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Abstract: Express lanes (ELs) implementation is a proven strategy to deal with freeway traffic
congestion. Dynamic toll pricing schemes effectively achieve reliable travel time on ELs. The primary
inputs for the typical dynamic pricing algorithms are vehicular volumes and speeds derived from the
data collected by sensors installed along the ELs. Thus, the operation of dynamic pricing critically
depends on the accuracy of data collected by such traffic sensors. However, no previous research
has been conducted to explicitly investigate the impact of sensor failures and erroneous sensors’
data on toll computations. This research fills this gap by examining the effects of sensor failure
and faulty detection scenarios on ELs tolls calculated by a dynamic pricing algorithm. The paper’s
methodology relies on applying the dynamic toll pricing algorithm implemented in the field and
utilizing the fundamental speed-volume relationship to ‘simulate’ the sensors’ reported data. We
implemented the methodology in a case study of ELs on Interstate-95 in Southeast Florida. The
results have shown that the tolls increase when sensors erroneously report higher than actual traffic
demand. Moreover, it has been found that the accuracy of individual sensors and the number of
sensors utilized to estimate traffic conditions are critical for accurate toll calculations.

Keywords: express lanes; dynamic toll; accurate detection; speed-volume relationship; HOT lanes;
congestion pricing

1. Introduction

The last few decades have seen a constant increase in traffic congestion in urban areas,
primarily driven by the growth in travel demand. Traffic congestion has numerous negative
impacts on society, including unnecessary delays, increased commuting times, excessive
fuel consumption, air pollution, and other externalities [1]. Depending on the context and
causes of traffic congestion, various strategies have been developed and implemented to
mitigate its adverse effects. One strategy for dealing with traffic congestion on freeways is
to apply road congestion pricing [2]. One of the applications of road congestion pricing is
the implementation of high occupancy toll (HOT) and express-toll lanes. Such lanes are
generally implemented to achieve an improved operational condition on a highway.

The express-toll lanes (ELs) have emerged from the concept of high-occupancy vehicle
lane (HOV) systems to increase the use of available roadway capacity. ELs are a type of
managed lanes where most users are subject to a toll, while some users may be exempted
from paying the toll. For example, Interstate-95 ELs could be used by registered carpools
(3+ occupants, hybrids, and South Florida Vanpools) at no charge [3]. Unlike toll roads,
drivers have a choice not to pay the EL toll and use general-purpose (GP) lanes.

Generally, ELs systems can support up to five primary pricing or ‘toll’ modes: (i) closed
operations, usually applied only during maintenance or in response to traffic incidents;
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(ii) zero toll, implemented in support of evacuations (e.g., during hurricanes); (iii) man-
ual toll, which allows setting a fixed toll rate; (iv) day-of-week/time-of-day toll, which
implements preconfigured toll rates based on the day of the week and the time of day;
(v) dynamic toll, where tolls are adjusted dynamically over time, based on a pre-defined
algorithm that accounts for roadway traffic demand [3].

In the past few years, dynamic toll pricing has gained popularity (over fixed tolls and
time-of-day toll pricing) as a more effective strategy for controlling traffic jams [4]. Since
the dynamic pricing algorithms use real-time traffic data such as speeds and volumes,
the reliability of toll calculations heavily depends on the number and accuracy of the
volume and speed sensors. Inaccurate or missing data reported by sensors can result in toll
overcharging, which might repel motorists from using the ELs facility, or toll undercharging,
which may cause a loss of revenue for the operating agencies and reduce the effectiveness
of the ELs facility. That suggests that the detection technology implemented for dynamic
tolling should satisfy a certain level of accuracy and store traffic datasets in real-time [5].

After the first implementations of HOT lanes in California [6], several studies had
included evaluations and innovations of this concept [6–10]. Multiple research efforts have
investigated the impact of sensor density (spacing) [11–13]. An older study analyzed the
reliability and health of the installed sensors [14]. The same study attempted to determine
the empirical rates of sensor failures and identified sensor malfunctions and data loss
during transmission as the typical sources of errors. A recent effort made by the Nordic
traffic authorities strategic research cooperation (NordFOU) [15] compared the accuracy of
multiple types and models of sensors. We note here that all previous research focused on
the accuracy of the utilized sensors with no explicit attention given to ELs facilities or their
dynamic algorithms. Specifically, the relevant literature does not address the sensitivity of
toll calculations concerning the accuracy and reliability of sensor data.

Therefore, this paper aims to bridge this gap in the existing body of knowledge by
evaluating the impact of detection accuracy on the ELs toll calculation utilizing a dynamic
pricing algorithm. The evaluation methodology was applied in a case study of the ELs
implemented on Interstate-95 in Southeast Florida. The dynamic toll calculation algorithm
implemented in the field is replicated to accurately mimic the fluctuations in the ELs
dynamic tolls based upon the data reported by the sensors. The study designs and applies
dozens of realistic scenarios simulating the erroneous sensor readings and failures and
analyzes their impacts on the performance of the dynamic pricing algorithm. In each of the
evaluated scenarios (with the erroneous data) the fundamental traffic flow relationships
(i.e., speed vs. volume) are maintained, meaning that ‘healthy’ sensor data are fabricated.
The presented paper makes the following research contributions:

1. A robust methodology is established to investigate the sensitivity of failed sensors
and their erroneous data.

2. The dynamic pricing algorithm used on Interstate-95 ELs in Florida is described and
replicated (with proper calibration and validation) in MS Excel software by using
Visual Basic for Applications (VBA).

3. The individual impacts of the erroneous detection readings and completely failed
sensors on the existing dynamic toll calculation algorithm and the resulting toll
revenues of Interstate-95 ELs are quantified.

4. The combined impact of multiple failed sensors and erroneous sensor data on the ex-
isting dynamic pricing algorithm and toll revenues of Interstate-95 ELs are quantified.

To quantify the impact of sensor failure and erroneous sensor data, the presented
methodology uses the traffic data and dynamic toll pricing algorithm implemented at the
studied ELs sections. In the analysis, the sensor failures and erroneous data are simulated
in two sets of scenarios. In the first scenario set, the sensors are subjected to consistent
traffic volume and speed detection errors of 5, 10, 15, and 20% across the board, or a pre-set
percentage of sensors is assumed to have failed. The second set of scenarios includes
sensors that failed or generated erroneous data. Those sensors are randomly selected based
on pre-set percentages of failed sensors and detection errors. The methodology and the
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associated analysis are implemented in a series of experiments designed for a case study
of ELs on Interstate-95 in Florida, utilizing the traffic data and dynamic toll calculation
algorithm provided by the Florida Department of Transportation (FDOT). To the best of the
authors’ knowledge, the methodology used to perform the analysis in this study is unique
and has not been previously presented. We also note that the presented methodology
could be applied on any road congestion pricing scheme at various HOT and express lanes
to investigate the sensitivity of toll computations relative to traffic sensor ‘health’ and
detection accuracy.

2. Literature Review

The term ‘congestion pricing’ was introduced by English economist Arthur Pigouin in
1920 [16]. The first serious discussion about road congestion pricing, as a form of mitigating
traffic congestion, was presented by Maurice Allais, who played a crucial role in estab-
lishing the first implementation of road congestion pricing in Singapore [17]. According
to Lombardi et al. [18], congestion pricing is mainly applied on three scales: managed
lanes, tolled facilities, and networks. HOT and express lanes are currently implemented
in 11 states in the United States, including California, Florida, and Texas [19]. The toll on
most of those ELs is primarily priced using dynamic pricing algorithms [20]. However,
fully dynamic pricing is theoretical as fixed time-of-day tolls are still implemented when
necessary [21,22]. In the past two decades, dynamic toll pricing algorithms outperformed
fixed tolls in managing traffic congestion, which attracted researchers to develop many
dynamic pricing schemes. This section presents the state of the art in dynamic toll pricing
since the early stage of developing dynamic pricing algorithms in 2008 [23,24]. Further-
more, this literature review summarizes the most notable studies that addressed detection
accuracy and reliability of traffic sensors similar to those used to price tolls on ELs.

2.1. Dynamic Congestion Pricing Algorithms

Yin and Lou [23] were among the first to propose dynamic pricing approaches (ramp
metering control algorithm and route choice model). Zhang et al. [24] utilized the feedback
control theory to develop a more adaptive dynamic pricing algorithm. Sheu and Yang [25]
integrated a ramp control strategy with a dynamic pricing algorithm to better manage
the dynamic freeway congestion. Applicable dynamic pricing algorithms on large-scale
networks were proposed in [26–28].

