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Abstract: In this paper, we propose and experimentally demonstrate a three-dimensional (3D)
microscopic system that reconstructs a 3D image based on structured light illumination. The spatial
pattern of the structured light changes according to the profile of the object, and by measuring the
change, a 3D image of the object is reconstructed. The structured light is generated with a digital
micro-mirror device (DMD), which controls the structured light pattern to change in a kHz rate and
enables the system to record the 3D information in real time. The working distance of the imaging
system is 9 cm at a resolution of 20 µm. The resolution, working distance, and real-time 3D imaging
enable the system to be applied in bridge and road crack examinations, and structure fault detection
of transportation infrastructures.

Keywords: 3D reconstruction; microscopy imaging; structured light imaging

1. Introduction

Three-dimensional (3D) microscopic imaging is a key tool for structure fault detection
and analysis of the material degradation in transportation infrastructures [1,2]. The 3D test
results provide valuable information of transportation infrastructure, such as the depth
and width of a crack, and the volume of an abnormal protrusion [3,4]. Based on scanning
methods, the 3D microscopic systems have been widely studied and achieve a high lateral
resolution (hereinafter referred to as resolution). By controlling and scanning the focal point
in the x, y and z directions [3,4], the scanning microscopes capture the object information at
each scanned point. The scanning methods remove the interference signals from adjacent
points to achieve a resolution higher than the diffraction limit. The high resolution is ideal
for a lab test, whereas for a field test in the transformation system, the test speed becomes
the major factor to be considered. The scanning methods require seconds or minutes to
finish a scan and obtain a 3D image. The long imaging time requires the sample to be held
stable during the imaging process, which is not ideal for field tests.

Three-dimensional imaging based on structured light illumination has been used
to reconstruct 3D images in relatively large scales, such as face recognition. A widely
used structured light pattern is black–white ray stripes and is generated by the averaging
four-frame shifting method [5]. After the structured light is projected onto the surface of the
object to be measured, a camera system captures the object image from a different angle of
view. The height information and 3D morphology of the object surface create deformations
of the structured light. To quantitatively measure the deformation, the system is calibrated
with pre-known patterns, and the relative positions between the object, the projector and
the camera are determined in the calibration process. By calculating the deformation of the
stripes and the relative positions between the projector and camera, the 3D information
of the object is measured [6–8]. A calibration algorithm has recently been proposed by G.
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Taubin et al. [6], which significantly reduces computation time and improves the resolution
of the imaging system.

In this paper, we applied the structured light illumination to microscopy and devel-
oped an ultra-fast 3D microscopic imaging system. A digital micro-mirror device (DMD)
was used to generate the structured light [9]. The structured light was then projected on
to the object through a microscopic system. To the best our knowledge, the coupling of
structured light to a microscopic system for 3D image reconstruction has not been widely
used. Another microscopic system was used to image the object on a charge-coupled device
(CCD). Both the projection system and the imaging system were designed and optimized
for the field test of transportation infrastructure. The imaging and reconstruction times
were less than one second, which meets the needs of an instant measurement for a field
test. The physical imaging setup allowed the traditional computer vision 3D reconstruction
algorithm to be applied in the microscopic image processing [10–12].

2. Methods

The principle of 3D imaging based on structured light illumination is to calculate
the depth information by observing the deformation caused by the uneven surface of the
object. The structured light is generated by a phase-shifting method [5,13,14]. With the
relative positions between the camera and projector, the depth information of the 3D object
is calculated by the phase-shift of the structured light [15–18]. Image reconstruction using a
microscopic system is different from image reconstruction that uses a traditional large-scale
camera system in two aspects, and a redesign of both the reconstruction algorithm and the
hardware system is needed to achieve an ideal resolution.

