 5.0 [63], and consequently, the MCS paradigm can also fit
industrial scenarios. An example is the increase in (indoor and outdoor) safety policies. In fact,
the sensing information retrieved from wearable units might also refer to the proximity between
employees and specific machinery. Such information allows one to recognize hazard situations
and to adopt policies of prevention [64]. Similar considerations can also be applied to situations
in which it is required to monitor the occupancy of specific locations, such as data centres or
production sites [65]. In these cases, the MCS paradigm allows one to increase the amount of
useful information so as to determine whether such environments are occupied and how people
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move inside such places. In this respect, we mention the crowd localization [31,66] as a concrete
application of the MCS paradigm. The idea is to improve the accuracy of an indoor localization
system by exploiting data retrieved from target users. This approach can also be applied to
industrial settings, in which employees are equipped with sensing tags able to localize and to
detect nearby objects.

The MCS paradigm provides a valuable approach to environmental monitoring as
well. Indeed, the sensing capability of wearable units, such as smartphones and wristbands,
opens up the possibility of implementing continuous, participatory monitoring [25]. Of
course, the accuracy of the collected data might be affected by disturbing factors. However,
the aggregation of such data still represents an added value.

4.4. Predicting Community Behaviour

MCS platforms traditionally combine information about the mobility of their sub-
scribers along with their profiles, to plan and activate data collection tasks [12]. This is
particularly useful in campaigns that collect geo-referenced data. For example, a task or a
query can be directed to subscribers that are active in a specific area or that are likely to
reach a given location. However, as discussed in Section 3, more sophisticated informa-
tion about the dynamics of MCS subscribers (such as the identification of communities
of subscribers) can emerge from the analysis of location information of the subscribers
and/or from information about their reciprocal proximity. In perspective, this information
may be enriched with predictions about the behaviour of communities such as, e.g., future
stop-places, the turnover of members, lifetime, etc. In this respect, it is worth noting the
use of predictive methods also based on neural networks, e.g., LSTM (long–short-term
memory) or GRU (Gated Recurrent Units) able to identify recurrent patterns and to predict,
with reasonable accuracy, the next visited location, or the next stop location [37,67]. This
kind of information creates new perspectives in the planning and organization of MCS data
collection campaigns that currently exploit information regarding existing communities,
but that, in perspective, may benefit for scheduling purposes, coverage and in general,
from improving the efficiency of the campaigns of predictions about how communities
behave and evolve. Another potential application of the MCS paradigm may come from
the analysis of the mobility of community members, with the goal of identifying crowds.
This task is currently achieved by using cameras and image processing [68], but a similar
analysis could be conducted by injecting suitable tasks in an MCS platform, so as to obtain
the crowd density coverage of large public events, for instance, or for security applica-
tions. Although this approach has still not been explored to our knowledge, some recent
approaches of community density identification such as [69] may suggest this as a viable
direction. Finally, coverage is another key-objective for the MCS domain since, often, it is
required to collect data from a bounded geographical area. Such a goal can be obtained by
better understanding how people move and, more specifically, how clusters of people visit
the environment [44].

5. Discussion and Conclusions

The effectiveness of an MCS data acquisition campaign strongly relies on the active
involvement of the end-users. The higher their active contribution is, the higher the
quantity of data that can be collected is. In this respect, an important contribution to the
data collection process, which, however, is not explicitly produced by the users, comes
from their mobility and from their implicit network of relationships in the form of contacts,
communities, and their dynamics.

We have extensively discussed how such data can be processed by community detec-
tion algorithms designed to detect clusters of people linked with robust ties, and how they
can be used in three application scenarios. From these perspectives, online co-location-
based approaches seem to return more accurate information on the inner circles of the
users if compared with the ones obtained by community detection algorithms based on the
comparisons of spatial information belonging to single individuals. Notwithstanding, both
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online co-location-based and spatial-based can result in valuable approaches for off-line
mobility data analysis. Concerning these scenarios, we note that they are representative of
two needs: one of the MCS platform itself that uses mobility data, contacts, and communi-
ties to optimize its internal mechanisms; and one of the applications that use the same kind
of information for their own purposes. However, there can be further scenarios that could
be considered with respect to the MCS data collection campaigns, and a plethora of com-
munity detection approaches or artificial intelligent techniques exist, devised to discover
more or less strictly connected clusters of people by exploiting the information hidden
within the users’ mobility data. Concerning the need to optimize the MCS platform itself,
we believe that the increasing diffusion of the MCS paradigm will give rise to massive data
collection campaigns. Incentives to promote this trend are mainly related to reinvestment
in the territory of the information collected through the devices’ sensors in the urban fabric,
for instance, for sustainability purposes. From this perspective, a central-monolithic archi-
tecture would not be the optimal solution for an increasing number of devices generating
data at high rates. For this purpose, the introduction of a (decentralized) mobile edge
layer, at least for MCS campaigns aimed at an off-line data analytic, can mitigate possible
bottlenecks and, at the same time, reduce the impact to the final user in terms of data
traffic plan, battery consumption and device usage. On the other hand, studies on the
interplay between mobile edges, end-devices and back-end servers are still in early phases,
and the trade-offs concerning energy, latency, number of M2ECs are still to be analysed in
depth. In fact, with respect to the examples of edge-based MCS paradigms discussed in the
literature so far, both MCS and MEC are still in their infancy and further investigations
are required before an effective, efficient, satisfactory, and possibly standardized urban
sensing architecture can be reached, able to process almost real-time mobility sensing
data without burden on the users’ devices’ performance and/or negatively affecting the
computational support provided by the middleware MEC proxies. Concerning the needs
of MCS applications, we highlighted how the social context of the end-users and their
communities play an important role, and, from this perspective, they might be enhanced
with social amplification strategies. Recent and more advanced MCS applications are able
to autonomously select and trigger the most pertinent action, as well as the appropriate
device that is best suited for a given task only on the basis of the inner circle of a subject.
The higher the request of fine-grained data, the higher the need of accurate strategies for
the recruitment of volunteers provided with the potential to retrieve such data. In Industry
5.0 scenarios, as well as in urban areas, the analysis of the benefits of MCS are still ongoing
projects. The MCS applied to the industrial life-cycle has the potential to positively affect
the time-to-market and the business plans of the industrial apparatus, as well as to ease the
discovery process of the laws leading the insiders’ interactions within their workspaces.
Based on these premises, we expect that in the near future, the MCS paradigm will act as a
powerful tool to understand complex phenomena in industrial scenarios and urban areas
with an accuracy never seen before. There may be plenty of data in the users’ pockets, but
there is no room for missed data.
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