Until 2009, most literature on dynamic pricing algorithms and all implemented algo-
rithms in the field were based on historical traffic data. For instance, Minnesota’s toll on
I-394 HOT lanes is usually updated every 3 min regardless of drivers’ route choices [10].
When a change in traffic density is detected (based on data reported from sensors in-
stalled along the ELs), the toll is increased or decreased (based on the traffic density of
the past 3 min) according to a pre-defined traffic density delta table [10]. Lou et al. [29]
built on their work in [23] to propose a self-learning approach that seeks to learn motorists’
willingness to pay and then determines the best pricing strategy to be used. Similarly,
Zhang et al. [30] proposed a self-adaptive pricing approach that seeks to maintain reliable
travel time on ELs, especially when GP lanes are congested. In a more complex effort than
works in [23,29], Jin et al. [31] developed a pricing scheme to accommodate different types
of lane-choice models.

Chung et al. [32] expanded the literature on congestion pricing by converting the
dynamic pricing into a robust optimization to minimize the network-wide total travel
cost considering the uncertainty of traffic demand. Moreover, Yang et al. [33] developed
a convergent trial-and-error method to control congestion under ambiguous travel time
and traffic demand. Zou et al. [34] proposed a pricing scheme that considers the through-
put uncertainty resulting from the delay between the ingress and egress points. Other
optimization techniques were widely covered in the literature. For example, Alkeder
and AlRashidi [35] used a genetic algorithm to solve the pricing optimization problem,
whereas Cheng et al. investigated a mean-variance optimization approach [36]. More-
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over, Liu et al. [37] proposed speed-based mathematical programming with an equilib-
rium constraint model to maintain the traffic condition in the tolled cordon. Recently,
Zhong et al. [38] used multi-objective Bayesian optimization to consider the land use as-
pect in their proposed pricing model.

To alleviate the complexity of dealing with models presented in [24,29,32], an in-
tegration effort of a macroscopic model (to represent dynamics of congestion) with an
agent-based simulator (to reproduce travelers’ choices and heterogeneity) was made by
Zheng at al. [39] to evaluate a variety of dynamic cordon pricing schemes. Moreover,
Yang et al. [40] proposed a mathematical model which can be calibrated with ease to solve
the dynamic pricing problem for distance-based toll collection systems. Some studies uti-
lized the network (aka Macroscopic) fundamental diagram to develop area-based pricing
schemes [41–43].

The framework developed by Hassan et al. [44] was among the earliest efforts to
formulate the dynamic pricing problem that maximizes revenue explicitly. Another pricing
strategy to maximize revenue while maintaining a desirable level of service on the ELs
was made by Cheng and Ishak [45]. Unlike the work in [44,45], Lou [46] formulated his
toll optimization to maximize the throughput, regardless of revenue, on both ELs and
GP lanes while ensuring a free-flow speed on ELs as the constraint. The environmental
aspect was also considered in the dynamic pricing optimization problem proposed by
Friesz et al. [47]. They proposed tolling a set of links in their studied network to minimize
vehicle emissions and travel time. Minimizing total delay was the goal of the dynamic
pricing schemes proposed by [48,49]. Other flexible pricing approaches were introduced
in [50–52] to minimize delay, maximize revenue, or achieve levels of specified combinations
of delay and revenue.

Michalaka et al. [53] introduced an add-on for the traffic simulation software CORSIM
to model multi-segmented ELs with various pricing strategies considering motorists’ lane
choice between ELs and GP lanes. To perform various congestion pricing studies on the
New York City (NYC) network, a virtual testbed for New York City was developed by
He et al. [54] using an agent-based simulation ‘MATSim’, an open-source simulation toolkit
coded in Java and developed by the Federal Highway Administration (FHWA) [54]. Pandey
and Boyles [55,56] proposed simulation-based pricing schemes for multi-segmented ELs.
A few other simulation-based optimization frameworks were introduced to dynamically
determine toll pricing that maintains an acceptable level of service on the ELs [57–59].

Gardner et al. [60] included the population value of time (VOT) in the route choice
process between the ELs and GP lanes. Xiao and Zhang [61] considered not only VOT but
also the differences in commuters’ VOT to develop Pareto-optimal solutions considering
pricing and subsidy in the dynamic pricing optimization problem. Several similar studies
proposed pricing schemes that account for VOT heterogeneity between travelers [62–65].

Cheng et al. [66] proposed an agent-based model approach to dynamically determine
tolls based on the travel time difference and travel time reliability between ELs and GP
lanes. A similar idea was proposed by Cheng et al. [67] considering the actual time delay
experienced by motorists combined with the traveled distance in the pricing scheme. A
recent effort was made by Chen et al. [68] to consider people’s satisfaction (after using a
tolled facility) to develop a pricing model.

The big data technologies and machine learning algorithms were also deployed to
develop dynamic pricing schemes. For example, Figueiras et al. [20] developed a pricing
scheme that depends on big traffic data technologies and aims to improve traffic flow
and make toll prices competitive for various motorists. Liu and Yang [69] combined the
travel and pricing data (information) to investigate motorists’ route choices (e.g., between
ELs and GP lanes). Yang et al. [70] utilized connected vehicle data to develop a pricing
scheme for large-scale areas. Several recent studies developed deep reinforcement learning
frameworks for dynamic pricing on multi-segmented ELs [71–73].
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2.2. Traffic Data Sensors

Detection accuracy and reliability have gained much attention from many researchers
in the past two decades. This interest is attributed to the crucial role of traffic detection
in managing and improving traffic performance. For example, one of the goals of traffic
sensors on ELs is to capture the traffic conditions to accurately manage the toll pricing
process. Since little research efforts were made on the accuracy of data detection on ELs, this
subsection summarizes some of the most notable studies that addressed sensor detection
issues relevant to those found in ELs.

Data aggregation intervals are vital, especially in dynamic pricing algorithms, as
data-driven toll pricing is based on the accuracy of traffic conditions measured in real-time.
Some authors addressed the general matter of the time intervals for archiving the data. For
instance, Gajowski et al. [74] showed that aggregation levels of 60 min or more and less than
1 min are optimal for low and high traffic travel time estimation, respectively. Oh et al. [75]
indicated that an archiving aggregation level of 4–6 min is desired when forecasting
travel times. Park et al. [76] found that the optimal aggregation sizes for the travel time
estimation and forecasting were 3 to 5 min and 10 to 20 min, respectively. Vlahogianni
and Karlaftis [77] examined speed data aggregated in 20 s, 1, 5, 10, 15, 30, and 60 min.
The results show that as the sample size increases, the aggregated data are less accurate
(the relationship is not linear), and the optimal aggregation interval was 20 s during peak
periods. Son et al. [78] tested traffic while transitioning from uncongested to congested
conditions, with data aggregated in 15-min intervals. Those two conditions are significantly
different and the speed difference was around 20 mph. However, the aggregated data did
not capture this transition where traffic flow and speed were underestimated, especially in
near-saturated conditions.

ELs operating agencies use different time intervals to update their tolls. For example,
the most frequent toll update is in Minnesota. The MnPASS (the marketing name for
a transportation service in Minnesota [10]) electronic toll collection system updates toll
amounts every three minutes regardless of raw traffic data being obtained every 30 s [79].
In Texas, the toll amounts for TEXpress lanes are updated every five minutes [80]. FDOT
implements a dynamic algorithm that updates toll amounts every 15 min [3]. No studies
addressed how the frequency of toll updates affects the accuracy of defined tolls and
traffic conditions.

A few studies have been conducted to document the impact of the spatial frequency
of detection on the reported data accuracy. For instance, Chaudhuri et al. [11] studied
the spacing of loop sensors and found that the spacing between sensors significantly
impacts the accuracy of travel-time estimates. Fujito et al. [12] investigated the impact of
sensor spacing on estimating traffic performance measures. They concluded that the actual
sensor locations influence travel time estimation more than the spacing between them.
Kwon et al. [13] suggested that placing sensors every half mile would reduce the errors in
the average duration of congestion and the average spatial extent to 10%.

