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Abstract: Poor-quality sleep substantially diminishes the overall quality of life. It has been shown
that sleep arousal serves as a good indicator for scoring sleep quality. However, patients are con-
ventionally asked to perform overnight polysomnography tests to collect their physiological data,
which are used for the manual judging of sleep arousals. Even worse, not only is this process
time-consuming and cumbersome, the judgment of sleep-arousal events is subjective and differs
widely from expert to expert. Therefore, this work focuses on designing an automatic sleep-arousal
detector that necessitates only a single-lead electroencephalogram signal. Based on the stacking
ensemble learning framework, the automatic sleep-arousal detector adopts a meta-classifier that
stacks four sub-models: one-dimensional convolutional neural networks, recurrent neural networks,
merged convolutional and recurrent networks, and random forest classifiers. This meta-classifier
exploits both advantages from deep learning networks and conventional machine learning algo-
rithms to enhance its performance. The embedded information for discriminating the sleep-arousals
is extracted from waveform sequences, spectrum characteristics, and expert-defined statistics in
single-lead EEG signals. Its effectiveness is evaluated using an open-accessed database, which
comprises polysomnograms of 994 individuals, provided by PhysioNet. The improvement of the
stacking ensemble learning over a single sub-model was up to 9.29%, 7.79%, 11.03%, 8.61% and
9.04%, respectively, in terms of specificity, sensitivity, precision, accuracy, and area under the receiver
operating characteristic curve.

Keywords: arousal; convolutional neural network (CNN); ensemble learning; electroencephalogra-
phy (EEG); meta-classifier; polysomnography (PSG); recurrent neural network (RNN)

1. Introduction

Poor-quality sleep negatively affects work performance [1] as well as emotional
states [2,3]. A common measure of poor-quality sleep is sleep arousals [4]. The Ameri-
can Academy of Sleep Medicine (AASM) defines electroencephalographic arousal as [5]
“An abrupt shift in electroencephalogram frequency, including alpha, theta, and/or frequen-
cies greater than 16 Hz, lasting at least 3 s and with at least 10 s of previous stable sleep.”
Polysomnography (PSG) monitors a subject’s body functions during sleep, including brain
activity as measured by electroencephalogram (EEG), eye movements as measured by
electrocardiography (EOG), muscle activity or skeletal muscle activation as measured by
electromyography (EMG), heart rhythm as measured by electrocardiogram (ECG), respira-
tion flow, patient movements, and arterial oxyhemoglobin saturation (SaO2). Training set
records are annotated with a patient’s sleep stages over time and any arousals experienced.
While effective for analysis, PSG signals are time-consuming and cumbersome to collect.
They also necessitate many cables with contact sensors, which can cause discomfort for the
subject, thus influencing the results.
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This research aims at designing an automatic sleep-arousal detector that requires a
single-lead EEG signal only, which can be collected easily using a headphone-like device [6]
so that the discomfort for the subject can be reduced. The objective is to exploit a stacking
ensemble learning framework such that the sleep-arousal-related information can be ex-
tracted from the time-domain, frequency-domain, and expert-defined statistics associated
with the single-lead EEG signals. Our main contributions are as follows: First, we lever-
aged a stacking ensemble learning framework, which is comprised of a one-dimensional
(1D) convolutional neural network (CNN), a recurrent neural network (RNN), and random
forest classifiers, to further enhance its specificity (85.75%), sensitivity (82.67%), precision
(83.92%), and accuracy (84.92%). This approach differs from conventional ensemble learn-
ing in its blend of deep learning method with machine method. Second, we propose using
band power features as inputs to learn variation and time-dependency using multi-layer
long short-term memory (LSTM) networks. In addition, we exploited multitaper spectral
analysis to alleviate the spectral leakage in the calculation of band power features.

The remainder of this paper is organized as follows: Section 2 reviews related work.
Section 3 presents the proposed sleep-arousal detector while Section 4 presents experimen-
tal results to verify its efficacy. Conclusions are drawn in Section 5.

