
sensors

Article

Lightweight Detection Network Based on Sub-Pixel
Convolution and Objectness-Aware Structure for UAV Images

Xuanye Li 1, Hongguang Li 2,*, Yalong Jiang 2 and Meng Wang 1

����������
�������

Citation: Li, X.; Li, H.; Jiang, Y.;

Wang, M. Lightweight Detection

Network Based on Sub-Pixel

Convolution and Objectness-Aware

Structure for UAV Images. Sensors

2021, 21, 5656. https://doi.org/

10.3390/s21165656

Academic Editor: Felipe Jiménez

Received: 14 July 2021

Accepted: 13 August 2021

Published: 22 August 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 School of Electrical and Information Engineering, Beihang University, Beijing 100191, China;
lixuanye1902@buaa.edu.cn (X.L.); yukata@buaa.edu.cn (M.W.)

2 Unmanned System Research Institute, Beihang University, Beijing 100191, China; allenyljiang@buaa.edu.cn
* Correspondence: lihongguang@buaa.edu.cn

Abstract: Unmanned Aerial Vehicles (UAVs) can serve as an ideal mobile platform in various situa-
tions. Real-time object detection with on-board apparatus provides drones with increased flexibility
as well as a higher intelligence level. In order to achieve good detection results in UAV images
with complex ground scenes, small object size and high object density, most of the previous work
introduced models with higher computational burdens, making deployment on mobile platforms
more difficult.This paper puts forward a lightweight object detection framework. Besides being
anchor-free, the framework is based on a lightweight backbone and a simultaneous up-sampling and
detection module to form a more efficient detection architecture. Meanwhile, we add an objectness
branch to assist the multi-class center point prediction, which notably improves the detection accu-
racy and only takes up very little computing resources. The results of the experiment indicate that
the computational cost of this paper is 92.78% lower than the CenterNet with ResNet18 backbone,
and the mAP is 2.8 points higher on the Visdrone-2018-VID dataset. A frame rate of about 220 FPS is
achieved. Additionally, we perform ablation experiments to check on the validity of each part, and
the method we propose is compared with other representative lightweight object detection methods
on UAV image datasets.

Keywords: lightweight convolutional neural network; object detection; UAV images

1. Introduction

With the advance of UAV technology and the growth of UAV suppliers, UAVs are
becoming more cost-efficient. Meanwhile, due to their mobility, being autonomous, and
their processing capabilities, UAVs are considered in many intelligent transportation system
(ITS) application domains [1], such as traffic state estimation, traffic control, incidence
emergency response and so on. Compared to fixed road monitoring devices, using UAV
cameras for traffic monitoring has the following advantages [2,3]: (1) UAVs have wider
spatial coverage; (2) UAVs are easier to maintain; and (3) UAVs are more cost-efficient.
Modeling traffic flow to evaluate traffic conditions is a significant part of ITS [4]. The
detection of objects of interest from UAV images/videos is the initialization process of
traffic state estimation [5], which provides fast and accurate traffic data collection.

Most UAV visible image object detection algorithms are based on widely used and
universally structured methods, such as Faster RCNN or SSD, which target the small scale
and dense distribution of UAV image objects, either by complicating the network structure
or the detection process [6–9], or by introducing novel ways of data augmentation [7,10], ul-
timately making the algorithms perform well on UAV datasets. Typically, the optimisation
goal of these algorithms is to improve accuracy as much as possible, with less consideration
given to efficiency, and the few fast algorithms are only somewhat faster relative to their
predecessors, falling far short of the standard of real-time. Online object detection based on
UAV onboard platforms is of great importance, not only to improve the flexibility of UAV

Sensors 2021, 21, 5656. https://doi.org/10.3390/s21165656 https://www.mdpi.com/journal/sensors

https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://doi.org/10.3390/s21165656
https://doi.org/10.3390/s21165656
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/s21165656
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s21165656?type=check_update&version=1

Sensors 2021, 21, 5656 2 of 16

applications and the intelligence of the UAV itself, but also to overcome the harsh commu-
nication environment in order to work. However, the storage and computational resources
of the UAV onboard platform are limited, requiring algorithms with low computational
and parametric quantities.

