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Abstract: Sensing films based on polymer–plasticizer coatings have been developed to detect volatile
organic compounds (VOCs) in the atmosphere at low concentrations (ppm) using quartz crystal
microbalances (QCMs). Of particular interest in this work are the VOCs benzene, ethylbenzene, and
toluene which, along with xylene, are collectively referred to as BTEX. The combinations of four
glassy polymers with five plasticizers were studied as prospective sensor films for this application,
with PEMA-DINCH (5%) and PEMA-DIOA (5%) demonstrating optimal performance. This work
shows how the sensitivity and selectivity of a glassy polymer film for BTEX detection can be altered
by adding a precise amount and type of plasticizer. To quantify the film saturation dynamics and
model the absorption of BTEX analyte molecules into the bulk of the sensing film, a diffusion study
was performed in which the frequency–time curve obtained via QCM was correlated with gas-phase
analyte composition and the infinite dilution partition coefficients of each constituent. The model was
able to quantify the respective concentrations of each analyte from binary and ternary mixtures based
on the difference in response time (τ) values using a single polymer–plasticizer film as opposed to the
traditional approach of using a sensor array. This work presents a set of polymer–plasticizer coatings
that can be used for detecting and quantifying the BTEX in air, and discusses the selection of an
optimum film based on τ, infinite dilution partition coefficients, and stability over a period of time.

Keywords: plasticization; polymers; sensitivity; quantify; diffusion

1. Introduction

Volatile organic compounds (VOCs) are chemicals that evaporate easily and become
gases at ambient temperature and pressure. The Environmental Protection Agency (EPA)
has made the monitoring of VOCs mandatory due to their health impacts, which range from
headaches and nausea to cancer [1–4]. According to the Occupational Safety and Health
Administration (OSHA), the permissible exposure limits (PEL) are 1 ppm for benzene,
200 ppm for toluene, and up to 100 ppm for xylene and ethylbenzene in air [5]. The current
techniques used for VOC monitoring, such as photoionization, gas chromatography, mass
spectroscopy, and e-nose sensors, are expensive, time-intensive, and demand rigorous
sample preparation [6–12]. Chemical sensors based on piezoelectric transduction, such as
quartz crystal microbalance (QCM) devices, show promising results in terms of linearity,
stability, responsiveness, and selectivity [13–15].

Generally, the performance and sensitivity of rubbery polymers towards hydrocarbon
sensing are superior to those of glassy polymers; however, they have low molecular
selectivity due to their amorphous nature, the availability of large free volume elements,
and their viscoelasticity [16]. Plasticization helps to modify the chemical and physical
properties of a glassy polymer by decreasing the glass transition temperature, altering
the pore dimensions, and increasing the free volume of the polymer film, thus enabling
higher diffusion and sorption of the analyte molecules [17,18]. Sensing films based on
polymer–plasticizer films have been developed in this study to detect volatile organic
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compounds in the air, specifically benzene, ethylbenzene, and toluene, using a QCM device.
There has not been much work done using polymer–plasticizer coatings for BTEX detection
in the gas phase using a QCM device, although some significant work was done in the
liquid phase. Pejcic et al. [17,19,20] have previously shown that chemical sensors based
on polymer-coated QCM sensors can detect and quantify BTEX compounds in aqueous
solutions at lower concentrations on the order of a few ppm. The Josse group [16,21,22]
reported the first-ever detection of benzene at ppb levels using SAW sensors with polymer–
plasticizer coatings. Kaur et al. [18] from our laboratory studied the effect of plasticization
on glassy polymer sorption using diisononyl cyclohexane-1,2-dicarboxylate (DINCH) and
diisooctyl azelate (DIOA) as the plasticizers, and PEMA as the polymer.

2. Materials and Methods

For this work, the solvents benzene, ethylbenzene, and toluene were purchased from
Sigma Aldrich at 99.9% purity. The homopolymers poly(ethyl methacrylate) (PEMA) with
a molecular weight of 340,000 g/mol, poly(methyl methacrylate) (PMMA) with a molecular
weight of 996,000 g/mol, polystyrene (PS) with a molecular weight of 280,000 g/mol, and
a polystyrene/poly(methyl methacrylate) (PS/PMMA) block copolymer with a molecular
weight of 300,000 g/mol were purchased from Sigma Aldrich. The plasticizers diisononyl
cyclohexane-1,2-dicarboxylate (DINCH), diisooctyl azelate (DIOA), n-butyl stearate (BS),
dibutyl sebacate (DBS), and di-n-butyl phthalate (DBP) were purchased from Scientific
Polymer Products, Inc, Ontario, NY, USA.