There are various vehicle detection systems and technologies that retrieve different
traffic data types, all of which have pros and cons. Inductive loop sensors are used
for various traffic applications, and they are the most commonly used systems for real-
time data collection and toll collections [81]. For that reason, several studies validated
traffic data from loop sensors by comparing it with traffic data collected using other
methods. El-Geneidy and Bertini [82] compared speeds obtained from the Automatic
Vehicle Location (AVL) technology to speeds reported by loop sensors. Tong et al. [83]
and Chaudhuri et al. [11] validated speed detected data against speed data measured by
GPS-equipped probe vehicles. Bar-Gera [84] compared speeds estimated using cellular
phones as travel probes to loop sensor speeds.

According to Mimbela and Klein [81], two-loop speed traps are more convenient for
express lanes and toll pricing than single loops because the latter do not predict speed
accurately. Magnetic sensors can also be utilized in express lanes since they provide
the primary traffic data [81]. However, in the last decade, Microwave Vehicle Detection
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Systems (MVDS) have been increasingly used for electronic toll pricing and collection [85].
The MVDS collect lane presence, volume, occupancy, and speed data [85]. FDOT and
the Texas Department of Transportation (TxDOT) implement MVDS technology on their
express lanes. They require a minimum of 90% accuracy for traffic lane presence, speed,
and volume detection, and 85% accuracy for occupancy [86,87].

2.3. Summary

Researchers have made an enormous effort to develop dynamic pricing algorithms
considering various aspects and objectives. However, little literature is available on traffic
data sensors. Precisely, the relevant literature fails to address the sensitivity of toll calcula-
tions to traffic sensors’ reliability and accuracy. Thus, this study attempts to fill this gap
by investigating the impacts of erroneous and failed vehicle detection on the quality of
dynamic toll calculations.

3. Methodology
3.1. Study Site and Data Collection

The Southeast Florida ELs permit two-axle vehicles and public buses that are SunPass
(the electronic toll collection system within the U.S. state of Florida) customers. Trucks
with three or more axles are prohibited on the ELs unless they are designated as emergency
vehicles. FDOT calculates the toll amount based on volumes and speeds from MVDSs
on I-95 ELs, installed every half of a mile. The recorded MVDS speeds are estimated as
point speeds, based on all vehicles’ speed measurements that cross the relevant MVDS
zone during a particular 15-min interval. Although part of Florida’s toll collection system
encompasses inductive loops that trigger the toll collection and enforcement cameras, those
inductive loops are not used in the toll pricing algorithm [3]. Toll adjustments are used
to maintain near free-flow speeds in the ELs. As traffic density in the ELs increases, the
tolls increase, and vice versa. The current toll rates for the next three destinations/exits are
shown on dynamic message signs (DMS) located in advance of the ELs’ entry points. If a
toll increases after a driver enters the express lanes, the driver still pays only the toll that
was shown on the sign when they entered the ELs. However, if the toll decreases after the
driver’s entry, the driver is charged the lower amount.

3.1.1. Data Collection and Analysis

The authors utilized 2017 dynamic toll data (provided by the FDOT) to select a segment
and representative days for the study. The posted tolls were examined for six directional
segments (three in each direction, Southbound and Northbound). The analysis of the toll
data focused on quantifying toll fluctuations during various time intervals. Two segments
of Interstate-95 (segments 2-South (2S) and 2-North (2N)) were selected for further analysis
because they had the most toll fluctuations.

3.1.2. Study Area

Figure 1 shows the study area. The Southbound segment is 6 miles long, from north of
the Hallandale interchange to a point south of NE 167th Street. The Northbound segment
is 4.5 miles long, from south of NE 167th Street interchange to the south of Ives Dairy Road
in the north. Although several sensors are installed along with the tested segments, not all
field sensors are used to retrieve traffic densities for toll calculations. The FDOT has an
internal process by which it compares the data readings from the relevant MVDSs to those
from gantry EL sensors to ensure that only reliable MVDSs are used for toll calculations.
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Figure 1. Study area of I-95 express lanes.

3.1.3. Selection of Representative Days

A data filtering process was performed for the studied segments for the entirety of
2017 to choose representative days, which were selected according to the following criteria:

• The tolling operations were not closed during any portion of the investigated period;
• The tolls do not reach the maximum value allowed by the algorithm (to avoid oversat-

uration conditions that can impact the results of the conducted experiments);
• The tolls exhibit smooth and noticeable toll changing patterns (that will ensure testing

the sensitivity of sensors at various traffic ‘demand’ densities);
• The toll operations use the maximum number of sensors for toll calculations;
• The representative days experienced a close-to-an-average traffic volume in 2017.

To meet all of the stated criteria, the raw volume data (20-s interval) were collected
from the Regional Integrated Transportation Information System (RITIS) and analyzed
to identify the representative days. The selection process started by excluding all days
when ELs were closed (e.g., tolls were not charged) on the investigated ELs segments.
Then, the remaining days were inspected according to the presented criteria. Although
many days met the criteria above, 17 February 2017 and 23 March 2017, were selected as
representative days for further analysis. On the one hand, 23 March 2017 was selected
because it represents a close-to-an-average daily volume in 2017, as shown in Figure 2.
However, on that day, an average volume on Northbound does not impact the toll amount
significantly. Thus, 17 February 2017 was added to the analysis because it represents a day
with relatively high traffic volume on NB (as shown in Figure 2b), which helps to evaluate
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the impact of the accuracy of sensors on the toll amount on the Northbound segment. It
is worth noting that the directional distribution factors (D) for the two selected days are
slightly different. 17 February had 53.41% of traffic flowing in the Southbound direction,
whereas on 23 March this percentage was slightly higher (55.78%).

Figure 2. Average hourly traffic volume for 2017 and the representative days.

Multiple scenarios were designed to evaluate the impact of inaccurate detection on
calculated tolls. Those scenarios were performed on a prototype of the existing algorithm
used by the FDOT on I-95 EL to precisely imitate the algorithm used in the field. The
traffic demand was structured in such a manner to replicate the field conditions closely. A
customized spreadsheet tool was developed to replicate the FDOT algorithm and perform
the experiments. In addition, carefully selected performance measures were utilized to
assess the effect of inaccurate vehicle detection on calculated tolls.

3.2. Pseudocode for Dynamic Toll Module

The dynamic toll mode is applied on I-95 ELs to adjust toll rates based on detected
real-time traffic conditions. Traffic density is used to determine the level-of-service (LOS)
that reflects the condition of traffic flow. Irrespective of the toll amount calculated by
the algorithm, each LOS is configured, within the algorithm, to have a minimum and
a maximum toll rate amount. These minimum and maximum thresholds serve to limit
the tolls charged to the motorists for a given LOS. For the reader’s convenience, Table 1
summarizes the notation used in this section.

Although the FDOT algorithm can use either traffic densities or travel times as the
primary measure to calculate tolls, it currently relies solely on the traffic-density method.
The algorithm starts with a toll for the previous interval (or a seed value if the algorithm
starts for the first time) and then changes that toll based on the traffic speed and volume
data collected from the selected EL MVDS(s) for the preceding 15 min. The collected
traffic speeds and volumes are ‘cleaned’ to exclude invalid data. The data inputs that meet
the data quality assurance conditions 1, 2, or 8 (shown in the first table of Figure 3) are
considered valid data.
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Table 1. Variable notation.

Variable Description

TD Traffic link density (veh/mile/ln)
FTL Traffic link flow (vehicles per hour)
STL Traffic link speed (miles per hour)
NL Number of lanes

VTLC Traffic link volume count (vehicles per data collection interval)
DCI Data collection interval (900 s = 15 min)
Si Average of one vehicle’s speeds (miles per hour)

TDc Calculated traffic density (veh/mile/ln)
TDp Previously calculated traffic density (veh/mile/ln)
∆TD Change in traffic density (veh/mile/ln)
∆TR Toll rate adjustment (USD)

TRs or p Seed or previously calculated toll rate (USD)
LOSe Existing level of service (A, B, C, D, E, or F)
TRi Initial toll rate (USD)
TRf Final toll rate (USD)

Then, traffic density (veh/mile/ln) is calculated using the traffic link flow (based on
traffic volumes) and traffic link speed, as shown in Equation (1). To obtain the traffic link
flow, the total volume during a particular 15-min period is multiplied by 4 (Equation (2))
to find the equivalent hourly traffic volume for the same 15-min interval. For speed, an
average speed for a specific 15-min period is computed by dividing the sum of all speeds
(n) (each speed is an average of one vehicle’s speeds) collected during that 15-min period
by the total number of vehicles from the same period, as shown in Equation (3).

