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Abstract: Background: Closed loop bi-hormonal artificial pancreas systems, such as the artificial
pancreas (AP™) developed by Inreda Diabetic B.V., control blood glucose levels of type 1 diabetes
mellitus patients via closed loop regulation. As the AP™ currently does not classify postures and
movements to estimate metabolic energy consumption to correct hormone administration levels,
considerable improvements to the system can be made. Therefore, this research aimed to investigate
the possibility to use the current system to identify several postures and movements. Methods: seven
healthy participants took part in an experiment where sequences of postures and movements were
performed to train and assess a computationally sparing algorithm. Results: Using accelerometers,
one on the hip and two on the abdomen, user-specific models achieved classification accuracies of
86.5% using only the hip sensor and 87.3% when including the abdomen sensors. With additional
accelerometers on the sternum and upper leg for identification, 90.0% of the classified postures and
movements were correct. Conclusions: The current hardware configuration of the AP™ poses no
limitation to the identification of postures and movements. If future research shows that identification
can still be done accurately in a daily life setting, this algorithm may be an improvement for the AP™
to sense physical activity.

Keywords: artificial pancreas; classification algorithms; inertial sensing; posture identification;
movement identification; type 1 diabetes mellitus; wearable sensors

1. Introduction

Closed loop bi-hormonal artificial pancreas systems, such as the artificial pancreas
(AP™) developed by Inreda Diabetic B.V. (Goor, The Netherlands), fully regulate blood
glucose levels of type 1 diabetes mellitus (T1DM) patients by administration of insulin and
glucagon using a closed loop regulator as shown in Figure 1 [1]. The hardware consists of a
mainframe, generally worn on the hip, two transmitters that measure blood glucose levels,
worn in the abdomen region, and two cannulas through which insulin and glucagon are
administered [2]. Furthermore, the mainframe and transmitters contain tri-axial accelerom-
eters that sense physical activity [2] using a sampling frequency of 20 Hz as a measure of
the metabolic consumption rate to adjust the hormone administration algorithm.

Because performing physical activity influences blood glucose levels based on the
intensity of the activity [3], the AP™ control system allows for changing insulin adminis-
tration levels at different activity magnitudes [2]. However, the current physical activity
sensing method can be improved as the current implemented method of data processing
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entails heavily down-sampled 1D data, which will lead to a loss of information. Further-
more, other factors that are of influence on blood glucose dynamics, such as sleeping [4],
are not taken into account in the current system as it does not know when a specific patient
actually is sleeping. Finally, using the AP™ system in daily life means that the mainframe
and transmitters are not placed consistently on the same location, where the mainframe is
moved throughout the day due to natural use and the skin underneath the transmitters
needs to recover from the adhesives. All these factors suggest that more detailed identifi-
cation of physical activity using this particular setup is not trivial. As the AP™ currently
does not classify postures and movements to estimate metabolic energy consumption to
correct hormone administration levels, considerable improvements to the system can be
made. To change the hormone administration algorithm based on the metabolic consump-
tion rate more accurately, as a first step, postures and movements need to be identified
as these individual identified postures and movements are related to specific metabolic
consumption rates [5].

Figure 1. Representation of the AP™ as it generally is worn by TIDM patients. Here, the mainframe,
as shown in the subject’s right hand, at least consists of the main processor, regulatory hormones, and
an accelerometer. Furthermore, the transmitters, depicted by the devices with a circle and triangle,
contain the blood glucose sensors and accelerometers. Finally, the cannulas (purple G and blue I)
serve as an injection spot for the regulatory hormones [1].

The concept of posture and movement identification using accelerometry has been
researched before in a varying range of manners [6-10]. This knowledge has been applied
in the diabetic field, for example by Dasanayake et al. [11]; by using an activity tracker
worn on the wrist, they aimed to identify the onset and end of activities of a TIDM
population before changes in blood glucose levels were induced. Jacobs et al. [12] utilized
an accelerometer and a heart rate sensor on the sternum to detect activity by estimation
of the energy expenditure of TIDM patients and proposed a method to adjust hormone
administration levels based on the identified activities.