Several factors were considered when choosing the type of plasticizers for BTEX
sensing, including compatibility with the polymer, efficiency of the plasticization process,
and the stability/permanence within the polymer over a long period of time [16]. The plas-
ticizers used in this work were selected based on molecular weight, polarity, shape/spatial
orientation, and the Hansen solubility parameter. Table 1 shows the chemical structures
and properties of the plasticizers used while Table 2 shows the same for the polymers used
in this work. The polymers used here are all glassy in nature and are chosen based on
their Hansen solubility parameter values. To determine the compatibility of the plasticizer,
Hansen solubility parameter values (Table 3) take into consideration various forces, such
as van der Waals, hydrogen bonding, and polar interactions, with values close to those of
the BTEX analytes indicating suitable candidates.

Previous work by Adapa et al. [23] showed that, amongst the DBS, DBP, and BS
plasticizers, BS showed higher sorption and sensitivity in PEMA films owing to its linear
structure and molecular weight. Therefore, in this work, experimentation was performed
on four glassy polymers (PEMA, PMMA, PS, and PS/PMMA) and three plasticizers
(DINCH, DIOA, and BS), the properties of which are shown in Table 3.

Table 1. Structure and properties of plasticizers used.

Plasticizer Structure MW, g/mol ρ, g/cm3

diisononyl
cyclohexane-1,2-dicarboxylate

(DINCH)
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Table 2. Structure, molecular weight, and density of the polymers used.

Polymer Structure MW, g/mol ρ, g/cm3

Poly(methyl methacrylate) (PMMA)
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Table 3. Hansen solubility parameter and glass transition temperature of polymer and plasticizers used.

Polymer–Plasticizer-Solvent Hansen Solubility Parameter
(MPa1/2)

Glass Transition
Temperature

(◦C)

Poly(methyl methacrylate)
(PMMA) 18.6 105

Poly(ethyl methacrylate) (PEMA) 18.4 66

Polystyrene (PS) 18.6 100

Diisononyl
cyclohexane-1,2-dicarboxylate

(DINCH)
15.4 -

Diisooctyl azelate (DIOA) 16.7 -

n-butyl stearate (BS) 15.4 -

Benzene 18.5 -

Toluene 18.2 -

Ethylbenzene 17.9 -

The vapor generation apparatus used in this study consisted of two QCM setups
developed in our laboratory. Initially, the analysis of BTEX sorption in various poly-
mer/plasticizer blends was performed at higher concentrations (a few 1000 ppm) using
a vapor generation apparatus described in detail in our previous publication [24]. The
analyte vapor streams were generated by bubbling nitrogen gas through impingers in this
QCM setup. Sorption at lower concentrations (a few 100 ppm) was tested as well to assess
the sensor’s ability to detect and differentiate BTEX constituents in the air. This apparatus
has been described in detail in our previous work [25]. The analyte gas mixtures were
generated using a syringe pump wherein the solvents were completely evaporated in the
gas stream in the new modified QCM setup.

In each apparatus, a 5 MHz quartz crystal coated with a polymer–plasticizer film was
exposed to the vapor of analytes of interest, such as benzene, toluene and ethylbenzene,
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with UHP nitrogen as the carrier gas, and left to equilibrate in order to calculate the weight
fraction w1 of the solvent in the polymer, determined using the Sauerbrey [26] equation:

w1 =
∆ f

∆ f + ∆ f0
(1)

where ∆f refers to the frequency shift between that of the crystal coated in pure polymer and
that of the crystal coated in polymer with sorbed solvent, and ∆f 0 refers to the frequency
change between that of the bare crystal and that of the crystal coated with pure polymer.
All the sensor films were prepared by dissolving 0.5 g of the polymer–plasticizer blend
(depending on the blend, plasticizer composition varied from 5 to 15%) in 20 mL of a
suitable solvent (chloroform or toluene). The solutions were sonicated for an hour with
heating to ensure homogeneity. A Laurell WS-400 B spin coater was then used to spin coat
thin (~0.5 µm) films onto 5 MHz QCM crystals.