TD =
FTL

STL × NL
(1)

FTL =
VTLC
DCI

× 3600 = VTLC × 4 (2)

STL =
∑n

i=1 si

VTLC
(3)

The current and previous traffic densities and the traffic density delta table (the second
table shown in Figure 3) are used to determine the EL toll adjustment to reflect the current
traffic flow. The table covers various values of delta densities (−18 to 18 veh/mile/ln) and
current densities (1 to 60 veh/mile/ln).

Afterward, the toll adjustment is added to the previously calculated toll to calculate
an initial toll (based on traffic density). This initial toll is then compared to the minimum
and maximum tolls that correspond to the existing LOS (LOSe Minimum TR and LOSe
Maximum TR, respectively). Examples of the minimum and maximum tolls are given
in the third table of Figure 3. If the initial toll rate is either smaller than the minimum
toll or greater than the maximum toll, a new toll is set to minimum or maximum value,
respectively. Otherwise, the initial toll becomes a new toll to be implemented and displayed
to the drivers. Figure 3 uses the nomenclature presented in Table 1 to depict the above-
explained process.
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Figure 3. Toll calculation algorithm flowchart.

3.3. Scenarios for Modeling Detection Errors

As previously mentioned, not all field sensors are used to retrieve traffic densities for
toll calculations. Thus, the data for the representative days were reviewed to determine
which sensors were utilized for toll calculations on the representative days. The findings
show that four sensors (labeled as SB014.3-DS-EL, SB014.6-DS-EL, 14.9-DS-EL, and SB015.1-
DS-EL) were used to determine the toll values on the Southbound segment and three
sensors (labeled as NB014.5-DS19-EL, NB014.6-DS-EL, and NB014.9-DS-EL) were used for
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the Northbound segment. To investigate the impact of the accuracy of vehicle detection on
toll calculation, two sets of scenarios were developed:

• Scenario 1: Systematic detection errors—all sensors consistently generate erroneous
readings with 5, 10, 15, or 20% error across the board. This scenario includes two subsets:

• Subset 1 consisted of a set of uniform detection errors for all of the sensors on the
tested segment, of ± 5, ±10, ±15, and ±20% of the detection values observed
in the field. For example, a +5% error in volume (with a corresponding error in
speed and the resulting error in density) had been applied to all of the sensors on
the studied segments by multiplying their observed field volumes with a factor
of 1.05.

• Subset 2 consisted of a set of experiments where a certain percentage of sensors
was considered to have failed completely (e.g., no reported traffic data), thus
leaving the algorithm to rely only on the rest of the sensors (that have remained
operational). Therefore, Subset 2 represents hypothetical field conditions when
sensors either work or do not work—there is no error applied. However, vari-
ous percentages of the available sensors were simulated to fail within the two
analyzed EL segments. Table 2 lists all of the 25 experiments conducted under
the Scenario 1 set, each with an associated percent of error or a percent of failed
sensors. We note here that if 100% of sensors on a particular segment fail, it is
assumed that the pre-designed tolls (from the day-of-week/time-of-day tables)
are used.

• Scenario 2: Stochastic detection errors—the Monte Carlo simulation method was
utilized to randomly introduce errors and failures of the sensors at the two ELs
segments. All sensors within the studied segments had equal probabilities of falling
into the group of failing sensors or their erroneous data. A custom stochastic model
was developed to model the errors and failures throughout the analyzed ELs segments.
The logic behind this approach was that some of the sensors could ultimately fail while
others will either work with erroneous outputs or work properly. The objective was to
investigate how such stochastically distributed detection errors and failures would
impact the ELs toll calculations. Table 3 shows how stochastic experiments were
selected and executed. The first column of Table 3 shows experiment ID, the second
column shows the percentage of sensors set to fail in the corresponding experiment,
the third column lists the sensors that were operational (with or without an error), the
fourth column shows the level of error applied to (some of) the operational sensors,
and the fifth column lists the operational sensors that were modeled with an error.
The rest of the sensors in each experiment were assumed to be 100% functional
and accurate.

3.4. Replication and Validation of the Toll Calculation Algorithm

To simplify the process of running the experiments, the dynamic algorithm shown in
Figure 3 was coded in MS Excel software using Visual Basic for Applications (VBA). The
field data containing speeds, volumes, posted tolls, and traffic densities for the representa-
tive days were provided by the FDOT. The replicated FDOT toll calculation algorithm was
validated by comparing traffic densities and posted tolls from the Excel spreadsheet (based
on the raw field volumes and speeds) and those reported by the FDOT. Figure 4 shows the
validation results for both Southbound and Northbound segments.
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Table 2. Experiments of systematic detection error in Scenario 1.

Experiments ID’s of Subset 1 (Uniform Errors Applied for All Sensors)

Uniform
Error 0% +5% −5% +10% −10% +15% −15% +20% −20%

Experiment
ID—

Southbound
1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9

Experiment
ID—

Northbound
1.10 1.11 1.12 1.13 1.14 1.15 1.16 1.17 1.18

Experiments ID’s and Used Sensor for Each Experiment in Subset 2

Experiment
ID

Southbound
Exp.ID

Northbound

Y% of Sensors Failed Used Sensor(s) Y% of Sensors Failed Used Sensor(s)

1.19 25% 14.3,14.9,15.1 1.23 33.33% 14.5,14.9

1.20 50% 14.6,15.1
1.24 66.67% 14.6

1.21 75% 14.9

1.22 100% Time of Day table 1.25 100% Time of Day table

Table 3. Experiments of random detection error in Scenario 2.

Random Detection Error Scenarios for Southbound Segment

Experiment ID Y% of Sensors Failed Used Sensor(s) X% Modeled Error
Sensor(s) Subjected

to X% Error,
Respectively

2.1 0% 14.3,14.6,14.9,15.1 +5, +15% 14.3,14.6
2.2 0% 14.3,14.6,14.9,15.1 −5, −15% 14.3,14.6
2.3 0% 14.3,14.6,14.9,15.1 +10, +5% 14.6,14.9
2.4 0% 14.3,14.6,14.9,15.1 −10, −5% 14.6,14.9
2.5 0% 14.3,14.6,14.9,15.1 +10, +15, +5% 14.3,14.9,15.1
2.6 0% 14.3,14.6,14.9,15.1 −10, −15, −5% 14.3,14.9,15.1
2.7 0% 14.3,14.6,14.9,15.1 +10, +10, +20% 14.3,14.6,15.1
2.8 0% 14.3,14.6,14.9,15.1 −10, −10, −20% 14.3,14.6,15.1
2.9 0% 14.3,14.6,14.9,15.1 +15% 14.9

2.10 0% 14.3,14.6,14.9,15.1 −15% 14.9
2.11 25% 14.3,14.9,15.1 +10, +15% 14.9,15.1
2.12 25% 14.3,14.9,15.1 −10, −15% 14.9,15.1
2.13 25% 14.3,14.9,15.1 +10, +15, +20% 14.3,14.9,15.1
2.14 25% 14.3,14.9,15.1 −10, −15, −20% 14.3,14.9,15.1
2.15 50% 14.6,15.1 +15% 15.1
2.16 50% 14.6,15.1 −15% 15.1
2.17 50% 14.3,15.1 +10, +20% 14.3,15.1
2.18 50% 14.3,15.1 −10, −20% 14.3,15.1
2.19 75% 14.9 +10% 14.9
2.20 75% 14.9 −10% 14.9
2.21 75% 14.3 +15% 14.3
2.22 75% 14.3 −15% 14.3

Random detection error scenarios for Northbound segment

2.23 0% 14.5,14.6,14.9 +10, +15, +20% 14.5,14.6,14.9
2.24 0% 14.5,14.6,14.9 −10, −15, −20% 14.5,14.6,14.9
2.25 0% 14.5,14.6,14.9 +10, +20% 14.5,14.6
2.26 0% 14.5,14.6,14.9 −10, −20% 14.5,14.6
2.27 0% 14.5,14.6,14.9 +10, +10% 14.5,14.9
2.28 0% 14.5,14.6,14.9 −10, −10% 14.5,14.9
2.29 0% 14.5,14.6,14.9 +5, +20% 14.6,14.9
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Table 3. Cont.