However, these studies make use of sensor placements that do not coincide when
using the AP™ system. It is unknown whether solely using a sensor combination placed on
the hip and abdomen region still enables algorithms to identify postures and movements.
Furthermore, it has not been analyzed before how the performance of an identification
algorithm may be affected when accelerometers are placed on different locations of a
specific body segment after model development. Finally, even though activity recognition
has been applied in the diabetic field [11,12], postures were not taken into account, which
are important to consider [4].



Sensors 2021, 21, 5954

3o0f14

Therefore, this research aims to investigate the possibility to use the current setup of
the AP™ to identify several postures and movements using accelerometry as a first step
in improving the hormone administration algorithm of the AP™ with respect to physical
activity. During this research, we also investigated what the influence of varying locations
of the sensors in the abdomen and hip regions was and the benefit of including additional
sensors in the system was analyzed. The developed models for this identification algorithm
should be as computationally sparing as possible due to the original system operating on
batteries. Finally, for usability, the model should be as generalizable as possible, meaning a
one-size-fits-all model structure was preferred if it was shown to perform better compared
with tailor-made models.

2. Materials and Methods
2.1. Participants

Seven healthy human participants were recruited from the University of Twente
(Enschede, The Netherlands) and Inreda Diabetic B.V. (Goor, The Netherlands). Participants
who were eligible for participation were required to meet all the following criteria: (1) were
over 18 years of age; (2) had no physical impairments; (3) had no cognitive disabilities; (4)
and did not take medication, drugs, or excessive alcohol that may influence the performance
of the experiment. This research was approved by the ethical committee of the Electrical
Engineering, Mathematics and Computer Science faculty of the University of Twente (RP
2020-135) and all participants provided written informed consent prior to the start of
this study.

2.2. Instrumentation

As can be seen in Figure 2, participants wore seven inertial measurement units (IMUs)
(NGIMU, x-io Technologies, Bristol, UK), which measured acceleration using a sampling
frequency of 20 Hz. One was placed on the upper left leg, one on the sternum, one on the
left side of the pelvis, three on the abdomen (left and right of the umbilical region, near the
edges of the lumbar areas, and one in the middle of the left lumbar region), and one on
the left side on the body (the upper left lumbar region, near the left hypochondrium). The
locations of the five IMUs in the abdomen region correspond to realistic varying positions
of the sensors as placed when using the AP™ in daily life. The two other IMUs were
expected to provide additional information regarding postures as the sternum and upper
leg vary more in orientation when adopting several postures [8].

2.3. Experimental Setup

Figure 3 illustrates the floorplan of the experiment. Six postures and movements were
taken into consideration to be identified, as many (instrumental) activities of daily living
consist of (combinations of) these postures and movements: lying, sitting, standing, walk-
ing, running, and cycling [13,14]. The experiment consisted of three phases: performing
isolated postures and movements, performing sequences of these postures and movements,
and performing functional tasks. The load of the home trainer was set in such a way as to
be comfortable for each individual participant.
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Figure 2. Schematic representation of the locations of the IMU placements (grey rectangles). Through-
out the experiment, the sensor locations were coded with the following numbers: 1 = Sternum, 2 =
Upper left leg, 3 = Left hip, 4 = Right umbilical, 5 = Left umbilical, 6 = Left lumbar, and 7 = Upper
left lumbar.

Figure 3. Sketch of the experimental floorplan (not to scale). The dotted line represents the walking
and running course. The illustrated bed was a treatment table, the chairs in the middle allowed
participants to sit down, and the home trainer allowed for cycling activities.

2.3.1. Isolated Postures and Movements

The summary of this phase is shown in Table 1. Participants were instructed to adopt
specific postures and movements where each posture consisted of several variants. If a
trial concerned postures, each posture variant had to be held for 20 s, whereas movements
had to be performed twice for 30 s. All variants of a single posture were held once during
each measurement trial and every possible permutation was measured. As the standing
posture only concerns two variants and thus each variant is performed less often compared
to lying and sitting, the standing trials were performed twice.
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Table 1. Summary of the performed trials of the first phase. The postures consisted of several variants
and the movements were performed at the preferred speed of each participant.