To model the diffusion of organic vapors in polymer systems, Masaro and Jhu [27]
used kinetic studies of sorption and desorption to determine diffusion coefficients. The
solution for a one-dimensional Fickian model (finite film) is:

Mt

Mequi
= 1 − 8

π2

∞

∑
n=0

1

(2n + 1)2 exp [−Dt
h2 π2(2n + 1)2] (2)

where Mt is the total mass of vapor absorbed by a film of thickness h at time t, Mequi is
the equilibrium sorption mass after infinite time, and D is the diffusion coefficient. Liu
et al. [28] empirically developed an approximation of Equation (2) to bypass the infinite
summation, as follows:

Mi
Mequi

= 1 − exp [−7.3(
Dt
h2 )

0.75
] (3)

Equation (3) can be further simplified by defining τ, the response time constant, as
τ = h2

14.161D , as follows:
Mt

Mequi
= 1 − exp [−(

t
τ
)

n
] (4)

Mt is proportional to f 0 − f and Mequi is proportional to f 0 − fequi, wherein f 0 is
the purge frequency, f is the frequency at time t, and fequi is the equilibrium frequency.
Therefore, Equation (4) can be rewritten in terms of frequency shifts, as follows:

f0− f
f0 − fequi

= 1 − exp [−(
t
τ
)

n
] (5)

The frequency shifts were logged for BTEX constituents and fit to a rearrangement of
Equation (5), as follows:

∆ f (t) = ∆ f0(1 − e(−t/τ)n
) (6)

where ∆ f (t) is the frequency shift as a function of time, ∆ f0 is the equilibrium frequency
shift due to sorption, τ is the response time constant, and n is a parameter chosen to
provide the best fit of the model to the data (n = 1 was found to be optimal for all the films
used here).

For multiple solvents, assuming solvents diffuse independently of each other, Equation (4)
becomes:

M = ∑ Mequi[1 − exp [−(
t
τ
)]] (7)

For 2 solvents, Equation (7) was rewritten in terms of frequency shifts and gas-phase
analyte compositions, as follows:

∆ f (t) = ∆ f1 ∗ (
y1,amb

y1,pure
)(1 − e(−

t
τ1
)
) + ∆ f2 ∗ (

y2,amb

y2,pure
)(1 − e(−

t
τ2
)
) (8)
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where ∆ f1 and ∆ f2 are the equilibrium frequency shifts for analytes 1 and 2, τ1 and τ2
are the respective response time constants, and y1,pure and y2,pure are the vapor-phase mole
fractions for the individual analyte runs. The vapor-phase mole fractions of analytes in a
binary mixture y1,amb and y2,amb were then obtained by fitting the model to frequency–time
data. Equation (8) can be extended to a ternary mixture by adding another term:

∆ f (t) = ∆ f1 ∗ (
y1, amb
y1, pure

)(1 − e(−
t

τ1
)
) + ∆ f2 ∗ (

y2, amb
y2, pure

)(1 − e(−
t

τ2
)

n

) + ∆ f3 ∗ (
y3, amb
y3, pure

)(1 − e(−
t

τ3
)
) (9)

Flory–Huggins theory, the preferred model for studying polymer–solvent thermody-
namics, was applied to ternary systems in this study. The systems considered here consist
of solvent (1), polymer (2), and plasticizer (3). We modified the Flory–Huggins theory
for a ternary system consisting of a polymer, a plasticizer, and a solvent in a previous
work [18]. Because the polymer/plasticizer ratio is fixed, these systems can be consid-
ered to be pseudo-binary systems, with appropriate definitions for the molar volume and
molecular weight of the film, and the interaction parameter.