2. Related Work

Several previous studies have adopted a single EEG signal to detect the sleep-arousal
events [7–11]. In [7], the authors proposed using a single-lead sleep EEG (C3-A2) to build
features based on time-frequency analysis, which were then fed to a support vector machine
(SVM) classifier. Among nine penitents with respiratory sleep disorders, the sensitivity and
specificity for the training sets were 87.92% and 95.56%, respectively; values for the testing
sets were 75.26% and 93.08%, respectively. Note that we believe their SVM classifier would
overfit due to the insufficient records of the training dataset (three subjects). The authors
then extended their work with additional features, including power variations in EEG
frequency bands [8]. However, the resulting sensitivity and specificity for the testing sets
were, respectively, 79.06% and 89.95%, which are inferior to those of their previous work.
In [9], the authors adopted a curious extreme learning machine (C-ELM) algorithm to train
a single-hidden-layer feed-forward neural network. A total of 22 features were extracted
from the signals measured from one central EEG channel. The resulting averaged area
under the receiver operating characteristic curve (AUROC) and the accuracies were 85%
and 79%, respectively; however, their dataset is not publicly accessible. Note that there
were only 144 positive data pairs (i.e., ‘arousal-detected’ labels) among a total of 7680 data
pairs. In [10], the authors applied continuous wavelet transform (CWT) to a single-channel
EEG signal; two features were then extracted from the scalogram, which was the squared
magnitude of the CWT, as the input of the SVM classifier. The overall values for sensitivity,
specificity, accuracy, and precision were all greater than 94%; however, these results were
calculated from EEG data obtained from only five patients. Thus, consistency could vary as
the number of patient records increases. In [11], the authors proposed using deep transfer
learning for improving single-lead EEG arousal detection; they trained a model based on
multi-channel PSG data and transferred it to a target domain that contained only single-
lead EEG signals. With sophisticated fine-tuning, the difference between single-lead EEG
and multi-channel PSG was insignificant. The resulting performance in terms of sensitivity
and precision was 71.00% and 67.60%, respectively. However, mismatch issues between
source and target domains must be solved in such a transfer learning approach.

From among the 13 types of raw PSG signals, some studies have selected more than
one channel as the input for arousal detection. In [12], the authors utilized two EEG
channels and one EMG signal to detect the EEG arousal events using artificial neural
networks (ANNs). They defined 39 features from EEG signals and four contextual features.
The resulting sensitivity and specificity were respectively 86% and 76%. The corresponding
AUROC was 81.10%. In [13], the authors selected the eight most representative channels
from the PSG signals. The pre-processed signals concerning those eight channels were fed
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into multiple CNNs to make individual decisions. These preliminary decisions were then
fed into a random forest algorithm to make the final decision, with a resulting AUROC
of 95.30%. In [14], the authors used PSG records as inputs to sequence-to-sequence deep
neural networks with bi-directional LSTM and exponential linear unit networks. They used
three models, each comprising bi-directional LSTM networks with different input signals.
The final classification results were determined by fusing the three models with an equal-
weight averaging strategy: the resulting AUROC was 95%. In [15], the authors used PSG
signals to develop a feature matrix comprising EEG, EMG, leg movement, and respiratory
and heart rate features. The K-nearest neighbors (KNN) classifier was implemented to
detect sleep-arousal events, and the resulting average sensitivity, specificity, and accuracy
were 79.0%, 95.5%, and 93.6%, respectively. However, the average performance was
obtained from only nine patients. Note that the worst performance reported for sensitivity,
specificity, and accuracy was only 67.50%, 97.10%, and 86.50%, respectively. In addition,
approaches that rely on complete PSG signals may limit the promotion of a consumer-grade
sleep-arousal detector.