Posture/Movement Variants Number of Trials
Lying Lying on their back, right side, or left side. 6
L Sitting on the edge of the chair, using the
Sitting backrest normally, or slouched. 6
Standing Standing upright or ina bending forward 4
position
Walking None 2
Running None 2
Cycling None 2

2.3.2. Posture and Movement Sequences

During this phase, participants were instructed to perform sequences of postures
and movements in a specific order. If a posture was held, the participant was free to take
the position that he/she preferred, as long as it was one of the variants of that specific
posture from the first experimental phase. The participants were free to perform the
walking, running, and cycling tasks at the speed they preferred. Table 2 describes the
performed sequences.

Table 2. Description of the performed sequences. Abbreviations: L = Lie, Si = Sit, St = Stand, W =
Walk, R = Run, C = Cycle. The first sequence was performed twice, all other sequences once.

Sequence Description
1 L (60 s)-5i (30 s)-St (30 s)-W (2 laps)-Si (30 s)-W (1 lap)-R (3 laps)-W (1 lap)-C
(20 rot.)-St (50 s)-W (5 s)-Si (10 s)-L (60 s).

2 W (11ap)-R (3 laps)-W (1 lap)-C (20 rot.)-Si (30 s)-St (30 s)-W (2 laps)-Si (30
s)-L (60 s)-St (50 s)-W (5 s)-5i (10 s)-W (1 lap)-R (3 laps)-W (1 lap)-C (20 rot.).

3 L (60 s)-St (50 s)-W (5 5)-Si (10 s)-W (1 lap)-R (3 laps)-W (1 lap)—C (20 rot.)-Si

(30 5)-St (30 s)-W (2 laps)-Si (30 s)-W (1 lap)-R (3 laps)-W (1 lap)—C (20 rot.).

4 L (40 s)-5i (20 s)-L (10 s)-St (15 s)-W (4 laps)-Si (5 s)-St (5 s)-R (8 laps)-5St (20

5)-W (2 laps)-Si (5 s)-L (10 s)-5i (30 s)-L (10 s).
5 L (20 s)-5i (20 s)-L (20 s)-Si (20 s)-St (10 s)-R (7 laps)-St (40 s)-Si (30 s)-St (30

s)-L (40 s)-Si (20 s)-St (20 s)-W (1 lap)-Si (20 s)-L (60 s).

2.3.3. Functional Tasks

The last phase of the experiment consisted of performing several functional tasks
as they could occur during activities of daily living [13,14]. Participants were instructed
to perform specific tasks, where the starting- and endpoints were clear, but they were
free to perform it in a manner of their own choice. Table 3 describes the performed
functional tasks.

2.4. Sensor-to-Segment Calibration

A sensor-to-segment calibration was performed prior to data analysis to represent the
sensor data in a coordinate system that relates to the segment it is attached to, regardless
of orientation [15]. Performing this calibration is beneficial as the effect of varying the
orientation of sensors is minimized. The coordinate system of each segment was defined
with respect to the anatomical position. Therefore, the x-axis was defined parallel to the
anteroposterior axis pointing anterior, the y-axis parallel to the mediolateral axis pointing

Laterally left, and the z-axis parallel to the longitudinal axis pointing in the cranial
direction. The direction of the x-axis was determined by measuring the gravitational accel-
eration when participants were lying down and the direction of the z-axis was determined
by the measured gravitational acceleration during a quiet stance. Next, using the cross
product of the former two axes, the y-axis direction was determined. Finally, the direction
of the x-axis was recalculated using the cross product of the y- and z-axis to make the
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coordinate system orthonormal. These newly defined axes function as the rotation matrix
and the raw acceleration data were transformed by matrix multiplication to be represented
with respect to these previously defined axes.

Table 3. Description of the functional tasks that were all performed once.

Functional Task Description

Participants started sitting anywhere and then either walked or

Go to work ran for 10 laps or cycled for 100 rotations. The task ended when
the participant sat on a chair at the table.
Participants had to put several items, which were spread on a
Tidvi table, in a crate. After completion, they had to go to a different
idying

table and the task ended after unloading all items from the crate
on the table.

A sporting exercise where participants had to walk (5 laps), run
(10 1aps), and cycle (100 rotations) at a speed and in an order they
preferred. After each exercise, there was a resting period of 30 s.
Participants started lying down for a duration between 15 and 30
s, after which they had to walk to a seat and sit down for a
duration between 15 and 30 s. The task was finished when they
lay down again.

Participants had to walk back and forth five times on a straight
course, which consisted of an obstacle the participants had to step
over and a narrow space (two tables close to each other)
participants had to walk through.