By introducing the polymer/plasticizer pseudo-component (f ), the solvent activity
can be written as:

lna1 = ln∅1 + (1 −∅1)(1 − (
V1

Vf
)) + χ1 f (1 −∅1)

2 (10)

where
Vf =

α + 1
α

V3
+ 1

V2

(11)

χ1 f = χ13
α

α + 1
+ χ12

1
α + 1

− χ23
α

(α + 1)2 (12)

α =
∅3

∅2
(13)

Values of χ1 f are obtained by fitting experimental data to Equation (10). The pseudo-
binary Flory–Huggins model can be used to find the infinite dilution partition coefficients
(K∞) as follows:

K∞ = [
ρ f RT

Ω∞ M1PSat
1

] (14)

where ρ f is the density of the film, R is the gas constant, T is the temperature of the cell, M1
is the molecular weight of the solvent, P1

sat is the saturated vapor pressure of the solvent,
and Ω∞ is the weight-based infinite dilution activity coefficient, which is defined further
as:

lnΩ∞ = ln(
V1

Vf
∗

M f

M1
) + 1 − V1

Vf
+ χ1 f (15)

where V1, Vf, M1, and Mf are the volumes and molecular weights of the solvent and film,
respectively, and χ1 f is the value obtained by fitting the experimental data to Equation (10).
Mf, which is the molecular weight of the film, can be written as:

M f =
V3M2 + αV2M3

V3 + αV2
(16)

The values of infinite dilution partition coefficients are given in Table 4 (below).
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Table 4. Values of infinite dilution partition coefficients (K∞) for benzene, toluene, and ethylbenzene
in plasticized PEMA and PS films [25].

Solvent Film K∞

Benzene PEMA-DINCH 766

Toluene PEMA-DINCH 1908

Ethylbenzene PEMA-DINCH 3899

Benzene PEMA-DIOA 693

Toluene PEMA-DIOA 1887

Ethylbenzene PEMA-DIOA 4181

Benzene PS-BS 318

Toluene PS-BS 818

Ethylbenzene PS-BS 1946

3. Results

The results can be categorized into three sub-parts. The sorption results demonstrate
that a plasticized glassy polymer can be a better choice than the traditionally used rubbery
polymer polyisobutylene (PIB), sensor response modeling shows how well our empirical
model fits the experimental data and also how BTEX analytes can be differentiated and
quantified from a mixture of contaminants at high as well as low concentrations, and, lastly,
the selection of an optimum film is made based on sorption, τ ratios and stability results.

3.1. Sorption Results

The sorption of BTEX is more favorable in the plasticized glassy polymers tested here
than in the traditionally used rubbery polymer, polyisobutylene (PIB). The activity vs.
weight fraction curves shown in Figure 1a,b demonstrate that the sorption of benzene and
toluene is larger in DINCH- and DIOA-plasticized PMMA films than in rubbery PIB films.
Other plasticized glassy polymers showed similarly enhanced solubilities.
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Figure 1. Comparison between sorption of benzene (a) and toluene (b) in a commonly used rubbery
polymer, PIB, and two plasticized PMMA films.

To assess the effects of the plasticizers, sensor measurements for the plasticized and
unplasticized films were made. Figure 2a,b) shows the QCM response in the form of
frequency–time curves for PMMA when exposed to toluene in the presence and absence of
a plasticizer. The study shows that pure PMMA takes a large amount of time to equilibrate
with toluene vapor compared to PMMA plasticized with 25% DINCH, which exhibited an
immediate and pronounced frequency shift consistent with equilibration. This was also
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the case for PEMA, PS, and PMMA-PS, confirming that the response characteristics of a
polymer-coated QCM sensor can be improved by adding a plasticizer. In this project, the
performances of PEMA-, PMMA-, PS-, and PMMA-PS-coated QCM sensors with varying
amounts of plasticizer were measured to optimize BTEX sensitivity.
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Figure 2. Frequency–time curves for pure PMMA-toluene (a) and a DINCH-plasticized PMMA
system (b).

Of the sensor films investigated in this work, PEMA plasticized with 5% DINCH or
DIOA showed the maximum sorption and therefore the maximum response for all three
analytes, benzene, toluene and ethylbenzene [25].

3.2. Sensor Response Model

Using the low-concentration QCM apparatus, the sensor response curves for the pure
analytes benzene and toluene were collected and fit to Equation (6) to obtain the τ values
and equilibrium frequency shifts for the identification of the analyte. For a PEMA-DIOA
(10%) film, these values are shown in Table 5.

Table 5. Measured response times, τ (sec), and equilibrium frequency shifts for benzene and toluene
in PEMA-DIOA (10%) film.