In [16], the authors evaluated all PSG signals and selected six channels as input;
two of these belong to the EEG signal. They constructed a deep-learning architecture
comprising a convolutional-residual network and a positional embedding multi-head
attention mechanism. Although overall AUROC was 84.88%, the resulting AUROC with
only one EEG channel was less than 76.20%. In [17], the authors proposed 27 features
(i.e., 14 EEG/EOG, seven ECG, and six EMG features) as the input for a random forest
classifier, with a resulting AUROC of 84.70%. In [18], the authors applied 13 raw PSG
signals to a 13-layer CNN network for an AUROC of 48.6%. This implies that some expert-
defined features might help to improve classification performance. However, when the
authors utilized 68 features in a 68× 21 feature matrix for a three-layer neural network,
the resulting AUPRC was 42.00%. In [19], the authors proposed using the scattering
transform for raw PSG signals. For each signal, 36 coefficients were obtained and fed into
a sequence learning machine, which was implemented by a three-layer LSTM network.
Among each layer, batch-normalization blocks were used to obtain better training results,
and the resulting AUROC was 88.00%. An extension of this work using a bi-directional
LSTM (Bi-LSTM) to improve performance has been reported in [20]. In [21], the authors
used 12 out of 13 PSG signals, excluding ECG signals, in a dense recurrent CNN, which
combined a dense CNN with LSTM networks—the resulting AUROC was 93.10%.

This diverse range of approaches makes a fair and unbiased comparison of existing
studies difficult. As pointed out in [9], the applied datasets differ or are not publicly
accessible and physiological signals and performance metrics vary. The underlying issue is
the lack of an established standard for sleep-arousal detection.

3. Proposed Sleep Arousal Detector

Figure 1 illustrates the proposed sleep-arousal detector. It consists of three main parts:
(1) a pre-processing method for the raw single-lead EEG signal (i.e., the C3-M2 signal); (2) a
base classifier, which consists of four sub-models (namely, a 1D CNN, an RNN, a random
forest classifier, and a pre-merged CNN and RNN); and (3) a meta classifier. The details of
each part are described in the following.
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Figure 1. Block diagram of the proposed stacking ensemble learning approach for sleep-arousal detection.

3.1. Dataset and Its Pre-Processing

We selected the open dataset provided by the Computational Clinical Neurophysiol-
ogy Laboratory (CCNL) at Massachusetts General Hospital (MGH), which was adopted
in the PhysioNet/Computing in Cardiology Challenge (CinC) 2018 [22]. The dataset is
comprised of 994 records of complete PSG data as well as corresponding labels. The PSG
data were obtained from 13 channels, which include a six-lead EEG signal (F3-M2, F4-M1,
C3-M2, C4-M1, O1-M2, and O2-M1), a three-lead EMG (ABD, CHEST, and Chin1-Chin2),
single-lead ECG, SaO2, Airflow, and EOG (E1-M2). The length of each record varies from
four to eight hours. The sampling rate for each piece of data is 200 Hz, and each sampled
value was stored in a 16-bit number system. The corresponding labels for each sampled
data are Boolean values, where “0” and “1” denote “normal” and “sleep-arousal” events,
respectively. Among these 13 channels, we choose the C3-M2 single-lead EEG signal as
our sole data source. Note that it has been pointed out that arousals can be scored from
the central EEG [23]. In addition, most of the related works that used single-channel
EEG are also adopting left central EEG (C3). The steps of data pre-processing included
noise filtering, segmentation, and re-labeling for each segment. As illustrated in Figure 2,
the original EEG signals are contaminated by the powerline-induced noises at the mains
voltages. In this example, we could easily observe strong powerline-induced noises at
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60 Hz. Therefore, the first step of the data pre-processing is to remove these noises to obtain
a cleaner EEG signal.

Figure 2. An example of the original EEG signals illustrated in time (top) and frequency (bottom) domains.

Owing to the useful frequency information of EEG signals is below 40 Hz, we used
a 127-order low-pass Butterworth filter with passband and stopband edges at 40 Hz and
42 Hz, respectively, to obtain the in-band EEG signals. The magnitude and phase responses
are illustrated in Figure 3a,b, respectively.