Targeted at real-time on-board platforms with visible-light cameras, this paper devel-
ops an efficient object detection method with less computation and fewer parameters. In
our work, a lightweight detection network is proposed to predict object centers. Firstly, a
backbone is developed by removing the last convolutional layer of the MobileNetV2 [11]
network. Then, we provide an analysis of the computational burdens in different parts of
the existing detection models and propose an efficient detection head, which implements
upsampling and detection together using one layer. To achieve both functions while reduc-
ing computational burdens, we share the convolutional layer of sub-pixel convolution [12]
and detection head to form a unified module. Besides, we add a novel objectness branch to
the detection head. Whether a point on the characteristic spectrum is the center point of an
interested object is determined by the binary classification result provided by the objectness
branch. Compared with the CenterNet, which has a ResNet18 backbone, our proposed
model reduces the computational cost by 92.78%, reduces the parameter size by 86.73%,
and improves the mAP by 2.8 points on the UAV image dataset. The influence of each part
on the computational cost, parameter size and detection precision are demonstrated by an
extensive ablation study.

This paper has contributed to the existing research in the following three ways:

(1) The paper proposes a lightweight as well as anchor-free framework for UAV images,
which efficiently reduces the time of computation and the memory consumption. The
framework fits better for performing real-time detection in resource-constrained scenarios.

(2) We introduce sub-pixel convolution to the small object detection and draw the sup-
port of a sub-pixel convolution structure to develop a simultaneous upsampling
and detection module. The module implements upsampling and detection together
using one convolutional layer that improves the efficiency and without reducing
detection accuracy.

(3) We add a novel objectness branch to the detection head. The additional supervision in
the form of objectness makes the model develop more robust feature representations
and perform better in detection.

The structure of this paper is designed as follows. The second section performs a
literature review, the third section introduces the methods employed in detail, the fourth
section advances the evaluation metric and dataset, and records the experimental setups
and experimental results, while the last section presents a conclusion and puts forward a
few directions for future research.

2. Related Work

In this part, the CNN-based object detection approaches and previous work on object
detection in UAV images are introduced.

2.1. General Object Detection

Most of the existing CNN-based object detection approaches take advantage of anchor
boxes, including single-stage and two-stage approaches. For two-stage approaches, the
former stage generates an exiguous set of candidate regions relying on the anchor boxes and
the second stage performs classification and regression on the candidate regions. Typical
two-stage methods include Faster RCNN [13], RFCN [14], Cascade RCNN [15], FPN [16],
and so forth. In single-stage methods, the anchor boxes that are densely sampled from the
feature map are directly classified and regressed, and the region proposal network (RPN)
is omitted. Typical single-stage methods include SSD [17], YOLOv3 [18], RetinaNet [19],
DSOD [20], RefineDet [21], and so forth. Two-stage methods achieved a higher accuracy
while suffering from larger computational complexity and higher memory cost due to its
inherent structure. Single-stage methods generally achieve a tradeoff between detection

Sensors 2021, 21, 5656 3 of 16

speed and accuracy. For instance, Faster RCNN with a VGG16 backbone network runs on
the graphics processing unit (GPU) at about seven frames per second (FPS), while the SSD
can reach 46 FPS.

Due to the gap between the computational resources in GPUs and those in embedded
platforms, achieving real-time performance on mobile platforms is extremely hard using
the above-mentioned approaches. Therefore, some lightweight detection networks are
proposed, most of which are based on the single-stage methods. Based on SSD, Pelee [22]
used a more efficient PeleeNet backbone, which drew on the idea of DenseNet [23], and the
number of anchor boxes was reduced at the same time. Finally, it came to a very lightweight
model for scenarios with limited hardware resources. Tiny SSD [24] and Tiny YOLOv3 [18]
also introduced lightweight backbone networks to reduce computation. The backbones
of Tiny YOLOv3 and Tiny SSD are DarkNet19 and SqueezeNet [25], respectively. In [26],
Gabor filters with fewer filter parameters to learn are incorporated into the convolution
filter to improve the robustness of DCNNs; it may also perform as well as a lightweight
backbone for the detection network. YOLO-LITE [27] was especially developed for GPU-
free devices. Even more efficient than YOLOv2, the method reaches 20 FPS on GPU-free
computers. Tiny DSOD [28] is the lightweight implementation of DSOD, it introduced
depth separable convolutions into the DenseNet-like backbone network and the feature
pyramid network (FPN). Basically, most of the lightweight object detection networks
make their structure more lightweight and effective by reasonably simplifying backbone
networks and detection heads.