Analytes Tau (τ), Sec Frequency Shifts (Hz)

Benzene 41 6

Toluene 91 16

Binary mixtures of benzene and toluene were then analyzed using Equation (8) in
conjnction with the τ values and equilibrium frequency shifts obtained from the single-
analyte runs to obtain fitted values for the vapor-phase mole fractions y1,amb and y2,amb.
Table 6 shows the good agreement between the regressed and prepared mole fractions for
a PEMA–DIOA (10%) polymer film. This result was consistent for several binary liquid
mixture ratios—40–60, 60–40, 80–20 and 20–80 by volume for various analyte combinations,
for which vapor mole fractions were calculated using an accurate phase equilibrium
model—indicating that the binary model is applicable. Figure 3 shows the comparison
between the experimental and estimated sensor response based on the model for an
80-20 benzene–toluene mixture.



Sensors 2021, 21, 5667 8 of 14

Table 6. Comparison of regressed mole fractions y1,amb and y2,amb to actual mole fractions y1,act and
y2,act of binary mixtures of benzene and toluene at various concentrations.

Analyte 1 Analyte 2 Ratios y1,amb y2,amb y1,act y2,act

Benzene Toluene (20:80) 0.0001 0.0007 0.0002 0.0007

Benzene Toluene (50:50) 0.0006 0.0004 0.0005 0.0005

Benzene Toluene (60:40) 0.0007 0.0003 0.0007 0.0004

Benzene Toluene (80:20) 0.0009 0.0001 0.0009 0.0002

Benzene Toluene (40:60) 0.0004 0.0005 0.0004 0.0006
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Figure 3. Comparison of experimental data and estimated sensor response for an 80–20 benzene–
toluene binary mixture in a PEMA–DIOA (10%) film.

This model was further applied to ternary mixtures of benzene, toluene, and ethyl-
benzene of various compositions (1–1–1, 1–1–3, and 1–3–1, respectively, by volume); it
was found that the regressed vapor-phase mole fractions were in good agreement with
the prepared compositions. Figure 4 shows the comparison between experimental and
estimated sensor response based on the model for a 1–1–1 benzene–toluene–ethylbenzene
mixture, and Table 7 shows the results for various other solvent ratios with a different film,
PEMA–DINCH (5%). Again, the model used to detect the respective BTEX constituents
and quantify their concentrations based on frequency shifts and τ values worked well. A
large number of experiments involving exposing binary gas phase mixtures to various
polymer–plasticizer films would have to be performed to determine an optimal film di-
rectly. Instead, we used simulations to determine the characteristics of films that would
provide accurate values for gas phase mole fractions. Specifically, a number of data sets of
∆f versus t were created using Equation (8) by specifying y1,pure, y2,pure, y1,amb, y2,amb, ∆f 1,
∆f 2, τ1 and τ2. Random noise was then added to the frequency shift values. Several cases
were examined including sets where τ1 and τ2 were close to each other while ∆f 1 and ∆f 2
were very different, runs where ∆f 1 and ∆f 2 were close to each other while τ1 and τ2 were
very different, runs where both variables were close and runs where both variables were
very different. The noisy data sets were then fit to Equation (8) to determine the values
of y1,amb and y2,amb that provided the best fit to the data set, and these were compared to
the values of y1,amb and y2,amb used to create the data set. Of course, adding no noise to the
data sets would result in perfect agreement between the regressed values and those used
to create the data set.
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Table 7. Comparison of regressed mole fractions y1,amb, y2,amb, and y3,amb from Equation (8) to actual mole fractions y1,act,
y2,act and y3,act of benzene, toluene, and ethylbenzene, respectively.