(a)

Figure 3. Cont.
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(b)

Figure 3. (a) Magnitude and (b) phase responses of the low-pass filter with passband and stopband edges at 40 Hz and
42 Hz, respectively.

As shown in Figure 4, this filter can effectively remove most of the interference induced
by the powerline while maintaining in-band EEG signals with neglectable distortions.
For each record, we first discarded the first and the last hours, and then divided the
remaining records into 30-second segments. The choice of the length of each segment refers
to the AASM guidelines that suggest scoring arousals in a 30-s window [24]. Note that the
last segment was discarded if the length was less than 30 s.

Figure 4. The low-pass filtered EEG signals illustrated in time (top) and frequency (bottom) domains.

For supervised learning, we assign the ground truth for each segment according to
the original ground truth for each sample and the AASM’s definition of sleep arousal.
After pre-processing, we created 119,983 data pairs, in which around 40% of these pairs
are labeled as “sleep-arousal” events (47,993 data pairs) and the other 71,990 data pairs are
labeled as “normal” events. Among these segments, 22,328 pairs (about 20% of the total
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segments) served as testing data; for five-fold cross-validation, we used 78,124 pairs as
training data and adopted 19,531 pairs as validation data. Examples of a normal segment
and an arousal segment are illustrated in Figure 5.

Figure 5. Examples of (a) normal (label = 0) and (b) arousal (label = 1) segments each with a 30-s
length obtained at the C3-M2 channel.

3.2. Feature Extraction

We applied 1D CNN networks to the extraction of embedded features in the waveform
for each segment of length 6000× 1. In addition to the waveform features, we adopted
29× 8 band power features and 1× 42 expert-defined features.

3.2.1. Band Power Features

It has been reported that changes of EEG power across the frequency band reveal
information about arousal detection [25]. This prompted us to apply an RNN to investigate
the significance of band-power patterns. We considered eight features derived from the
frequency domain, which comprised the power of EEG signals in the delta-band (0–4 Hz),
theta-band (4–7 Hz), alpha-band (8–12 Hz), and beta-band (14–30 Hz), as well as the full
band (0–40 Hz) for each segment. Moreover, we considered three power ratios to account
for variations among bands: (1) delta to theta; (2) theta to alpha; and (3) delta to alpha.
Conventionally, a periodogram is applied to estimate power spectral density to calculate
the signal power within a specific frequency band. However, due to the highly-oscillatory
dynamics exhibited by biomedical signals, a good balance between the bias and variance
of the spectral estimation problem cannot be obtained using a periodogram. Instead, we
applied multitaper spectral analysis for its advantages of both low variance and high-
frequency resolution [26,27]. In [28], the authors provided a C-subroutine to calculate
the coefficients of the discrete prolate spheroidal sequences (DPSS) or Slepian sequences.
Multitaper spectral estimation for the m-th segment xm can be expressed as follows:

Ŝ(k) =
1

NL

NL

∑
i=1

Ŝ(i)(k) (1)
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with

Ŝ(i)(k) =

∣∣∣∣∣Nb−1

∑
n=0

xm(n) · h(i)(n)e
−j 2πnk

Nb

∣∣∣∣∣
2

, (2)

where k = 0, 1, . . . , Nb − 1 is the index of the frequency bin; xm(n) denotes the n-th element
of the m-th segment xm, and h(i)(n) represents the n-th coefficients of the i-th DPSS filter
h(i)(n). We performed spectral analysis every two seconds (400 samples) with an overlap
factor of 50%. This resulted in 29 spectral analyses, with 201 frequency bins for each
segment. Note that we chose the length of each DPSS taper as Nb = 400 and the number of
tapers as NL = 8. Finally, we estimate the power as well as the power ratio and derived
the frequency feature matrix with the dimensions 29× 8 for each segment.

Figure 6 depicted the estimated power spectral density (PSD) diagrams that corre-
spond to the segments plotted in Figure 5.