In recent years, a number of anchor-free object detection approaches have emerged.
The newly emerged methods abandoned the anchorage box; as a result, the algorithm
changes from box-based classification and regression to corner point based [29], center
point based [30], or keypoint based [31] ones. CornerNet [29] forecasts the upper left as well
as the bottom right corners of an object’s bounding box, and utilizes associative embedding
to group the corners of the same target to finish the detection of an object. CenterNet [30]
borrows part of CornerNet’s ideas, and its solution is more intuitive: Detection is done
by forecasting the object’s focus and scale as well as by eliminating the process of corner
matching. Meanwhile, the detection accuracy is higher. Compared with anchor-based
approaches whose detection performance is affected by the settings of anchors, anchor-
free methods are more robust. Moreover, anchor-free methods are mostly composed of a
single stage, and the detection accuracy is comparable to the anchor-based and single-stage
methods. It has a broad development prospect at present. At the same time, some generic
modules were introduced to detection networks. For example, to overcome the confusion
of background and objects, an Inference-aware Feature Filtering (IFF) approach [32] was
proposed, which optimizes feature learning in a theoretical framework by introducing a
feedback architecture in either anchor-based or anchor-free detection networks.

2.2. Object Detection in UAV Images

Because of complex ground scenes and small object size, common CNN-based object
detection methods cannot achieve satisfactory performance on UAV images. To achieve
better performance, most existing object detection methods adopt large-scale classification
networks (VGG [33], ResNet101 [34]) as a backbone to extract features and add optimized
single-stage or two-stage detection heads.

The method in [6] introduced DeForm convolutional layers within the backbone and
proposed an interleaved cascade architecture. Meanwhile, multi-model fusion was used to
deal with class imbalance problems. On the basis of Faster RCNN, Reference [35] proposed
a coupled R-CNN network to detect the vehicle. The task combined an accurate-vehicle-
proposal-network (AVPN) with a vehicle property learning network in order to predict
the spot and attributes of the vehicle synchronously. Reference [36] proposed a depthwise
separable attention-guided network (DAGN), which integrated the feature series with a
concentration block to make sure that the model is able to brilliantly differentiate significant
and trivial features. Reference [37] integrated the overall and partial fusion strategy with

Sensors 2021, 21, 5656 4 of 16

a progressive network with varying scales to fullfill detection in a more accurate manner.
In [7], an anchor-free method was introduced. Compared to the typical method based
on center point prediction, the scale of the object needs to be regressed twice to obtain a
more accurate bounding box. The method in [8] used enhanced SSD to detect vehicles in
drone images to assist vehicle counting and to tackle the traffic density estimation tasks.
In [9], a mask resampling module (MRM) was constructed to boost the unbalanced datasets.
Besides, a coarse anchor-free detector (CPEN) and a fine anchor-free detector (FPEN) were
adopted to forecast the focuses of the small object flocks and to locate the locations of small
objects in a valid and accurate manner. In [38], a parallel lightweight auxiliary meshwork
and an ovonic network were proposed to effectively process the semantic information from
low to high levels. This method considered the accuracy and efficiency comprehensively,
and finally reached 91 FPS on the GPU. But it is still far from the speed of the lightweight
detection methods with a frame rate of over 100 FPS.

In summary, a lot of work has provided solutions for accurate UAV image object
detection. Nevertheless, the above approaches are generally grounded on GPU platforms,
which makes it difficult to apply them to mobile terminals. Current research on lightweight
networks under resource-constrained scenarios still mainly focuses on non-UAV images.