First, the intensity fluctuations of the structured light cause an error of phase-shifting.
The impact of such fluctuations is negligible in large-scale imaging, whereas in microscopic
systems, a relatively small light–power fluctuation causes numerous errors that cannot be
neglected. This is caused by the fact that the microscopic systems use a larger aperture
compared with the apertures of most large-scale imaging systems. The large aperture leads
to a large aberration, and the aberration causes reconstruction errors. If the projection
system uses black and white stripes with the same width, the observed white stripes (bright
area) are significantly larger than the black stripes (dark area). The boundary is also blurred
from the impact of the aberration. The change in white stripes and the blurred boundary
is based on the optical transfer functions of the microscopic projection system and the
imaging system. We redesigned the patterns of the structured light and optimized the
threshold function that identifies the boundary of black and white stripes based on the
optical transfer functions.

Second, the field depth of the microscopic systems is much smaller than the field
depth of the camera systems used for large-scale imaging. To achieve a high resolution and
to enable adequate illuminance, the microscopic systems are designed with large apertures,
and the field depths are inversely proportional to the radius of the aperture. For 2D
imaging, the limited field depth blurs the image when the object does not overlap with the
focus plane of the imaging system. For 3D imaging, the limited field depth affects both the
imaging sub-system and the projection sub-system. The resolution of the 3D reconstruction
system depends on the field depths of both sub-systems. We designed the system by
optimizing the position of the object, the focus points of the two sub-systems and the angle
between the two sub-systems to maximize the overall field depth and the resolution.

Figure 1 shows the flow chart of the reconstruction system, which includes two major
steps, calibration and reconstruction. A checkboard with a pre-known dimension is used
to calibrate the system. The checkboard is a surface with black and white square lattices.
The system is calibrated by changing the position and angle of the checkboard surface.
At least three different positions are used to perform the calibration. The calibration
process measures the relative positions between the camera and the projector, and once the
calibration process is finished, the system can test different objects without the need for re-
calibration. The second step is the reconstruction; here, the testing object is illuminated with
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structured light and the 3D profile of the object is reconstructed based on the deformation
of the structured light and the relative positions between the projection system and the
imaging system. After reconstruction, the reconstructed image is further processed to
minimize measurement errors.
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Figure 1. Reconstruction flow map.

The calibration includes three sub-steps (Figure 1). The checkboard is placed in
three different positions, all of which are within the depth of fields of both the imaging
system and the projection system. The images of the checkboard are compared with the
pre-stored information of the checkboard to obtain the transformation information [6].
The transformation information can be represented by the transfer matrix. The transfer
matrix M is shown in the following equation and transfers the projector space to the
camera space. A point v in the projector space can be represented by v = [x, y, z]T, and its
corresponding coordinate in the camera space is u = [ x′, y′, z′, 1]T, and v, u and M satisfy
the following equation:

 x
y
z

 = M


x′

y′

z′

1

, M =

 r11 r12 r13 tx
r21 r22 r23 ty
r31 r32 r33 tz

 (1)

M can be written in the form of M = K[R|T] , where R shows the rotation of the
coordinate and T shows the translation of the coordinate. Both are an extrinsic parameter
matrix. We also need an intrinsic parameter matrix:

K =

 fx s x0
0 fy y0
0 0 1

 (2)

In this matrix, fx and fy are the distances between the focal planes to the viewpoint.
The central point of the projector is

(
x0, y0

)
. The s is a twist parameter, which was 0 in

our experiment. We calculated local homographs [11,18–21] in the experiment. Suppose
a corner on the checkboard q = [col, row, 1]T, which is captured by the camera, then the
corresponding point on the captured image is p = [x, y, 1]T, then we find the homography
Ĥ that minimizes:

Ĥ = argmin
H

∑∀p ‖q−Hp‖2 (3)

The microscopic imaging system inverses the image, so the point pair [q(n), p(n)]
becomes [q(n), p(N− n)]. Thus, for each point on the checkboard:

q(n) = Ĥp(N− n) (4)
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The transformation matrix with inverted image can be represented by M′:

M′ =

 −r11 −r13 − r12 tx
r21 r23 r22 ty
r31 r33 r32 tz

 (5)

With the pre-known information about the checkboard, and the calibration, M′ can be
measured.