Figure 6. Examples of (a) normal (label = 0) and (b) arousal (label = 1) segments each with a 30-s length.

With the estimated PSD for each segment, we could numerically apply the composite
Simpson’s or Euler–Maclaurin rule [29] to integrate the PSD function within a specific
frequency range. For example, the power can be estimated for the delta band (0 to 4 Hz) by
integrating the PSD within the frequency bins from the first to the ninth bins. The other
band power features can be calculated in similar ways as those listed in Table 1 below.
Note that the frequency resolution is 0.5 Hz and the first bin maps to the direct current
(DC) gain. Therefore, the three power ratios (i.e., (1) delta to theta; (2) theta to alpha; and
(3) delta to alpha) could be easily calculated.

Table 1. Band power features and the corresponding frequency bins.

Band Frequency Ranges (Hz) Frequency Bins

Delta 0 to 4 1 to 9
Theta 4 to 8 10 to 17
Alpha 8 to 12 18 to 25
Beta 14 to 30 30 to 61
Full 0 to 40 1 to 81
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3.2.2. Expert-Defined Features

The expert-defined features were measured in both time and frequency domains.
We used a 1× 42 vector for each segment to represent the corresponding expert-defined
features listed in Table 2.

Table 2. Expert-defined features.

Domain Feature Number of Features

Time

Averaged numerical gradient 1
Kurtosis 1
Hjorth parameters 3
Skewness 1

Frequency

Minimum * 8
Mean * 8
Standard deviation * 8
95th percentile * 8
Kurtosis † 4

Note: * denotes the features are calculated from the four sub-bands, three band-power ratios, and one full-band;
† denotes the features are calculated from the four sub-bands.

For frequency-domain expert-defined features, we calculate the mean, minimum,
standard deviation, and the 95th percentile with respect to the eight band power features.
In addition, we measured the kurtosis concerning the sub-matrix of the frequency matrix.
We used only the data associated with delta, theta, alpha, and sigma bands.

In addition to the mean, standard deviation, average numerical gradient, maximum,
and minimum values, experts usually evaluate the Hjorth parameters [30], kurtosis, and
skewness values. Hjorth reported using activity, mobility, and complexity to portray EEG
signals in the time domain. The Hjorth activity σ2

H(xm) measures the variance for the m-th
segment xm and can be calculated as follows:

σ2
H(xm) =

∑N−1
n=0 (xm(n)− µm)

2

N − 1
, (3)

where xm(n) represents the n-th element of xm and µm = 1
N ∑N−1

n=0 xm(n) denotes the
sample-mean of xm; The Hjorth mobility MH(xm) estimates the main frequency content for
the m-th segment xm and can be expressed as follows:

MH(xm) =

√
σ2

H(Diff(xm))

σ2
H(xm)

, (4)

where Diff(·) is the difference operation. The Hjorth complexity CH(xm) estimates the
bandwidth associated with the m-th segment xm and can be expressed as follows:

CH(xm) =
MH(Diff(xm))

MH(xm)
. (5)

Kurtosis is an index that determines whether the data are heavy- or light-tailed relative
to Gaussian-distributed data and can be calculated as follows:

Km =
1
N ∑N−1

n=0 (xm(n)− µm)4

σ4
m

, (6)

with standard deviation σm defined as follows:

σm =

√
∑N−1

n=0 (xm(n)− µm)
2

N − 1
. (7)
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For Gaussian-distributed data, the value of kurtosis is three. The corresponding
distribution tends to have heavy tails for data with high kurtosis and thus exhibits more
outliers. This implies that, for data with low kurtosis, there are light tails and a lack
of outliers.

The skewness of data is used to evaluate the asymmetry of the probability distribution
of a real-valued random variable about its mean. The skewness of the m-th segment xm
can be calculated as follows:

Sm =
1
N ∑N−1

n=0 (xm(n)− µm)3

σ3
m

, (8)

where σm is the sample standard deviation defined in Equation (7).