Analyte 1 Analyte 2 Analyte 3 Ratios y1,amb y2,amb y3,amb y1,act y2,act y3,act

Benzene Toluene Ethylbenzene (1:1:1) 0.003 0.0008 0.0002 0.003 0.0007 0.0002

Benzene Toluene Ethylbenzene (1:1:3) 0.001 0.0008 0.0003 0.002 0.0005 0.0004

Benzene Toluene Ethylbenzene (1:3:1) 0.001 0.002 0.0001 0.002 0.001 0.0001

A binary set of solvents were taken from Sothivelr et al. [21] and τ1, τ2, ∆f 1 and
∆f 2 were set for each of the solvents, ethylbenzene and toluene, the concentrations being
set as C1

v and C2
v for ethylbenzene and toluene, respectively. τ1 and τ2 are 204 and

76.7 s, ∆f 1 = −10 Hz and ∆f 2 = −6 Hz. The noise of the order of ±1 Hz is added to the
data set, and Equation (5) is fit to the noisy data to determine C1

v and C2
v, which gives

the best fit to the data. For example, here in this work, three different sets of C1 and C2
values (analyte mole fractions expressed in concentrations of ethylbenzene and toluene
in the gas mixture) C1 = 10 ppm and C2 = 10 ppm, C1 = 1 ppm and C2 = 10 ppm, and
C1 = 10 ppm and C2 = 1 ppm were subdivided into four different cases, wherein the tau
values, frequency shifts (∆f ), and both values (∆f and τ) were kept apart to see how the
predictions were affected.

It was found that the ability of the model to recover accurate gas phase mole fractions
from noisy data was independent of whether ∆f 1 and ∆f 2 were similar or very different
in values, as can be seen in Figure 5 below. However, the performance of the model
deteriorated substantially when the τ1 value approached that of τ2, and when both ∆f and
τ were kept close, as seen in Figure 5. We conclude that a candidate for the optimal film is
one for which the ratio of τ values for analytes is large.
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Using the two different apparatuses for generating vapor concentrations at high and
low values, it was found that the time constant was independent of concentration from fits
of the data using Equation (6). Thus, it can be inferred that, for a film of constant thickness,
time constants obtained at higher concentrations will be applicable at lower ones as well.

3.3. Optimum Film

The apparatus developed for use at higher concentrations was used to screen potential
polymer–plasticizer blends. Table 8 (below) gives the equilibrium frequency shifts and
τ values for benzene, toluene, and ethylbenzene in various films along with their ratios.
The desired percentages of plasticizers used in this work were chosen so that solubility
enhancement would be observed without any viscoelastic effects. An optimum film would
be expected to have τ values that are far apart, and therefore have high ratios. Of the
twelve films studied, PS-BS (15%), PEMA–DINCH (5%), and PEMA–DIOA (5%) were
the top three candidates based on τ ratios, and these were further investigated at lower
concentrations. It was found that, for a film of constant thickness, τ was independent of
the concentration between the orders of 100 ppm and 10,000 ppm.

Table 8. τ (s) and ∆fequil (Hz) for benzene, toluene, and ethylbenzene in various polymer–plasticizer coatings.

Polymer–Plasticizer Benzene Toluene Ethylbenzene τT/τB τEB/τT τEB/τB

PMMA–DINCH (15%) τ = 193 τ = 304 τ = 303 1.57 1.00 1.57

∆f = 65 ∆f =55 ∆f = 55

PMMA–DIOA (15%) τ = 250 τ = 257 τ = 333 1.03 1.30 1.33

∆f = 146 ∆f = 127 ∆f = 119

PMMA–BS (15%) τ = 65 τ = 60 τ = 90 0.93 1.49 1.38

∆f = 221 ∆f = 207 ∆f = 200

PMMA/PS–DINCH (10%) τ = 248 τ = 738 τ = 712 2.97 0.97 2.87

∆f = 29 ∆f = 26 ∆f = 30

PMMA/PS–DIOA (15%) τ = 156 τ = 169 τ = 228 1.09 1.35 1.47

∆f = 166 ∆f = 147 ∆f = 141

PMMA/PS–BS (10%) τ = 104 τ = 109 τ = 137 1.05 1.25 1.32

∆f = 128 ∆f = 125 ∆f = 116
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Table 8. Cont.