3. Materials and Methods

The proposed framework is targeted at deployment on resource-constrained on-board
platforms. The overall structure of the lightweight object detection network is proposed
with the consideration of both speed and accuracy. The structure is shown in Figure 1 and
Table 1. The following subsections will further expand on the details of each part.

Figure 1. Visualization of our network architecture. Firstly, we resize the input image to fixed 512 × 512 resolution. Then,
the resized image is fed into the revised MobileNetV2 backbone to obtain a feature map with 32× down-sampling. Finally,
the feature maps with a large receptive field are fed into the simultaneous up-sampling and detection module. Simultaneous
up-sampling and detection module integrates the function of up-sampling and detection by using the sub-pixel convolution
structure. As detection head, the structure has four branches—Multi-classification branch, objectness branch, and offset
branch (in purple)—that are used to determine the center of the objects of interest. Scale branch (in green) is used to
determine the scale of objects of interest, that is, width and height.

Sensors 2021, 21, 5656 5 of 16

Table 1. Details of Our Network Architecture.

Layer Configuration Output

Backbone

Input — 512 × 512 × 3
Conv2d 3 × 3 × 3 × 32 s = 2 256 × 256 × 32

Bottleneck t = 1 c = 16 n = 1 s = 1 256 × 256 × 16
Bottleneck t = 6 c = 24 n = 2 s = 2 128 × 128 × 24
Bottleneck t = 6 c = 32 n = 3 s = 2 64 × 64 × 32
Bottleneck t = 6 c = 64 n = 4 s = 2 32 × 32 × 64
Bottleneck t = 6 c = 96 n = 3 s = 1 32 × 32 × 96
Bottleneck t = 6 c = 160 n = 3 s = 2 16 × 16 × 160
Bottleneck t = 6 c = 320 n = 1 s = 1 16 × 16 × 320

Head

Conv2d 1 × 1 × 320 × [(cls + 5) × 64] 16 × 16 × [(cls + 5) × 64]s = 1
Periodic Shuffling ratio = 8 128 × 128 × (cls + 5)

The t, c, n, and s are the parameters of the inverted residual bottleneck structure [11]. t means the expansion factor.
c means the number of output channels. n means repeated times. s means stride. Additionally, cls means the
number of categories.

3.1. Overall Architecture

Our work no longer uses anchor boxes to indicate objects, but instead predicts the
center point and the scale of an object of interest.

As is shown in Figure 1, our framework uses a single-scale structure. The input image
undergoes a 32× down-sampling after it is processed by the revised MobileNetV2 backbone
network. Different from anchor-based methods, which densely generate multiple boxes
for each pixel in feature maps, our method conducts sparse sampling on feature maps.
If the feature map with a large receptive field is directly fed into the detection head, the
sampling will be too sparse, and is not conducive to the detection of objects. Consequently,
the feature maps output by the backbone meshwork need to be up-sampled before being
fed into the subsequent detection head network. We propose a simultaneous up-sampling
and detection module that conducts up-sampling and detection simultaneously. The
up-sampling and detection functions are based on a unitary 1 × 1 convolutional layer.

The structure of the detection head involves four branches, which are the multi-classification
branch, objectness branch, bounding box scale branch, and center point offset branch. The
outputs of the four branches are in same spatial size (4× down-sampling of input), the only
distinction is how many output channels each branch has. The multi-classification branch
generates a series of heatmaps corresponding to the number of interested categories. The
heatmaps indicate the probability of each pixel as the center point of each interested categories.

The output of the bounding box scale branch indicates the width and height of the
objects corresponding to center points. The output of the center point offset branch indicates
the coordinate compensation of center points to correct the discretization error brought
by the down-sampling. The above three branches can generate bounding boxes with
confidence scores. In addition, we added an objectness branch, which generates a heatmap
indicating whether a certain pixel in space corresponds to the center of an interested object.
The gradients introduced by the objectness branch make the model develop more robust
feature representations and thus perform better in detection.

The training is conducted in an end-to-end process. During inference, the original picture
is scaled before being fed to the detection network, and the heatmaps of the object center points
with specific scale and offset values are output. Our framework uses the post-processing
method of extracting the peak in the local area of the center point heatmap for deduplication
instead of non-maximum suppression (NMS). The value of a pixel is kept unchanged if it is
the maximum of eight nearest neighbors, and is set to 0 otherwise. In practice, it can be easily
achieved by maxpooling, and the computation complexity is less than NMS.