3.3. Stacking Ensemble Learning

For stacking ensemble learning, we adopted a meta-classifier to stack the outputs of
the three sub-models as input and attempted to learn the best combinations for the input
classifications in order to construct a better output classification.

3.3.1. Waveform Raw Data for 1d Cnn Networks

Figure 7 depicts the block diagram of the proposed 1D CNN networks, where N
denotes the total number of segments used to train the network. The input signal was
a pre-processed segment, each with a length of 6000 samples; that is, the time duration
was 30 s. The proposed 1D CNN networks were composed of four convolution blocks.
The details of each block can be found in Table 3. The lengths of the feature detector
within each block were 50, 30, 10 and 2, respectively. This design helps the network to dig
more subtle variations or features embedded in each segment. Finally, we use a global
average pooling and dense layer, in which a softmax activation function is used to limit
the predicted values to fall between 0 and 1. The 2× 1 output vector of the dense layer
predicts the possibility of “normal” and “arousal detected” events, respectively.

Table 3. Detailed settings of the proposed 1D CNN networks.

Layer Filter
Size

Activation
Function

Number of
Trainable

Parameters

Output
Shape
(x, y, z)

Input - - 0 (N, 6000, 1)
Conv1D1 20@50× 1 ReLU 1020 (N, 5951, 20)
Conv1D2 20@50× 1 ReLU 20,020 (N, 5902, 20)

Maxpooling1 2× 1 - 0 (N, 2951, 20)

Conv1D3 20@30× 1 ReLU 12,020 (N, 2922, 20)
Conv1D4 24@30× 1 ReLU 14,424 (N, 2893, 24)

Maxpooling2 2× 1 - 0 (N, 1446, 24)

Conv1D5 12@10× 1 ReLU 5784 (N, 1437, 12)
Conv1D6 12@10× 1 ReLU 2892 (N, 1428, 12)

Maxpooling3 2× 1 - 0 (N, 714, 12)

Conv1D7 12@2× 1 ReLU 300 (N, 713, 12)
Conv1D8 12@2× 1 ReLU 300 (N, 712, 12)

Maxpooling4 2× 1 - 0 (N, 356, 12)

Global Average Pooling - - 0 (N, 12, 1)
Dense (output) - Softmax 26 (N, 2, 1)
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Figure 7. Block diagram of the proposed 1D CNN networks.

3.3.2. Band Power Features for Rnn Networks

As shown in Figure 8, we implemented the RNN using multi-layer LSTM networks
containing one bi-directional LSTM layer and one uni-directional LSTM layer. Detailed
parameters are listed in Table 4. This LSTM network excavates the power variation and
power ratio variation for the bands calculated in the 29× 8 band power features. Thus,
we had 29 time-steps, with eight features for each segment. A bidirectional LSTM layer
consisted of one forward LSTM and one backward LSTM, each containing 20 hidden states.
Next, we concatenated the forward and backward LSTM cells with the concatenation
blocks. Then, an extra uni-directional LSTM layer with a less hidden state size (i.e., ten
hidden LSTM units) was used. Note that the last hidden state of the uni-directional LSTM
would pass through to a dense layer with 32 nodes. Finally, a dense output layer with
two nodes was used to generate a 2× 1 output vector, which was used to represent the
probabilities of normal and arousal classes associated with the input features.

Table 4. Detailed settings of the proposed RNN networks.

Layer
Number of

Hidden State
Size

Activation
Function

Number of
Trainable

Parameters

Output
Shape
(x, y, z)

Input - - 0 (N, 29, 8)
Bi-directional
LSTM (Bi-LSTM) 20 - 4640 (N, 29, 40)

Uni-directional LSTM 10 - 2040 (N, 10, 1)
Dense - ReLU 352 (N, 2, 1)

Dense (output) - Softmax 66 (N, 2, 1)

3.3.3. Expert-Defined Features for Random Forests

A random forest algorithm produces mass decision trees and is trained by performing
bagging operation to combine multiple decision trees in order to achieve more stable and
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accurate classification results. We adopted the 1× 42 expert-defined features for each
segment as input information for the random forest algorithm.
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Cell
LSTM 

Cell

LSTM 

Cell

LSTM 
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Time step

#2
Time step

#29

Figure 8. Block diagram of the proposed RNN networks.