Interval training

Nightly toilet visit

Obstacle course

2.5. Identification Algorithm

As the AP™ is a fully transportable system, it operates on batteries that last approxi-
mately 3 days and its transmitters last 3 weeks. Therefore, the software is carefully crafted
to prevent it from consuming too much power. This means the algorithm should be as
simple and computationally sparing as possible. Figure 4 is a schematic representation
of the proposed identification algorithm, which can be implemented for any number and
combination of sensors. First, data of each sensor are buffered for 10 s, to be used for
feature extraction and data merging. Next, the merged features of all sensors are used for a
distinction to determine whether an individual is assuming a posture or is moving within
this 10-s window. Finally, these and other features are used to classify a specific posture
or movement.

10s Buffered data
accelerometer 1

Posture vs

movement
determination

Feature

10s Buffered data N extraction
accelerometer 2 & data

Movement
classification

Posture
classification

merging

10s Buffered data
accelerometer N

Identified posture/
movement

Figure 4. Schematic representation of the identification algorithm, which is applicable for any number and combination of

sensors. To distinguish postures from movements in general, the standard deviation of the norm was utilized. This same

feature was used to classify a specific movement. Finally, the mean value of the x- and z-axis of each sensor was used as a

feature to classify a specific posture.
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Two different types of models were fitted: user-specific models and generalized
models. The former implies that data of each individual user were utilized to train and
test the model such that the model performance for that specific user is maximized. The
latter means that models were trained and tested using a leave-one-out training paradigm
such that only one model is required for the entire population. The data acquired from the
performed postures and movements as described in Section 2.3.1 were used to train the
algorithm and the data acquired from the experiments described in Sections 2.3.2 and 2.3.3
were used for model assessment. By considering a separate training and test set, overfitting
for both types of models can be prevented.

2.5.1. Posture Versus Movement Determination

For each individual sensor, first the 10-s buffered accelerometer data were used to cal-
culate the standard deviation of the norm (StdNorm) every 1 s. As an initial estimate, each
calculated StdNorm will be compared to a threshold, defined as the minimum calculated
StdNorm value during the performed movements of the first phase. To finally determine
whether a movement was measured in this timeframe of 10 s by a specific sensor, at least
eight calculated StdNorm values had to be above the threshold, corresponding to at least
7.5 s of movement. If not, it was assumed a posture was measured during the last 10 s.

To distinguish postures from movements, the result of all sensors was combined and
voting took place. For the algorithm to detect a movement, at least half of the sensors had
to measure activity.

2.5.2. Classification of a Specific Posture or Movement

Decision trees were trained in MATLAB using the fitctree function in its default settings
to determine the optimal thresholds to classify between specific postures or movements. To
identify the specific posture, the mean of the acceleration of the x- and z-axis was calculated
every second to determine the bodysegment orientation. To classify between movements,
the StdNorm was reused as a measure of activity level.

Within the timeframe of 10 s, using the previously mentioned features, a total of
10 classifications were performed, after which the final posture or movement was classified
by voting. If there was a tie between classifications, e.g., five times walking and five times
running, the classification of the previous timeframe was used as the decisive vote.

2.6. Resampling of the Ground Truth

The data were labeled in real time (20 Hz) using a stopwatch as ground truth. As
the model is designed to identify postures and movements at 0.1 Hz, the ground truth
was altered to match these time intervals. Therefore, within the 10-s intervals, the most
performed posture or movement was used as the sole ground truth for that interval.

2.7. Assessment of Model Performance

Several situations were analyzed using the posture and movement identification
algorithm to investigate whether the sensors present in the AP™ are sufficient or additional
sensory information is required to identify postures and movements using the proposed
algorithm. With seven sensors, several combinations were made to assess the effect of
varying the sensor placement.