3. Experimental Setup

The experimental setup of the 3D microscopic image reconstruction system is shown in
Figure 2a. The top is the imaging sub-system, and the bottom is the projection sub-system.
A DLP generated the structured light, which was coupled to the object plane through a
microscopic objective lens. The structured light included horizontal and vertical stripes,
indicated by black and white patterns. With different densities and different widths of the
stripes, both the overall profile and details of the 3D object were obtained. A 3D image was
reconstructed with 42 patterns, with 21 horizontal-stripe patterns and 21 vertical-stripe
patterns. The resolution of the system depended on the finest pattern, which included
480 vertical or horizontal stripes.
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Figure 2. (a) Experimental setup. CCD, charge-coupled device camera; VF, variable neutral density
filter; DLP, digital light processing projector. (b) Enlarged view of the rectangle region labeled with
“3D object” in (a).

A variable neutral density filter was placed between the projector and the object. The
filter controlled the intensity of the structured light, so the light intensity was neither too
strong to saturate the CCD camera nor too weak to obtain a clear image. The checkboard
for calibration included 6 × 7 square lattices and the side of each square was 0.7 mm. The
angle between the object lens of the imaging system and the object lens of the projection
system (θ in Figure 2a) was optimized based on three factors: (1) Field of view and depth of
field. Figure 2b is the enlarged view of the focus area in Figure 2a. The two grey rectangles
show the focus region of the projection system and the imaging system. The long sides of
the grey rectangles show the field of views, and the short sides of the grey rectangles show
the depth of the fields. To capture the image of the object in a single reconstruction, the
object was within the field of views of both the projecting system and imaging system, and
to obtain a clear image, the 3D object was within the depth of fields of both the projection
system and the imaging system (in the overlap region of the two grey rectangles). A smaller
θ corresponds to larger overlaps of both the field of views and the depth of fields of the two
systems; (2) Resolution of the depth. The depth information of the 3D object was obtained
based on the fact that the projection system and the imaging system focused on the object
from different angles, where the difference of the angle is θ. The larger θ corresponds
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to a larger resolution of the depth that the system can achieve; (3) Shape of the objective
lens. The selection of the θ was also limited by the radius of the objective lens (r) and
the working distance (l) (Figure 2a), where θ/2 has to be larger than arctan (r/l) to avoid
contact between the two objective lenses. Under all these considerations, the optimized θ

in the system was selected to be 31 degrees.
The DLP used in the experiment was the DLP 3010 Light Control Evaluation Module

from Texas Instruments. The resolution of the DLP was 608 ∗ 684 pixels. The CCD in the
experiment was a Dino-Lite Edge 3.0 digital microscope. The resolution of the CCD was
2560 ∗ 1440 pixels. The objective lens of the DLP sub-system provided a total magnification
of 20× with a numerical aperture of 0.25. The objective lens of the CCD sub-system
provided a total magnification of 2× with a numerical aperture of 0.1.

4. Results and Analysis
4.1. System Demonstration

The reconstruction results are shown in Figure 3. The object under test was a 3D
printed star with a diameter of 7 mm and height of 2.5 mm. Figure 3a is a 2D image
of the star. Figure 3b shows the star illuminated with structured light. Figure 3c shows
the reconstructed 3D point cloud. Figure 3d shows the results after optimization, and
the heatmap shows the height information of the star. The optimization process used a
K-means clustering algorithm to remove the background points and independent points.
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Figure 3. Experimental results of a 3D printed star. (a) Original 2D image of the star. (b) Image of the
star illuminated with structured light. (c) Reconstruction point cloud of the star. (d) Heatmap that
shows the depth and height information of the star. The x, y and z scales are in the unit of millimeters.
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The 3D profile of the object changes the patterns of the structured light. When
structured light with a large density is used (for example, 480 stripes in Section 3), the
stripes can be compressed by the 3D profile of the object. If the density of the compressed
stripes reaches the resolution limit of the imaging system, the system cannot identify the
stripes. Under such conditions, the algorithm is designed to reconstruct the image in the
local region with a stripe density in the next level (480 stripes per picture to 240 stripes
per picture). The reduced density corresponds to a reduced reconstructed resolution and
can be improved by viewing the object from a different angle. Table 1 shows the vertical
structured light patterns used in the experiment. The horizontal structured light patterns
are the same. The two patterns in each row are complementary patterns. For example,
pattern 5 has one white stripe and two black stripes, and pattern 6 has one black stripe and
two white stripes. From pattern 11 to pattern 22, the stripe density in each group is twice
the density of that in the previous group.