Random Detection Error Scenarios for Southbound Segment

Experiment ID Y% of Sensors Failed Used Sensor(s) X% Modeled Error
Sensor(s) Subjected

to X% Error,
Respectively

2.30 0% 14.5,14.6,14.9 −5, −20% 14.6,14.9
2.31 33.33% 14.5,14.6 +15% 14.9
2.32 33.33% 14.5,14.6 −15% 14.9
2.33 33.33% 14.5,14.6 +10% 14.9,15.1
2.34 33.33% 14.5,14.6 −10% 14.9,15.1
2.35 33.33% 14.5,14.6 +10, +15% 14.3,14.9,15.1
2.36 33.33% 14.5,14.6 −10, −15% 14.3,14.9,15.1
2.37 33.33% 14.5,14.6 +15, +20% 15.1
2.38 33.33% 14.5,14.6 −15, −20% 15.1
2.39 66.67% 14.6 +10% 14.6
2.40 66.67% 14.6 −10% 14.6
2.41 66.67% 14.9 +20% 14.9
2.42 66.67% 14.9 −20% 14.9

Figure 4. Results of density validation.

Based on the validation results, the field densities are well represented by the cal-
culated densities, as demonstrated by low values of the root mean square (RMSE) and
mean absolute percentage (MAPE) errors. Although insignificant differences (between the
calculated and field densities) were found in the validation process, the calculated tolls
were equal to the field-observed tolls (RMSE and MAPE equal to zero). That is due to the
algorithm’s nature (shown in step “Get Min and Max TR from LOS table” in Figure 3),
which ensures that small changes in densities do not impact the value of tolls.

3.5. Modeling of Traffic Density in Evaluated Detection Scenarios

When modeling errors, it was essential to take care of the effect that a change in specific
traffic data (e.g., volumes) would impact the other data (e.g., speeds and density). In other
words, it was necessary to account for interdependencies between the fundamental traffic
flow characteristics (i.e., traffic volumes and speeds). To account for this phenomenon, the
modified vehicular volumes (to model relevant errors) were used first to calculate the traffic
density which was subsequently used to determine the toll rates. It was also necessary
to estimate the average vehicular speed as a function of the given vehicular volume to
determine traffic density.
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Considering that volume and speed are interdependent variables (one cannot be
modified to represent the detection error without affecting the other), defining a relationship
between speed and volume was necessary. The field volume and speed data were acquired
from the sensors on both studied segments to accomplish that. A volume-speed (V-S)
relationship was then calibrated for each sensor. Vehicle flow saturation conditions (i.e.,
undersaturated and oversaturated conditions) were also identified using custom-developed
scripts in Python and MATLAB. Figure 5 shows a sample of the resulting V-S relationships
for a pair of sensors (one in each studied direction). One can observe that the charts in
Figure 5 suggest that some queueing occurred on the ELs, which contradicts the purpose
of ELs for managing traffic congestion. However, it should also be noted that the calibrated
relationships reflect a full year of various traffic conditions which likely include some heavy
traffic incidents and the displayed oversaturated conditions.

Figure 5. Speed-volume relationships from representative Northbound and Southbound sensors.

The following steps outline (i) how errors were applied to the traffic volumes, (ii) how
the corresponding speeds were calculated based on the V-S relationships, and (iii) how
densities were calculated by using the volumes and speeds adjusted for an applied error:

1. Take the aggregated 15-min “true” volume and speed observations from the dataset,
V1 and S1;

2. Multiply V1 by percent of error—representing an erroneous reading (+/− Z%) to
obtain V2;

3. Insert V2 into the appropriate V-S relationship to obtain S2 (the speed that corresponds
to the adjusted volume, V2). A 40–50 mph speed range represents the queue discharge
flow condition; thus, 45 mph is used as a threshold value to distinguish between
undersaturated and oversaturated conditions.

4. Calculate speed error percentage by using the following equation:

F% =
S2− S1

S1
(4)

5. Apply speed error F% on the true speed S1 to obtain S2;

S2 = S1 + S1·
(
±F%
100

)
(5)
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6. Use V2 and S2 to calculate 15-min traffic density (D):

D =
V2
S2

(6)

3.6. Performance Measures to Evaluate the Impact of Detection Errors

Defining and quantifying the appropriate performance measures is critical in eval-
uating the performance of a dynamic ELs toll pricing algorithm. For this purpose, four
performance measures (p.m.s) were selected in this study to assess the effect of different
detection error scenarios on calculated traffic densities and tolls.

1. Mean absolute percentage error (MAPE), shown in Equation (7), was used to assess
density variation in different scenarios. Equation (7) has three terms: TTD is true
traffic density, which is the field-measured density, CTD is calculated traffic density
after applying a percent of error to volume and speed readings, n is the number of
15-min intervals used in the calculation, and i is any 15-min interval.

MAPE =

(
100%

n

) n

∑
i=1
‖TTDi – CTDi

TTDi
‖ (7)

2. Absolute toll error (ABS) is important for observing the cumulative total absolute
change in tolls for all 56 15-min intervals during the study period (6 a.m.–8 p.m.).
Equation (8) shows how ABS is computed where true toll rate (TTR) represents
the posted toll in the field, whereas calculated toll rate (CTR) is taken from the
experiments, and i is any 15-min interval.

ABS 15− min toll error =
n

∑
i=1
‖TTRi − CTRi‖ (8)

3. Total gross toll: a sum of the products of volumes of the charged vehicles and their
tolls for each of the 15-min intervals. The total gross toll represents the total toll fees
calculated for each scenario during the analysis period (6 a.m.–8 p.m.). It is crucial
to mention here that all the total gross toll values are theoretical and not actual. By
using “i” for any 15-min interval during the analysis period, the following equation
defines the total gross toll:

Total gross toll =
n

∑
i=1

[TVi· CTRi] (9)

where: TV is true volume, and CTR is calculated toll rate.
4. Equation (10) computes the difference in total revenue between the true total gross

toll charged in the field and the total gross toll calculated in the experiments with
erroneous detection. This measure helps to see the impact of detection errors or
failures on the total gross toll.

Difference in total revenue =
n

∑
i=1

[TCRi − TARi] (10)

where: TCR is total calculated revenue, TAR is total actual revenue, and i is any
15-min interval.

In Equation (10), a negative value means that toll revenue generated due to erroneous
detection is lower than the revenue during normal conditions (with no detection errors or
failed sensors). On the other hand, a positive difference means that erroneous detection
would result in extra tolls charged to the travelers at a given time.
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4. Results and Discussion

Tables 4 and 5 present the results of Scenario 1 and 2 for the Southbound direction.
Similarly, Tables 6–8 show the results for the Northbound direction. The profit and loss
values, shown in the last column of each table, were computed by subtracting a specific
experiment’s total toll value from the total field toll where no error or failures were modeled
(Equation 10). Figure 6 depicts the total gross toll for the Southbound direction computed
based on the 15-min toll values derived for each experiment and the corresponding traffic
volume during each 15 min of the studied period (6 a.m.–8 p.m.). Figure 7 shows changes
in density and 15-min gross toll for all experiments performed under subset 1 of Scenario 1
for the Southbound direction. Figures 8 and 9 are similar to Figures 6 and 7, respectively,
but for the Northbound direction.

4.1. Analysis of the Southbound Segment
4.1.1. Scenario 1: Systematic Detection Errors

Table 4A shows the results of applied measures for the experimental subset 1 of the
systematic detection errors for the Southbound direction (introduction of detection error
of ±5, 10, 15, or 20%, respectively, for all sensors on the segment). This subset consisted
of nine experiments, as shown in Table 4A. The left sections of Figure 6a,b show the total
change in gross toll for the representative days of 23 March and 17 February, respectively,
during the time of interest (6 a.m.–8 p.m.).

As expected, Table 4A and the negative percentages in the left sections of Figure 6a,b
show that all of the experiments where traffic volumes were systematically underestimated,
due to modeled detection errors (experiments #1.3, #1.5, #1.7, and #1.9), resulted in a loss
of the total gross toll on both of the tested representative days. The toll revenue loss on 17
February 2017, was as low as USD 631 for systematic errors of −5, −10, −15% modeled for
volumes from all sensors, whereas the loss reaches USD 1422 when the modeled error is
−20%. On the other hand, loss on 23 March 2017 ranged from USD 710 to USD 2035 for
modeled errors of −5 and −20%, respectively. Such a high difference between the loss on
the two studied days is attributed to the relatively higher traffic volume on the Southbound
section on 23 March 2017 compared to 17 February 2017. One can observe from Table 4A
that the maximum change in density occurred when sensors reported (uniformly) with
an error of −20% (experiment #9) in traffic volume. This magnitude of the error would
change overall density estimation by around ~19%, which would result in a theoretical toll
error of USD 4.75, or a loss of total gross toll of USD 1422 and 2035.75 for 23 March and 17
February, respectively.
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Table 4. Results of systematic detection error scenario for the Southbound segment.