As described in Figure 2, the sensor locations were coded with the following numbers:
1 = Sternum, 2 = Upper left leg, 3 = Left hip, 4 = Right umbilical, 5 = Left umbilical, 6 =
Left lumbar, and 7 = Upper left lumbar. Sensors 1 and 2 are locations that are normally
not present when measuring with the AP™. Sensor location 3 is a realistic position of
the mainframe, i.e., the AP™ sensor, sensor locations 6 and 7 are realistic positions of the
wireless glucose sensors containing the accelerometers, i.e., the transmitters (the sensors
coded with the circle and triangle in Figure 1), and sensor locations 4 and 5 are realistic
positions of either the AP™ sensor or transmitters.
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Finally, as stated in Section 2.5, to assess robustness, these models not only were
developed to be user specific, but also adopted a generalized form using a leave-one-out
training paradigm. Statistical analyses were performed in IBM SPSS (v27) using an ANOVA
with Bonferroni post hoc tests to investigate whether there are significant differences in
model performance between user-specific versus generalized models and between using
different sensor combinations as explained in the following sections.

2.7.1. Assessment of Normal Usage of the AP™ System

The first analysis investigates the effect of including the information of the transmitters
when using the AP™ normally, as illustrated in Figure 1. This means sensor 3 was used
as the AP™ sensor and sensors 4 and 5 were used as transmitters (i.e., the accelerometers
within the sensors depicted by a circle and triangle in Figure 1) during this analysis. Models
were trained and tested on the situations where only the AP™ is used (3), the AP™ is used
with one transmitter (3, 4 and 3, 5), and the AP™ is used with two transmitters (3, 4, 5).

2.7.2. Inclusion of Additional Sensors in the AP™ System

This analysis provides information of the benefit of including more sensors than
currently used in the AP™ system, i.e., the sensors on the sternum (1) and/or left leg (2).
In terms of accuracy, the best-performing sensor (combination) of the previous analysis
phase (Section 2.7.1) was used as a basis. This means models were trained and tested using
just data from the sternum and left leg sensors, using the sternum or left leg sensor with
the best sensor (combination) of the previous analysis, and using the sternum and left leg
sensors with the best sensor (combination) of the previous analysis.

2.7.3. Varying Sensor Placement after Model Training

Using the AP™ system in daily life means that the AP™ and transmitters are not
placed consistently on the same location, where the mainframe is moved throughout the
day and transmitters are moved once every four to six days. To investigate the effect of
varying the sensor placement of the AP™ and/or transmitters, models that were previously
trained from the first analysis phase (Section 2.7.1) were used to test a different dataset.
To analyze the effect of varying the AP™ sensor placement, the trained model of data of
the AP™ sensor (3) was tested on the sensor data of locations 4 and 5. To analyze the
effect of varying the transmitter placement, the trained model of the AP™ sensor and both
transmitters (4 and 5) was tested on data using the same AP™ sensor, but with varying
locations of the transmitters (4, 5, 6 and/or 7). The combined situation was also assessed,
meaning the trained model of the AP™ sensor and both transmitters was tested on a
dataset when all three sensor locations were varied.

3. Results
3.1. Dataset

All participants fully completed all experiments; however, due to sensor battery
problems and errors, sensor 6 did not measure during the functional tasks of subject 1 and
the first sequence 1 was not measured of subject 2.

3.2. Model Performance Using Normal AP™ Sensor Placement

Table 4 summarizes the classification results of all seven subjects when using models
developed with data of the AP™ sensor with or without transmitter sensors. Here, accuracy
is defined as the total correct classified postures and movements as a percentage of the
total performed postures and movements of all participants combined. The highest mean
classification accuracy of 87.3% was achieved with user-specific models using the AP™
with both transmitters (i.e., combination 3, 4, 5), which is an increase of 0.8% when using
just the AP™ (represented by sensor 3). However, using different sensor combinations for
model development in these cases does not significantly change classification accuracies.
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True Class

Lie

Sit

Stand

Walk

Furthermore, developing generalized models significantly decreases accuracy compared
with user-specific models.

Table 4. Classification results for different sensor combinations when using the AP™ normally.
Shown are mean accuracies (%) and the corresponding standard deviation of all seven subjects when
developing user-specific or generalized models.

Sensors User Specific * Generalized *
3 86.5+£5.2 769 +£79
34 871+34 746 £7.9
35 872+31 752 +8.1
345 873 +£3.0 753+79

Conditions that share the same symbol (*) differ significantly in terms of model performance; *: p < 0.001.