Polymer–Plasticizer Benzene Toluene Ethylbenzene τT/τB τEB/τT τEB/τB

PEMA–DINCH (5%) τ = 25 τ = 40 τ = 63 1.57 1.59 2.49

∆f = 102 ∆f = 89 ∆f = 79

PEMA–DIOA (5%) τ = 204 τ = 281 τ = 426 1.37 1.52 2.09

∆f = 145 ∆f = 129 ∆f = 120

PEMA–BS (5%) τ = 47 τ = 77 τ = 88 1.65 1.14 1.89

∆f = 64 ∆f = 63 ∆f = 55

PS–DINCH (15%) τ = 170 τ = 299 τ = 372 1.76 1.24 2.19

∆f = 60 ∆f = 51 ∆f = 52

PS–DIOA (15%) τ = 94 τ = 286 τ = 311 3.03 1.09 3.29

∆f = 37 ∆f = 33 ∆f = 33

PS–BS (15%) τ = 173 τ = 243 τ = 586 1.40 2.41 3.37

∆f = 42 ∆f = 33 ∆f = 37

As mentioned above, the three most promising films from Table 8 were selected based
on the τ ratio, and new films of the same three materials were subsequently exposed to
lower concentrations of the analyte vapor. However, the thicknesses of the films used
here for higher and lower concentrations were different, hence the tau values for the same
film are different in Tables 8 and 9. On regressing the experimental data to the model in
Equation (9), the τ values for the analytes in PEMA–DINCH (5%), PEMA–DIOA (5%) and
PS–BS (15%) were found, and are given in Table 9.

Table 9. τ values for benzene, toluene, and ethylbenzene for the three most promising polymer–
plasticizer coatings.

Polymer–Plasticizer Benzene Toluene Ethylbenzene τT/τB τEB/τT τEB/τB

PEMA–DINCH (5%) τ = 155 τ = 240 τ = 640 1.55 2.67 4.13

PEMA–DIOA (5%) τ =220 τ =380 τ = 620 1.73 1.63 2.82

PS–BS (15%) τ = 50 τ = 107 τ = 450 2.14 4.21 9

3.4. Stability of the Plasticizer

The long-term monitoring of BTEX compounds in nature requires a sensor that
responds linearly and reproducibly over a wide concentration range without degrad-
ing [28,29]. Plasticizer leaching is an important phenomenon to understand in order to
predict the stability of sensor films over a long period. Leaching is dependent upon the size
of the plasticizer molecule and the rate at which it diffuses through the polymer matrix [30].
Plasticizers with higher efficiency experience more rapid diffusion and, therefore, leach out
more quickly. Polarity and hydrogen-bonding interactions between the polymer and the
plasticizer also influence the permanence of the plasticizer in the matrix [22,31].

In this work, the stability of films was studied over a period of three months. The
polymer–plasticizer films were spin-coated, resulting in thicknesses on the order of a few
microns (0.2–1 micron). The frequency shifts for each analyte were studied once every
month to determine whether the plasticizer was leaching out. The coated QCM crystal,
when not used, was stored and exposed to air at room temperature.

As shown in Figures 6 and 7 for a PS–BS (15%) film, the sorption frequency for each
analyte over three months did not significantly change, indicating that no leaching of
plasticizer occurred in any of the films over that period.
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As mentioned previously, the choice of the optimum film is based on the sorption
properties, τ ratios, and film stability. Although the τ ratios are important, higher sorption
provides higher resolution, more rapid sensor response, and a better signal to noise ratio.
Therefore, of the three films used here, PEMA–DINCH (5%) and PEMA–DIOA (5%) are
superior to PS–BS (15%) by this criterion.

4. Conclusions

The incorporation of suitable plasticizers into a polymer-based sensor film can im-
prove the selectivity for BTEX compounds by modifying its sorption properties, satura-
tion dynamics, and stability over time. Poly(ethyl methacrylate) (PEMA), poly(methyl
methacrylate) (PMMA), polystyrene (PS), and a PS/PMMA block copolymer were modi-
fied by introducing the plasticizers diisononyl cyclohexane-1,2-dicarboxylate (DINCH),
diisooctyl azelate (DIOA), and n-butyl stearate (BS) in order to enhance BTEX sensitivity
and selectivity. The relationship between plasticizer type and BTEX sensitivity is described
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in this contribution. It is shown that the sensitivity and performance of plasticized glassy
polymers are superior to those of a commonly-used rubbery polymer, PIB, for this applica-
tion, with PEMA–DINCH (5%) and PEMA–DIOA (5%) being optimal. The sensor films
were able to detect, differentiate, and quantify BTEX constituents from binary and ternary
mixtures to within experimental accuracy, making them good materials for BTEX detection
in air.
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