(A) Systematic Detection Experiments—Subset 1

Exp.
ID

MAPE
(Density)

Absolute 15-min
Toll Error (USD)

Total Gross
Toll (USD)

Profit/Loss
(USD)

17
Febru-

ary

23
March

17
Febru-

ary

23
March

17
Febru-

ary

23
March

17
Febru-

ary

23
March

1.1 0 0 0 0 18,394 25,548 0 0
1.2 5.85 4.79 1.25 2.25 18,752 26,667 358 1118
1.3 4.17 6.5 5.75 3.5 17,763 24,838 631 710
1.4 6.97 6.54 1.5 2.25 19,075 26,667 681 1118
1.5 9.05 10.2 1.25 5 17,763 24,135 631 1413
1.6 10.34 9.39 2.5 2.25 19,588 26,667 1194 1118
1.7 13.24 14.56 1.25 4.75 17,763 24,040 631 1507
1.8 19.44 12.04 7.5 3.5 22,061 27,297 3667 1748
1.9 18.89 18.89 4.75 4.75 16,972 23,297 1422 2035

(B) Systematic Detection Experiments—Subset 2
1.19 2.22 3.92 4.75 4.75 18,394 24,235 0 1312
1.20 2.22 3.92 0 5.00 18,394 24,120 0 1428
1.21 3.07 6.05 12.25 6.25 23,722 24,019 5328 1529
1.22 23.62 23.62 13.00 13.00 19,659 20,170 1266 5378

Loss, all results are based on simulated or hypothetical scenarios.

In contrast, the overestimated volumes increased the total gross tolls (as shown in
experiments #1.2, #1.4, #1.6, and #1.8 in Table 4A and the positive percentages in the left
sections of Figure 6a,b. Unlike experiments #1.3, #1.5, and #1.7 for 17 February 2017, which
resulted in equal loss despite underestimating volumes by various percentages, the toll
increased for each increment of the volume overestimation starting from USD 358 for a 5%
modeled error on 17 February 2017, to a maximum of USD 3667 for a modeled error of
20%. The opposite case can be seen for 23 March 2017, where the positive modeling error
increased the total gross toll by USD 1118. That was identical for all modeled errors except
20%, which increased the toll by USD 1748. It can be concluded that higher traffic volumes
are more sensitive to negative detection errors and less sensitive to positive ones.

For 17 February 2017, Figure 7a,e shows the diurnal changes in density due to detection
errors modeled under experiments of subset 1 of the systematic detection experiments.
Similarly, Figure 7b,f show the change in density for the same subset for 23 March 2017.
The charts (Figure 7a,b,e,f) show that the density increased and decreased, as expected,
when the volume was overestimated and underestimated, respectively. It can be seen
that the periods with high densities (e.g., the peak period between time 6:00–10:48 on
Figure 7a,b,e,f) have experienced the most drastic increase or decrease (depending on the
experiment performed). That is because the overestimation or underestimation of reported
traffic volumes was performed as a percentage of the volume being manipulated.

Figure 7c,d present the difference in total gross toll resulting from the change in density
between the actual field values and experiments with overestimated traffic volumes for 23
March and 17 February, respectively. One can observe from Figure 7c,d that the difference
occurs mainly during the morning peak (6:30–10:45 a.m.). The similar phenomena, but
with the reduction in the total toll, can be observed in Figure 7e,f. Interestingly, some
exception to the expected results (i.e., higher volumes lead to higher density higher toll)
can be seen in various charts. For instance, Figure 7h shows that between 9:26–10:26 a.m.
the toll was increased while the volume was underestimated. That is due to the increase in
speed after applying the relevant Volume-Speed relationship, explained in Section 3.5. It
can be observed that a change in density at low traffic densities (e.g., below 20) does not
impact the toll values as significantly as changes at higher traffic densities (e.g., greater than
25), which is intuitive. However, it is noticeable that the toll does not fluctuate as much as
density in Figure 7 due to toll limitations imposed for various LOSs values, as shown in
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the third table in Figure 3, where a range of density corresponds to a range between the
minimum and maximum tolls.

Table 4B and the right sections of Figure 6a,b depict the losses when specific percent-
ages (25, 50, 75, and 100%) of utilized sensors systematically fail (as shown in experiments
#1.19, #1.20, #1.21, and #1.22, respectively). It can be seen from experiments #1.19 and #1.20
in Table 4B and the 25 and 50% columns in Figure 6a that omitting the data reported from
up to two sensors did not impact the total toll amount on 17 February 2017. However,
utilizing only one sensor (experiment #1.21 in Table 4B and the 75% column in Figure 6a)
led to an increase of USD 5328 in the toll on 17 February 2017. Whereas using the “day-
of-week/time-of-day” tables (no sensors) increased the tolls by USD 1266, as shown in
experiment #1.22 in Table 4B and the 100% column in Figure 6a.

In marked contrast, the analysis for 23 March 2017 shows that omitting the reported
data from one sensor resulted in a USD 1312 loss compared to the actual field total toll
that should be collected (experiment #1.19 in Table 4B and the 25% column in Figure 6b).
The loss increased when fewer sensors were utilized to compute the toll, as shown in
experiments #1.20 and #1.21 in Table 4B and the 50 and 75% columns in Figure 6b. The
maximum loss occurred when all sensors failed, in which case the “day-of-week/time-of-
day” tables are used to determine tolls (experiment #1.22 in Table 4B) and the 100% column
in Figure 6b. This result, accompanied by the result of using “day-of-week/time-of-day”
tables on 17 February 2017, may suggest that the “day-of-week/time-of-day toll” tables are
outdated. In other words, such tables were developed for traffic densities that no longer
represent the studied ELs segment. It should be noted here that all the total gross tolls are
compared to the gross total toll calculated from the field data (experiment #1.1 in Table 4A).

We note that scenarios where 25, 50, or 75% of sensors fail are not unrealistic in the field,
as each segment contains a few sensors. Thus, if a single sensor fails, this may constitute
25–33% of all sensors available on that segment. It is worth noting that experiments #1.19
and #1.20 represent actual scenarios from the field where only three and two sensors,
respectively, were used for toll calculations for four months in 2017. However, the authors
do not report any actual losses or increase in the total toll during that period as no volumes
or speeds data were provided from any sensor for those four months.

4.1.2. Scenario 2: Stochastic Detection Errors

Table 5 presents various performance measures of each experiment conducted for the
scenario with stochastic detection errors. To remind the reader, the stochastic detection
errors scenario included combinations of erroneous sensor detection and either a fully
functional or failed sensors. It can be observed in Table 5 that the tolls on the Southbound
segment are highly responsive to the significant changes in sensor inputs caused by the
emulation of erroneous readings (experiments #2.1 through #2.22 in Table 5 and Figure 6c–f).
The results of stochastic experiments #2.1 through #2.10 reiterate some of the findings from
the experiments with systematic detection errors. The total gross toll increases when
the applied error increases traffic volume/density and vice versa. However, this general
finding was not seen in all experiments; hence more discussion is provided below for
experiments performed under similar conditions.

Scenarios with no failed sensors (experiments #2.1 through #2.10 in Table 5 and
Figure 6c,d) can be classified according to the number of sensors with modeled error into
three categories. Experiments #2.1–#2.4 with two sensors, experiments #2.7 and #2.8 with
three sensors, and experiments #2.9 and #2.10 with only one sensor reporting erroneous
data. We note here that random error percentages were modeled stochastically on some of
the utilized sensors in each of the experiments mentioned above (#2.1–#2.22 in Table 5), as
previously presented in Table 3. Within this classification, we first discuss the results of the
experiments that had the same number of sensors with either positive or negative modeled
error. Then we move to draw a general conclusion on all experiments #2.1–#2.10.
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Figure 6. Graphical interpretation of total gross toll for systematic and stochastic failure and error scenarios on
Southbound direction.
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Figure 7. Diurnal fluctuations of density and 15-min gross tolls on Southbound direction.
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Table 5. Results of stochastic detection scenario for the Southbound segment.