Figure 5 shows the confusion matrices of all subjects combined after assessing each
user-specific model’s performance using several sensor combinations. Overall, positive
predictive values of at least 94.7% for lying, walking, and running were achieved for
sensor combinations 3 and 3, 4, 5. Noticeable classification errors for postures either using
sensor combination 3 or 3, 4, 5 were observed for sitting classified as standing (93 and
61 occurrences, respectively) and standing classified as sitting (30 and 37 occurrences,
respectively). Analyzing the matrices regarding movements, misclassification for cycling
is observable for both sensor combinations with positive predictive values of 71.4% and
69.0%, respectively.

Walk

True Class

84.8% 94.7% 98.2% 99.8% 78.0% 84.3% 94.9% 98.2%

Stand Walk  Run  Cycle Lie Sit Stand Walk  Run  Cycle
Predicted Class Predicted Class

(a) (b)

Figure 5. Confusion matrices after testing user-specific models using several sensor combinations of all seven subjects.
(a) only sensor 3 (accuracy 86.5%); (b) sensors 3, 4, and 5 (accuracy 87.3%). The bottom row represents the positive predictive
value for each posture or movement.

3.3. Model Performance Using the AP™ and Additional Sternum and/or Upper Leg Sensors

As the previous analysis showed no significant differences in classification perfor-
mance between sensor combinations, this analysis was performed using solely the AP™
sensor (3) with additional sternum (1) and/or upper leg sensors (2).

Results are presented in Table 5. Combining the sensor on the sternum with the AP™
sensor decreases accuracy significantly compared with using the AP™ sensor by itself.
Furthermore, including both sternum and upper leg sensors increases the classification
accuracy up to a maximum performance of user-specific models at 90.0%, versus 86.5%
when using just the AP™ sensor data. This result, however, was not shown to be significant.
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Table 5. Classification results for different sensor combinations when using the AP™ and additional
sternum and/or upper leg sensors. Shown are mean accuracies (%) and the corresponding standard
deviation of all seven subjects when developing user-specific or generalized models.

Sensors User Specific * Generalized *
3° 86.5 + 5.2 769 + 7.9
124 89.2 +48 70.2 +9.6

1398~ 81.6 +8.2 640+ 75
23§ 82.1+57 842 +49

123+~ 90.0 £+ 5.0 87.4 + 5.0

Conditions that share the same symbol (*, g, #, §, ~) differ significantly in terms of model performance; ~: p < 0.001;
§: p <0.005;°, %: p < 0.02; *: p < 0.05.

The confusion matrices in Figure 6 show positive predictive values of at least 90.6%
for each posture/movement, except cycling, for sensor combinations 1, 2 and 1, 2, 3.
Classification errors for lying and sitting were observed less when using these combinations
compared with the other two confusion matrices. However, misclassification for cycling is
still observable for both sensor combinations 1, 2 and 1, 2, 3 with positive predictive values
of 57.3% and 74.2%, respectively.

Lic 15 2 1 8 Lie 15 2 1 2
Sit 15 12 7 48 Sit 19 13 2 13
Stand 1 1 1 62 Stand 1 1 1 31
2 Walk 8 9 3 25 2 Walk 15 13 3 19
@) O
2 Run 2 1 2 Run 4 1
= =
Cycle 7 2 192 Cycle 1 11 2 187
96.5% 92.3% 934% 96.8% 98.2% 95.2% 90.6% 92.3% 98.1% 98.6%
Lic Sit Stand Walk Run  Cycle Lie Sit Stand Walk Run  Cycle
Predicted Class Predicted Class
(a) (b)

Figure 6. Confusion matrices after testing user-specific models using several sensor combinations of all seven subjects.
(a) sensors 1 and 2 (accuracy 89.2%); (b) sensors 1, 2, and 3 (accuracy 90.0%). The bottom row represents the positive
predictive values for each posture or movement.

3.4. Model Performance Using Varying AP™ Sensor Placement after Model Training

Table 6 shows the influence of varying the AP™ sensor placement after the model has
been trained on data of the standard AP™ sensor placement (3). In general, changing the
sensor location after model training decreases classification accuracies significantly.

Varying the transmitter sensor placement (4, 5, 6, and/or 7) whilst using the same lo-
cation for the AP™ sensor (3) does not significantly in- or decrease classification accuracies,
as can be seen in Table 7.
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Table 6. Classification results for different sensor combinations when assessing model performance
using varying sensor placements after training the model based on the data of sensor location 3.
Shown are mean accuracies (%) and the corresponding standard deviation of all seven subjects when
developing user-specific or generalized models.