Sensors 2021, 21, 5656 6 of 16

3.2. Lightweight Feature Extractor

CenterNet has achieved impressive accuracy and real-time performance on GPU. Its
most efficient version uses ResNet18 as the backbone and the inference speed can reach
140 FPS. However, the computational cost and the number of learnable parameters can still be
reduced. As shown in Table 2, the ResNet18 feature extractor and the transpose convolution
operation occupy a large proportion of the computational cost and parameter size.

Table 2. Comparison of FLOPs and Parameters between CenterNet and our method.

Method
Model Backbone

Head
Complexity Feature Extractor Up-Sampling

FLOPs 9.52 G 5.92 G 7.27 G
CenterNet (41.91%) (26.08%) (32.01%)

(ResNet18) Params 11.18M 41.20 M 0.44 M
(71.45%) (26.53%) (2.81%)

FLOPs 1.56 G — 0.08 G

ours
(95.19%) (4.81%)

Params 1.81 M — 0.31 M
(85.46%) (14.54%)

In CenterNet, the up-sampling module is composed of three layers of transpose convolution.

Like most lightweight detection networks, we replaced the backbone taken from
the classification network with a revised MobileNetV2. MobileNetV2 adopts the deeply
demountable convolution and inverted residual structure, a mobile network structure that
has been far and wide accepted in tasks such as detection and division.

Depthwise separable convolution factorizes standard convolution to a deep one as
well as a pointwise one. The computational cost of standard convolution is as follows:

Ns = K× K× Cin × Cout × Fout × Fout, (1)

where K is the measurement of kernel, Cin is the amount of input ends, Cout is the amount
of output ends, Fout is the spatial size of the output. The computational costs of deep
convolution Ndw and pointwise convolution Npw are:

Ndw = K× K× Cin × Fout × Fout, (2)

Npw = Cin × Cout × Fout × Fout. (3)

Compared with standard convolution, deeply separable convolution cuts the compu-
tational cost down to:

Ndw + Npw

Ns
=

1
Cout

+
1
k2 . (4)

Generally, the structure in front of the last pooling layer of the classification network is
chosen to be the backbone to extract features. Through experiments, we find that if we take
MobileNetV2 as a part of the backbone, the final 1 × 1 convolutional layer has a negative
effect on detection accuracy. The reason lies in the fact that MobileNetV2 is a structure
designed for classification tasks and the ultimate goal is to obtain well-discriminated
feature vectors which are then put to fully-linkedl ayers to be classified. The non-linear
RELU function following the last 1 × 1 convolutional layer may spoil the informative
features output by the last linear residual block.

At the same time, the last 1 × 1 convolutional layer outputs quite a large dimension
size (1280 dimensions), which also brings a huge computational burden to the sub-sequent
up-sampling operation and detection head, so it is extremely beneficial to remove. If
the layer is removed, the output dimension of the backbone is cut to 1/4 of the original
(320 dimensions). In our proposed network, the computational cost of the sub-sequent
structure is also reduced to 1/4.

Sensors 2021, 21, 5656 7 of 16

Considering that the transpose convolution for up-sampling takes up a lot of resources,
we replace the transpose convolution with the sub-pixel convolution and try to construct a
simultaneous up-sampling and detection module. See the next section for details.

3.3. Simultaneous Up-Sampling and Detection Module

As a common method for up-sampling, transpose convolution is different from inter-
polation or up-pooling. The advantage is that transpose convolution is learnable and can
make the results more refined. However, transpose convolution will produce a checker-
board effect [39] at a certain stride and kernel size (for example, when the stride is two
and the kernel size is odd), and the up-sampling performance of transpose convolution is
closely related to convolutional kernel size. These lead to the necessity of large kernel sizes.
As a result, transpose convolution takes up 26% of the computation and parameters of the
entire CenterNet.