Exp.
ID

MAPE
(Density)

Abs 15-min
Toll Error (USD)

Total Gross
Toll (USD)

Profit/Loss
(USD)

17
February 23 March 17

February 23 March 17
February 23 March 17

February 23 March

2.1 18.99 3.48 15.75 2.25 17,763 26,667 631 1118
2.2 16.47 5.06 15.25 3.5 18,983 24,838 589 710
2.3 16.68 2.98 15.25 2.25 18,983 26,667 589 1118
2.4 18.42 5.52 15.75 3.5 17,763 24,838 631 710
2.5 16 4.52 15 2.25 19,075 26,667 681 1118
2.6 19.46 9.27 15.75 3.75 17,763 24,722 631 825
2.7 15.9 5.9 15 2.25 19.075 26,667 681 1118
2.8 20.89 8.78 15.75 3.75 17,763 24,722 631 825
2.9 16.56 5.59 15.25 3.5 18,983 24,838 589 710

2.10 18.05 71.28 16.75 4.5 18,276 24,092 118 1426
2.11 17.08 32.15 16.25 4.75 18,507 24,040 113 1507
2.12 20.57 7.01 16 4.25 17,648 25,439 746 109
2.13 24.76 14.65 18.25 4.75 16,472 23,780 1922 1768
2.14 17.79 8.98 15.25 2.25 18,983 26,667 589 1118
2.15 17.6 6.32 15.5 5.5 18,907 24,401 513 696
2.16 21.63 13.3 15.75 5.5 17,763 10,852 631 1655
2.17 17.82 21.07 15.5 4.75 18,907 23,893 513 1324
2.18 26.85 16.48 20.75 6 15,205 23,192 3189 2355
2.19 17.68 71.88 14.5 23.75 19,383 13,999 989 11,549
2.20 21.74 7.19 16.25 4.5 17,520 26,323 874 775
2.21 20.32 11.52 13.25 5.5 24,866 28,056 6473 2507
2.22 21.63 56.08 15.75 14 17,763 18,682 631 6866

Loss, all results are based on simulated or hypothetical scenarios.

Experiments #2.1 and #2.3 had one mutual sensor (#14.6) with modeled error out of the
two sensors used in both experiments. As expected for experiment #2.3, the overestimation
of volumes resulted in a total toll increase of USD 589 and 1118 for both days, 23 March and
17 February, respectively, as shown in Table 5 and Figure 6c,d. Although the same result can
be seen for experiment #2.1 on 23 March (increase by USD 1118), the result of 17 February
indicates a total gross toll loss of USD 631 (experiments #2.1 Table 5 and Figure 6d). This
interesting result contradicts the results of the systematic scenarios (Table 4), where positive
modeled errors, individually, always led to higher total gross toll. Such finding can be
attributed to the fact that, unlike Scenario 1 where errors were modeled for all sensors, in
Scenario 2, sensors were not exposed to any modeled error which could have impacted the
results. Similar patterns can be seen in the results of experiments #2.2 and #2.4, but with
opposite signs (decrease in toll instead of an increase and vice versa), as shown in Table 5
and Figure 6c,d.

The findings from experiments #2.5–#2.8 are more stable and expected. Whenever a
positive error was modeled, an increase in the total toll was observed and vice versa. We
note here that the respective increase and decrease in total gross toll had the same value
for each pair of experiments (#2.5, #2.7) and (#2.6, #2.8), which can be seen in Table 5 and
Figure 6c,d. That might be because experiments #2.5–#2.8 had the same sensors (#14.3,
#14.6, and #15.1) modeled with errors. Finally, the last group of the experiments with
no failed sensors, experiments #2.9 and #2.10, had the same percentage of modeled error
(−15% for experiment #2.9 and +15% for experiment #2.10) on the same sensor (# 14.9).
The pattern of the results of those two experiments is consistent with the patterns found in
experiments #2.1–#2.4.

One general observation from experiments #2.1–#2.10 (Table 5 and Figure 6c,d) is
that the increase or decrease in the total gross toll is within a relatively small range:
between USD−631 to681 and−710 to1426 for 23 March and 17 February, respectively. That
does not mean that such differences are insignificant, but they could be much larger, as
observed in some of the experiments for Scenario 1 with systematic sensor failures and/or
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detection errors (Table 4B). That may also suggest that the number of sensors used for toll
computations is more important than the error in the reported data from those sensors.
However, this finding cannot be generalized based on the experiments performed in this
study only, and further research is needed to confirm this finding.

Experiments with both failed sensors and modeled errors on one or more of the
utilized sensors (Table 5 and Figure 6e,f) can be classified based on the total number
of sensors and number of sensors with modeled errors into five groups: experiments
#2.11–#2.12 with a total of three sensors of which two sensors were exposed to modeled
errors; experiments #2.13–#2.14 with all of the three utilized sensors having modeled errors;
experiments #2.15–#2.16 with two utilized sensors including one with errors; experiments
#2.17–#2.18 with a total of two sensors, both with modeled errors; and finally experiments
#2.19–#2.22 with one sensor used and exposed to modeled error. We note here that although
some experiments used the same number of sensors and some others even had the same
number of sensors with modeled errors, a variety of different percentages of modeled
errors were randomly applied in all experiments #2.11–#2.22.

Starting with experiments #2.11 and #2.12, those experiments showed expected results
where overestimation of volumes led to an increase in total gross toll, and vice versa. Thus,
it seems that omitting the data from one sensor in those two experiments did not impact
the results significantly. The results become a bit erratic when observing the results of
experiments #2.13 and #2.14. That is because negative modeled errors increased the total
gross toll and vice versa, which is unexpected. That may suggest, as noted earlier, that
the number of sensors utilized for toll computation plays a considerable role in the final
toll value. The rest of the experiments’ results (experiments #2.15–#2.22) presented in
Table 5 and Figure 6e,f seem to follow the general expected pattern with loss resulted
from negative modeled errors and fewer utilized sensors, and vice versa. What is clearly
noticeable is the positive correlation between the number of deployed sensors and the
significant differences between the actual total gross toll that should be charged in various
scenarios. Most experiments showed larger profit/loss from experiments with fewer
sensors than those with the same number of sensors as deployed in the field, but with
modeled errors, as shown in Tables 4 and 5 and Figure 6. That again might suggest that
the number of sensors is more critical for toll computation than the accuracy of the data
reported by individual sensors.

4.2. Analysis of the Northbound Segment
4.2.1. Scenario 1: Systematic Detection Errors

Table 6A and Figure 8a,b show the results of the first subset of the systematically
modeled errors in the Northbound section. Before commencing the discussion, we recall
that traffic volume on the Northbound on 17 February 2017 is slightly higher than the
average volume in 2017. In contrast, traffic volume on 23 March 2017 is closer to the average
volume. A few general observations can be drawn from Table 6A regarding experiments
#1.10–#1.18. First, the most remarkable change in traffic density is seen with absolute
modeled errors higher than 15%. Second, absolute modeled errors of less than 10% did not
impact the total gross toll. Third, negative modeled errors (underestimated volumes) did
not affect the total gross toll on 23 March 2017. Fourth, the resulting profit/loss range of
USD −609 to 536, is lower than what is observed for the Southbound section (Table 4A).
Fifth, tolls on 17 February 2017 were impacted by the modeled errors more than the tolls on
23 March 2017 because the former had higher traffic volumes than the latter. The following
paragraph describes the results of each of the studied days specifically.

In Table 6A and the left section of Figure 8a it can be observed that the changes in
total gross toll on 17 February 2017 resulted from modeling errors of −15 and 15% are not
equal in magnitude (experiment #1.15 and #1.16). Those two experiments decreased and
increased the total gross toll by USD 403 and 283, respectively. A similar note can be made
for modeled errors of −20 and 20%, with a decrease and increase in the total gross toll
by USD 609 and 536, respectively. One can conclude that a modeled error of +K% does
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not compensate for an equal modeled error with an opposite sign (e.g., −K% in this case,
assuming that K is constant).

Table 6. Results of systematic detection error scenario for the Northbound segment.

(A) Systematic Detection Experiments—Subset 1

Exp.
ID

MAPE
(Density)

Absolute 15-min
Toll Error (USD)

Total Gross
Toll (USD)

Profit/Loss
(USD)

17
February 23 March 17

February 23 March 17
February 23 March 17

February 23 March

1.10 0 0 0 0 13,425 10,264 0 0
1.11 4.24 10.8 0 0 13,425 10,264 0 0
1.12 4.79 10.22 0 0 13,425 10,264 0 0
1.13 13.94 4.67 0.5 0 13,590 10,264 165 0
1.14 9.18 14.79 0 0 13,425 10,264 0 0
1.15 11.33 9.05 0.75 0.25 13,708 10,401 283 137
1.16 16.13 18.65 1.25 0 13,023 10,264 403 0
1.17 14.45 12.31 1.25 0.5 13,961 10,514 536 250
1.18 20.31 23.13 2.25 0 12,816 10,264 609 0

(B) Systematic Detection Experiments—Subset 2

1.23 0.48 1.48 0 0 13,425 10,264 0 0
1.24 1.48 1.67 0 0 13,425 10,264 0 0
1.25 14.14 14.14 0 0 10,844 10,264 2581 0

Loss, all results are based on simulated or hypothetical scenarios.