3.4. Stacking Ensemble

To leverage the specific advantages of 1D CNN networks, RNN networks, and random
forest algorithms, we merged the classification outputs and the intermediate results into a
meta-classifier to perform stacking ensemble learning. The block diagram of the proposed
stacking ensemble learning architecture is shown in Figure 9. Note that we proposed
using a pre-merge module to combine the information at the input of the dense layer in
both 1D CNN and RNN networks. The merged 1D CNN and RNN networks extract
complementary information that is missed for either CNN or RNN alone and aim to exploit
the temporal and spatial characteristics information to achieve better classification results.
Thus, the pre-merge module combined the 12× 1 and 32× 1 vectors into a 44× 1 vector,
and the post-merge module fused four 2× 1 vectors to train the meta-classifier.

Our meta-classifier is trained with the logistic regression method. This is a simple
linear model for a binary classification outcome (i.e., arousal detected (1) or normal (0)).
Logistic regression is a statistical model that uses a logistic function to model a binary de-
pendent variable in its basic form. For the logistic-regression-based meta-classifier, the pos-
terior probability of a binary response variable Y with inputs p = [1, p1, p2, . . . , pN−1, pN ]

T

and regression coefficient vector β = [β0, β1, . . . , βN ]
T can be expressed as follows:

PY(y|p, β) =
(
hβ

)y ·
(
1− hβ

)1−y, (9)

with

hβ =
exp

{
pT β

}
1 + exp{pT β}

, (10)

where the label y is either 0 or 1; T denotes the transpose operation; the inputs (p2i−1, p2i)
for i ∈ {1, 2, 3, 4} denote the predicted probabilities for normal and arousal events for
the ith sub-model (N = 8); and β0 is the model intercept. The training procedure aims at
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finding the optimal regression coefficients β with the training data p by minimizing the
log-likelihood cost function:

J(β) =
−1
M

M

∑
j=1

yj log
(
hβ(pj)

)
+ (1− yj) log

(
1− hβ(pj)

)
, (11)

where M is the number of training inputs and pj denotes the jth p inputs. By using the
gradient descent method, we can obtain the optimal regression coefficients β∗. Thus, if the
posterior probability PY(y = 1|p, β∗) is greater than 0.5, we claim that the sleep arousal
is detected.

1D CNN RNN Random Forest

Meta-classifier

Post-Merge

Dense (Output)

Pre-Merge

Dense

Merge

Figure 9. Block diagram of the stacking ensemble learning.

4. Experiments
4.1. Evaluation Metrics

In this work, we adopted accuracy, sensitivity, specificity, precision, and AUROC as
evaluation metrics. We define these as follows:

Accuracy =
TP+TN

TP+FP+FN+TN
. (12)

Sensitivity =
TP

TP+FN
. (13)

Specificity =
TN

FP+TN
. (14)

Precision =
TP

TP+FP
, (15)

where “TP” denotes the number of true positive results, “TN” denotes the number of true
negative results, “FP” denotes the number of false positive results, and “FN” denotes the
number of false negative results in the confusion matrix.

AUROC is a performance measurement for classification problems at various thresh-
old settings. The receiver operating characteristic (ROC) curve is plotted with the TP rate
against the FP rate (i.e., 1 − Specificity = FP/(TN+FP)). The higher the values of AUROC
are, the better the model distinguishes between normal and sleep-arousal classes.

4.2. Results
4.2.1. Training Results

The averaged performances with five-fold cross-validation are listed in Table 5. Note
that, although the resulting performances associated with the CNN and RNN sub-models
were below 80%, the meta-classifier could exploit the advantages of each sub-model to
boost the overall performance.
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Table 5. Training results for the proposed sleep-arousal detector.