Table 1. Structured light pattern.

Pattern Number Number of Stripes

1–2 All white or all black

3–4 2

5–6 3

7–8 5

9–10 9

11–12 15

13–14 30

15–16 60

17–18 120

19–20 240

21–22 480

4.2. Resolution and Depth of Field

The resolution test chart with the 1951 USAF standard was used to test the lateral
resolution and the depth of field of the reconstruction system [22]. The resolution here
refers specifically to the lateral resolution. The depth of field of the system depends on both
the projection sub-system and the imaging sub-system. When the test chart overlapped
with both the focus points of the projection sub-system and the imaging sub-system, both
the test charts (horizontal black bars in Figure 4a and the structured light (vertical strips
in Figure 4a)) are clearly seen. The test chart in Figure 4 is group 5, element 2 in the 1951
USAF standard, with a line width of 15 µm.

Figure 4b–d show the resolution at different depths. The threshold contrast in the
experiment was 0.02. The positive sign indicates the object moves towards the objective
lens, and the negative sign indicates the object moves away from the objective lens. In
Figure 4b,d, where the test chart is ±3 mm from the focus point, both the test chart and the
structured light can be identified. The contrast of the structured light is enhanced with local
integration (right four figures). In Figure 4c, where the test chart is 10 cm from the focus
point, neither the test chart nor the structured light can be identified. The experimental
results show that the system achieved a resolution of 20 µm with a depth of field that is
±3 mm.
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Figure 4. Resolution of the system at different positions. The four figures on the left show the image
captured by the CCD camera. The four figures in the middle show the contrast of the horizonal
resolution test chart. The four figures on the right show the contrast of the structured light with
vertical stripes. For all four figures in the middle, and four figures on the right, the horizontal axes
show the distance with units of micrometers, and the vertical axes show the 8-bit grey scale (0−255).
Zero indicates that the test chart overlaps with the focus points of both the imaging system and the
projection system (a). Positive sign indicates that the test chart moves away from the system ((b,c))
and negative sign means the test chart moves towards the system (d).

5. Applications in Transportation Infrastructure Measurement

The 3D microscopic image reconstruction system fills a gap of the existing imaging
methods for transportation infrastructures. In the construction of transportation infrastruc-
ture, measuring the change in soil water content in the natural environment is an important
link to ensure the stability of infrastructure construction such as roads and bridges. Usually,
imaging techniques are used to quantify soil samples for further research. Two-dimensional
imaging methods have been widely studied in both the large-scale and microscopic scale
and have been implemented in both lab tests and field tests [23–25]. Instant 3D imaging
has been applied in large-scale image reconstruction, whereas instant 3D imaging in the
microscopic scale has not yet been studied fully [26,27]. The 3D reconstruction system in
this paper achieved an instant 3D image reconstruction at the microscopic scale and can be
deployed in the following applications.
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5.1. Volume Calcuation Based on a 3D Profile