On the other hand, and similar to the corresponding results for the Southbound
direction, the tolls on 23 March 2017 are impacted only if the volume is systematically
overestimated by 15% or more (experiment #1.15 and #1.17 in Figure 8b). However, even
then the difference in the total gross toll is relatively small. The reason for such results can
be found in the values of traffic density, which must be at least equal to 26 veh/mile/ln to
trigger a change in toll value (as shown in Table 7); on 23 March 2017, this is only achieved
when the traffic is overestimated by 15% or more.

Similar to Figure 7 for the Southbound case, Figure 9a,b,e,f illustrate how various
error experiments resulted in different traffic densities for the Northbound segment but
eventually had matching tolls most of the time as compared to the tolls that should actually
be charged considering the true traffic volume (Figure 9c,d,g,h). A couple of instances
during the evening peak period (Figure 9c,d) were the exception. The reason for such
slight differences in tolls can be explained by the minimum and maximum thresholds
used by the algorithm to constrain the range of possible tolls for a given LOS (Table 7).
Specifically, the “Get Min and Max TR from LOS table” step illustrated in Figure 3 shows
that a minimum traffic density of 26 (veh/mile/ln) is required to trigger a change in the
toll amount, as mentioned previously. The constraints imposed by the minimum and
maximum toll thresholds (for each LOS) explain why there are no toll changes for any
detection errors that result in underestimated traffic volumes on 23 March 2017, as well as
those that overestimate traffic volume by only 5 or 10%.

Table 7. Level of service and toll amount for the Northbound segment.

Level of Service
Traffic Density [Veh/Mile/ln] Toll Amount (USD)

Minimum Maximum Minimum Maximum
A 0 11 USD 0.50 USD 0.50
B 12 18 USD 0.50 USD 0.50
C 19 26 USD 0.50 USD 0.75
D 27 35 USD 0.75 USD 2.00
E 36 45 USD 2.00 USD 3.00
F 46 60 USD 3.00 USD 3.00
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Figure 8. Graphical interpretation of total gross toll for systematic and stochastic failure and error scenarios on Northbound
direction.
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Figure 9. Diurnal fluctuations of density and 15-min gross tolls on Northbound direction.

The results of the second subset of the systematic detection error experiments for
the Northbound segment are presented in Table 6B and the right sections of Figure 8a,b.
Experiments #1.19 and #1.20 showed that all experiments with fewer sensors (1–2 failed
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sensors) do not result in high enough densities to trigger toll changes. However, experiment
#1.25, where all three sensors on the Northbound were set to fail, shows that the total gross
toll from the time-of-day tables was equivalent to those calculated based on the field data
on 23 March 2017. In contrast, a loss of USD 2581 is observed in the equivalent analysis for
the 17 February 2017 due to higher volume on that day (Table 6B). This finding suggests
that the “day-of-week/time-of-day” tables seem to be relatively correct for a day with
average traffic volumes on the Northbound segment.

4.2.2. Scenario 2: Stochastic Detection Errors

Table 8 presents the results of the random detection errors scenarios for the North-
bound segment. Contrary to the results for the Southbound segment, experiments #2.23,
#2.25, #2.29, #2.37, and #2.41 show that Scenario 2 with stochastic detection errors, pre-
sented in Table 8 and Figure 8c–f), cause insignificant changes (USD < 1000) of the total
gross tolls. That is also true for high traffic volumes on the Northbound segment, as shown
in the results for 17 February 2017 in Table 8 and Figure 8c,e. A general conclusion can be
drawn based on the experiments with stochastic detection errors: the dynamic toll calcula-
tions are not very responsive to small fluctuations of density on the studied Northbound
segment of the Interstate-95 ELs.

Table 8. Results of stochastic detection scenario for Northbound segment.

Exp. ID
MAPE (Density) Abs 15-min Toll Error

(USD) Total Gross Toll (USD) Profit/Loss (USD)

17
February 23 March 17

February 23 March 17
February 23 March 17

February 23 March

2.23 1.1 20.23 2.75 0.5 14,216 10,524 791 260
2.24 1.25 23.35 1 0 13,216 10,264 209 0
2.25 0.32 24.04 1.25 1.75 13,784 11,118 359 854
2.26 95.37 95.25 0.25 0 13,534 10,264 72 0
2.27 0.63 9.99 0.25 0 13,497 10,264 72 0
2.28 0.16 9.52 0.25 0 13,354 10,264 72 0
2.29 0.39 13.25 0.5 0.25 13,590 10,377 164 113
2.30 0.16 11.15 0 0 13,425 10,264 0 0
2.31 0.19 18.03 0.25 0 13.497 10,264 72 0
2.32 0.32 18.03 0.25 0 13,353 10,264 72 0
2.33 0.24 11.15 0 0 13,425 10,264 0 0
2.34 0.49 10.74 0 0 13,425 10,264 0 0
2.35 0.65 12.32 0 0 13,425 10,264 0 0
2.36 0.37 12.32 0 0 13,425 10,264 0 0
2.37 0.39 14.63 0.5 0.25 13,590 10,389 164 124
2.38 0.29 13.75 0 0 13,425 10,264 0 0
2.39 0.53 10.74 0 0 13,425 10,264 0 0
2.40 0.23 10.74 0 0 13,425 10,264 0 0
2.41 0.39 21.94 0.5 0.5 13,590 10,524 164 260
2.42 0.38 20.29 0 0 13,425 10,264 0 0

Loss, all results are based on simulated or hypothetical scenarios.

5. Conclusions

The presented study investigates the impact of traffic sensor failure and/or detection
accuracy on the toll computation by a dynamic toll pricing algorithm deployed on express
lanes (ELs). The analysis methodology was demonstrated in a case study of tolled ELs on
Interstate-95 in Florida, using the traffic and toll data for the Northbound and Southbound
EL segments provided by FDOT for two selected dates in 2017. The existing dynamic toll
pricing algorithm used for Interstate-95 ELs was studied and replicated analytically. The
V-S relationships for ELs segments in the study area were developed and utilized to model
erroneous sensor behavior. Two sets of experimental detection error scenarios (with several
experiments in each) were designed and performed. A set of performance measures was
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used to investigate the impact of failed sensors and erroneous detection on EL tolls. The
following conclusions have been reached:

• Uniformly applied detection errors (±5, 10, 15, and 20%) for all of the sensors on the
Southbound segment show consistent results—underestimated traffic volumes result
in a loss of the gross tolls. In contrast, the overestimated volumes result in a surplus
of the tolls.

• Uniformly applied detection errors (±5, 10, 15, and 20%) for all of the sensors on the
Northbound segment show that change in total gross toll occurs when the volume is
overestimated by more than 15% for a day with an average traffic volume. In contrast,
the detection error as low as 10% caused changes in toll amounts for a day with high
traffic volumes.

• Considering the demonstrated cases in which detection errors of 5–10% did not trigger
any changes in the tolls in the Northbound direction, the authorities could require
that the accuracy of their detection systems cannot be lower than 90%.

• Experiments with multiple failed/erroneous sensors lead to results that are not easy
to interpret systematically. In these experiments, the results vary between losses and
gains based on the percentages of failed sensors and the magnitude of introduced
errors on each sensor. The unpredictability of the resulting tolls appears to be more
significant on the Southbound segment because it is more dynamic, traffic-wise, than
the Northbound segment.

• In summary, the findings show that the detection errors greater than 10% should
present a concern for the toll authorities in terms of possible underestimates or over-
estimates of reported traffic volumes, which reduce the algorithm’s effectiveness in
determining the appropriate toll rates.

To further generalize the conclusions of this research, a future study is needed to
analyze more Els segments in other geographic and operational conditions. Future studies
should also focus on comparing various algorithms with different price sensitivities to the
detected traffic conditions. The future research should also seek to develop an ‘index of dy-
namism’ of the EL, which would help determine how dynamic (or responsive) the dynamic
tolls really are. Such information can then be used to update the day-of-week/time-of-day
toll tables accordingly.
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