Sensors User Specific * Generalized *
3%+ 86.5 + 5.2 769 + 7.9
4° 78.1 + 6.6 68.7+79
5% 75.6 + 7.8 728 +5.6

Conditions that share the same symbol (*, g, $) differ significantly in terms of model performance; *: p < 0.005; ,
+.
1 p <0.05.

Table 7. Classification results for different sensor combinations when assessing model performance
using varying transmitter sensor placements after training the model based on the data of sensors
3,4, and 5. Shown are mean accuracies (%) and the corresponding standard deviation of all seven
subjects when developing user-specific or generalized models.

Sensors User Specific * Generalized *
345 873 +£3.0 753 +79
346 853 +77 77.5+9.3
347 853 £7.6 774+£93
356 853 +75 79.6 £ 8.1
357 85.4+75 795+7.8
367 853+74 781+71

Conditions that share the same symbol (*) differ significantly in terms of model performance; *: p < 0.001.

As shown in Table 8, the combined effect of both alterations was also observed, where
changing the AP™ sensor location decreases the classification accuracy and varying the
transmitter sensor placement does not show an in- or a decrease in accuracy. However, due
to the added information of the transmitter sensors, the decrease in model performance
due to varying the AP™ sensor placement was not found to be significant anymore.

Table 8. Classification results for different sensor combinations when assessing model performance
using varying AP™ and transmitter sensor placements after training the model based on the data of
sensors 3, 4, and 5. Shown are mean accuracies (%) and the corresponding standard deviation of all
seven subjects when developing user-specific or generalized models.

Sensors User Specific * Generalized *
345 873 £3.0 753+£79
456 771+ 8.7 742 +9.2
457 77.0 £ 8.5 725482
467 772 £85 709 £55
567 749 + 8.9 732 +39

Conditions that share the same symbol (*) differ significantly in terms of model performance; *: p < 0.005.

4. Discussion

This research aimed to investigate the possibilities to identify postures and move-
ments of human subjects using the current hardware design of the artificial pancreas (AP™)
system. Using the standard AP™ and transmitter sensor placement whist sampling at
20 Hz, user-specific models achieved classification accuracies of 86.5% without transmitters
and 87.3% with transmitters. Comparing these results with a sensor combination including
additional sensors for identification, a nonsignificant result of 90.0% accuracy was achieved.
Therefore, from these results it can be said that the current hardware configuration ei-
ther with or without using transmitters poses no limitation to performing the proposed
classification task and that including extra sensors in the system may be beneficial for
classification accuracy in terms of improved posture recognition.
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Even though this research cannot be exactly compared, generally speaking this iden-
tification algorithm performs in a manner comparable to or better than other studies.
However, the reported studies were limited in the sense that not all mentioned postures
and movements (i.e., lying, sitting, standing, walking, running, and cycling) were classified
in cases that were most similar to this research. Overall, the research by Curone et al. [9]
reported an average accuracy of 96.2% using a sensor on the sternum and a simplified clas-
sification paradigm by assigning several postures and activities to one class. For example,
standing upright and sitting down were assigned to the class “upright standing”. This
means their model performance is expected to be diminished without this simplification,
as was the case during our research. Furthermore, Fortune et al. [10] reported being unable
to distinguish sitting from lying using an accelerometer on the waist, which during our
research was possible with a positive predictive value of 74% using a sensor on the hip.
Their research reports positive predictive values for lying, standing, walking, and running
of 97%, 71%, 76%, and 100%, which our algorithm outperforms with positive predictive
values of 99.8%, 84.8%, 94.7%, and 98.2%, respectively, when using a sensor on the hip.

Specific placement of the AP™ sensor after training the models is critical. Training and
testing user-specific models based on data of sensor location 3 resulted in a classification
accuracy of 86.5%, whereas testing on data of sensor locations 4 or 5 resulted in significantly
lower classification accuracies of 78.1% and 75.6%, respectively. On the other hand, varying
transmitter locations have shown to be of no significance, where the highest and lowest
classification accuracies of 87.3% and 85.3%, respectively, were observed. This result
suggests that changing transmitter locations after training does not significantly alter the
model’s performance. Furthermore, a significant decrease in classification accuracy due to
varying the AP™ sensor placement was no longer observed when data of the transmitters
were included, as can be seen in Table 8. Thus, data from the transmitters, placed on the
abdomen, will provide a stable factor for the identification algorithm when combined with
data from the AP™ sensor.