Model CNN RNN Random Forest Pre-Merge Meta-Classifier

Specificity (%) 77.98 75.60 83.24 78.03 85.75
Sensitivity (%) 78.38 73.73 77.85 80.14 82.67
Precision (%) 72.46 68.85 77.03 76.67 83.92
Accuracy (%) 78.15 74.81 80.98 79.03 84.92

4.2.2. Testing Results

For the 22,328 segments, the resulting performance for each sub-model and the meta-
classifier are shown in Table 6. As expected, stacking ensemble learning improved perfor-
mance. This may infer that our model does not over-fit during training phases.

Table 6. Testing results for the proposed sleep-arousal detector.

Model CNN RNN Random Forest Pre-Merge Meta-Classifier

Specificity (%) 77.48 75.35 82.14 77.43 84.64
Sensitivity (%) 78.34 72.31 77.51 78.60 80.10
Precision (%) 73.36 69.53 77.21 76.79 80.56
Accuracy (%) 77.86 74.02 80.11 78.00 82.63

AUROC (%) 79.97 74.97 81.54 80.23 84.01

Table 7 compares this work with state-of-the-art methods that use single-lead EEG
signals to detect the sleep arousal events. Note that the results reported in [7,10] are not
reliable because the number of patients is too low to confirm reliability. From the reported
result in [7], we even believe their SVM classifier would overfit with the few records of the
training dataset (three subjects). However, compared with [11], which had 1500 patients in
their experiments, the proposed method exhibited significant improvements in sensitivity
and precision.

Table 7. Comparisons with state-of-the-art methods that used a single-lead EEG only.

Work Year Method Number of Patients Results

[7] 2005 SVM 9
sensitivity: 75.26%
specificity: 95.56%

[8] 2007 SVM 20
sensitivity: 79.06%
specificity: 89.95%

[9] 2015 C-ELM 50
accuracy: 79.00%
AUROC: 85.00%

[10] 2019 SVM 5

sensitivity: 94.67%
specificity: 99.33%
precision: 97.93%
accuracy: 98.20%

[11] 2020 2D CNN 1500
sensitivity: 67.60%
precision: 71.00%

This work 2021
Stacking
Ensemble
Learning

994

sensitivity: 84.64%
specificity: 80.10%
precision: 80.56%
accuracy: 82.63%
AUROC: 84.01%

5. Conclusions

Collecting complete PSG signals to detect sleep-arousal hinders the development
of a consumer-grade portable sleep arousal detector. Therefore, we propose a novel
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sleep-arousal detection method that requires only single-lead EEG signals based on the
stacking ensemble learning framework. The meta-classifier stacks four sub-models: (1) 1D
CNN; (2) RNN (multi-layer LSTM); (3) merged 1D CNN and RNN; and (4) random forest
algorithm. First, the 1D CNN network extracts the embedded features in the time-domain
waveform. Second, the RNN learns the temporal dependence in the band power and power
ratio features. Third, the merged 1D CNN and RNN networks extract complementary
missing information for either CNN or RNN alone. Finally, the random forest algorithm
exploits the expert-defined features calculated from both time and frequency domains.
We verified the effectiveness of the proposed method using the open-accessed database
compiled in [22]. The improvements of the meta-classifier over any sub-model can be up
to 9.29%, 7.79%, 11.03%, 8.61%, and 9.04%, respectively, in terms of specificity, sensitivity,
precision, accuracy, and AUROC. However, because the statistical features were extracted
from each segment of 30 s, the time resolution to discriminate sleep-arousals is 30 s. Besides,
we have sacrificed the accuracy for simplicity such that the implementation of the portable
sleep-arousal detector becomes possible. In future work, we aim to fuse other physiological
signals, such as EMG, to enhance the resulting accuracy of the detector while considering
the comfortability when collecting those physiological data.
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