Volume is an indispensable parameter to measure the abnormal structural variation
in transportation infrastructures. The volumes of cracks or protrusions reflect the internal
stress and the potential damage to the structure [28,29]. One of the influencing factors
is a curling of the soil surface. In the process of soil turning from moist to dry, the soil
will crack, and the surface will curl around the cracks. These soil surface curls will
accelerate soil loss and increase the roughness of the soil surface. These curls will also block
more wind and accelerate the destruction of the soil structure, which becomes a potential
threat to sandstorms. These soil surface curls cannot be quantified with traditional 2D
imaging techniques since depth information is not provided. Three-dimensional imaging
technology, especially small-scale 3D reconstruction, can provide additional details about
soil surface curling. Compared with 2D imaging technology, 3D imaging can provide more
information about the volume changes during the soil drying process. Figure 5 shows the
reconstructions of soil samples.
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5.2. Time-Dependent Measurement 

Figure 5. Reconstruction of soil samples. (a) Point cloud reconstruction of higher elevation samples.
(b) Point cloud reconstruction of lower elevation samples. (c) Visualized data that show the depth
and height information of the higher elevation samples. (d) Visualized data that show the depth and
height information of the lower elevation samples. Black circle shows the effect of soil surface curling
(Red points). The x, y and z scales are in the unit of millimeters.

As shown in Figure 5d, the red part of the soil sample becomes higher. This is because
as the soil dries, the edges of the cracks will curl upwards. By using only the 2D imaging
method, the estimated volume of surface curling is not accurate. Such an effect is so small
(within 1 mm) that it is difficult to quantify by a 2D top view or cross-sectional view. By
using the 3D microscopic method, the volume of the cracks or protrusions can be accurately
calculated based on the reconstructed 3D profile with a resolution of 20 µm. The 3D
microscopic method can present an accurate reconstruction regardless of the elevation. The
field of view of the microscopic system is 10 mm × 10 mm. If the object to be observed is
larger than this area, the system can be mounted in a mechanical scanning stage to achieve
a large area scan without a loss of resolution.

5.2. Time-Dependent Measurement

The time-dependent measurement indicates the changing trends of the structure. The
system can measure time-dependent changes in both short time-frames and long time
frames. For the short time-frame measurement, the reconstruction method can capture
the instant changes in the time frame of sub-seconds, which is essential to observe the
interaction between the microorganism and manmade materials, such as asphalt and



Sensors 2021, 21, 6097 9 of 11

concrete. By taking a 3D image at every second, a video can be created, and the 3D profile
of both the microorganism and manmade materials are recorded in real time. For a long
time-frame measurement, the system can perform a measurement in every few hours for
the same target and record the changes of the target over the time-frame of months or years.
Within such durations, the measured results can be used to analyze the performance of the
transportation infrastructure under different weather conditions [30,31], the change in the
external profile induced by internal stress [32,33], and the anti-fatigue performance [34,35].

5.3. Field Test with Long Working Distances

The long working distance enabled the system to perform a field test. The working
distances of both the imaging objective lens and the projection objective lens (l in Figure 2a)
were 10cm. Based on the analysis in Section 3, the θ was chosen to be 31 degrees. The
working distance in the direction that is perpendicular to the object surface was lcos(θ/2),
and considering the radius of the objective lens and the thickness of the filter, the effective
working distance was 9 cm. Such a working distance enabled non-contact measurements.
For a large area scan (Section 5.1), the long working distance also avoided the collision be-
tween the scanning microscope and the sample could be measured. Both the long working
distance and instant image reconstruction properties enabled the system to perform a field
test. The measurement can be performed directly on the surface of targets such as roads
and bridges, without the need for sample preparation.

6. Conclusions

We proposed and experimentally demonstrated a 3D microscopic image reconstruction
method based on structured light illumination. The system reached a resolution of 20
µm, with an imaging time of less than one second. The depth of field of the system was
6mm, and the working distance was 9 cm. The resolution, depth of field and working
distance met the requirements of a field test for road crack examinations and structure fault
detections. The system measured the 3D profile with a resolution of 20 µm, which can be
used to accurately calculate the volume of a crack or an abnormal protrusion. The large
working distance enabled a non-contact measurement, which is ideal for field tests.
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