For easier implementation, it is preferred to have a generalized model that is applicable
to a broader user spectrum. Comparing results between user-specific and generalized mod-
els indicates that performance significantly decreases when adopting a generalized form
in all cases. It should therefore be carefully considered whether the loss in classification
accuracy is acceptable when the algorithm is implemented in the generalized form.

The experiment was performed in a controlled lab environment that does not naturally
translate to recognition of postures and movements when performing actual daily life
activities for a prolonged period. During the experiment, the least active movement
measured was cycling, as it was performed on a statically placed home trainer. This
affects the minimum threshold to distinguish postures from movements, which is expected
to be lower compared with performing daily life activities. This means the reported
classification accuracies might be higher when accounting for the minimum threshold
during movements in daily life, which is expected to be higher compared with performing
movements in an experimental setting. Furthermore, the experiment consisted of short
posture and movement sequences, where the subject had to change from one to another
in quick succession. These transitions pose a challenge for the algorithm as during a
10-s window, several postures and/or movements are performed and thus the chance of
misclassification is higher compared with performing one posture or movement during
this 10-s window. During daily life, these transitions are expected to occur less frequently
than during the experiment, meaning the algorithm is expected to perform better during a
daily life implementation.

Prior to the experiment, subjects were subjected to a calibration phase, which has to be
performed to represent the sensor data in a coordinate system that relates to the segment
it is attached to, regardless of orientation [15]. Even though this is beneficial for model
performance, an explicit calibration is unfeasible when the algorithm is implemented for
daily life as the AP™ sensor may vary in location throughout the day and transmitter sensor
locations after a few days. Performing a calibration after any sensor adjustment may be
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tiresome for the end-user. Therefore, it should be investigated whether an autocalibration
algorithm without initial information regarding sensor placement is a solution to this issue.
By performing a continuous implicit sensor-to-segment calibration, the end-user will not
be burdened with this task each time the position of a sensor is changed.

The final factor that should be considered when implementing this algorithm in the
AP™ gystem is the fact that standing and sitting are difficult to distinguish without using
additional sensors 1 and 2, as seen in Figure 5 versus Figure 6. Based on the interests of
the end-user and manufacturer, these two postures could be regarded as one as they are
expected to have no different influence on blood glucose levels. Lying is a key posture,
as it is the general posture a human adopts when sleeping, which may influence blood
glucose levels via the dawn phenomenon [4] and should thus be regarded separately. This
simplification of classification should also improve classification accuracies.

To validate these expected performance changes of the algorithm, longitudinal human
activity data using a wearable sensor setup should be gathered, which in turn are to
be used for the analysis of posture and movement recognition in a daily life setting. In
addition to this activity classification, an estimation of the metabolic consumption rate
is to be performed as different activity magnitudes are related to different changes in
blood glucose levels [3]. In the case of performing movements, the metabolic costs may
relate to the standard deviation and frequency content of the accelerometer signals [5,16].
Therefore, additional (literature) research has to be performed to investigate how postures
and movements relate to metabolic energy consumption and thus blood glucose levels,
such that ultimately the blood glucose regulation in the AP™ can be changed according to
this posture and movement identification algorithm.

5. Conclusions

This study showed that the current hardware configuration of the artificial pancreas
(AP™), developed by Inreda Diabetic B.V., poses no limitations to identifying specific
postures and movements of human subjects. Using accelerometers placed on the hip
and abdomen that sample at a sample frequency of 20 Hz, user-specific and computa-
tionally sparing models correctly classified postures and movements with an accuracy
of 87.3%. When the model adopted a generalized form, classification accuracies signifi-
cantly decreased and thus the algorithm may be more suitable for user-specific training.
Furthermore, if used by itself, the exact placement of the accelerometer on the hip is of
significant influence for classification performance and including additional sensors on the
sternum and/or upper leg may significantly improve classification accuracies. If future
research shows that the proposed algorithm is still able to accurately identify postures and
movements in a daily life setting, a first step in improving the hormone administration
algorithm of the AP™ to account for changes in physical activity will have been made.
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