We use sub-pixel convolution instead of transpose convolution. Sub-pixel convolution
is also a learning-based up-sampling method. It can be defined as:

FMHR = PS(WL×FMLR + bL), (5)

where PS replumes a low-resolution H × W × C · r2 feature map to a high-resolution
feature map FMHR with a shape of rH × rW × C as a periodic shuffling operator. The
WL and bL are convolution operators that are used to raise the dimension of the original
low-resolution map FMLR to r2 times as large. In brief, the convolutional layer is first used
to raise the dimension of input, and then the convolutional layer output is rearranged by
the periodic shuffling to obtain the result of up-sampling. Since sub-pixel convolution
and transpose convolution have different principles, the sub-pixel convolution will not
be affected by the checkerboard effect. At the same time, sub-pixel convolution and the
detection head have convolution structures; we try to share the structure of these two parts.
Our simultaneous up-sampling and detection module and its counterparts in CenterNet
are shown in Figure 2.

(32


)

T
co

n
v

TCo
nv

TCo
nv

3


3

1


1
 (4


)

Split

cls

wh

off

(32


) 11

(4


) Split

cls

wh

off

objPeriodic
Shuffling

Figure 2. (Top) The counterpart of our simultaneous up-sampling and detection module in CenterNet.
Tconv means transpose convolution. (Bottom) Our simultaneous up-sampling and detection module.
The input features of 32× down-sampling are upsampled and predicted through the above structure.

In practice, the upsampled feature map will serve as the input to each branch in the
detection head. Each branch contains a 1 × 1 convolutional layer, the output of which is
82 times the final output dimensions. Finally, the prediction results of the corresponding

Sensors 2021, 21, 5656 8 of 16

branch is obtained after periodic shuffling. As shown in Figure 1, simultaneous upsam-
pling and detection module takes low-resolution 16 × 16 feature maps as the input and
outputs 128 × 128 prediction heatmaps. This structure takes advantage of the charac-
teristics of sub-pixel convolution; it not only reduces computation in comparison to the
transpose convolution operation, but also simplifies the detection head by integrating the
up-sampling operation into the detection head to further reduce the computational burden.
Our experiments demonstrate that this structure only reduces the amount of computation
and parameters without influencing accuracy.

3.4. Objectness Branch

The primary motivation of this work is to obtain an online real-time object detection
network with no resource constraints. Therefore, we have introduced a lightweight back-
bone network as well as a detection device. To avoid the drop in detection accuracy brought
by applying a lightweight structure and the characteristic of UAV images, an objectness
branch is introduced.

YOLO proposes grading each anchor box with an additional objectness score, which
measures the intersection over union (IOU) value of the detection box and the ground truth
box. When YOLO performs detection, the actual score of the bounding box is composed of
the score of both classification and objectness. This paper then introduced an objectness
subsection to the detection head of the model. This branch predicts a heatmap on the
feature map, that is, whether a certain point is the center point of an object of any interesting
category. In this way, the supervision gradients introduced by the added branch help the
model to develop more robust feature representations, which are beneficial to detection.

The objectness and multi-classification branches are independently trained and pre-
dicted. During training, the supervision information of the objectness branch is generated
in the same way as the multi-classification branch, and the loss function is also the focal loss.
During inference, the final bounding box score is obtained by integrating the classification
score with the objectness score:

bboxscore = bboxcls×F(bboxobj), (6)

F(x) =
{

1,
x,

x > 0.5,
else.

(7)

F(x) is the preprocessing function of the objectness score. Pixels with lower values in
the objectness heatmap will provide supervision information to the multi-class heatmaps
to reduce false positives. Experiments show that the added objectness branch contributes
to improving accuracy while adding very little to computational burden.

3.5. Loss Function

This paper gives the following definition on the overall loss function to fit the model:

Ldet = Lcls + λsizeLsize + λo f f Lo f f + λobjLobj, (8)

where Lobj is objectness loss, Lcls is multi-classification loss, both of them are defined as
focal loss:

Lcls/obj =
−1
N ∑

xyc

(1− Ŷxyc)
α log(Ŷxyc) i f Yxyc = 1,

(1−Yxyc)
β(Ŷxyc)

α log(1− Ŷxyc) otherwise.
(9)

Ŷxyc are ground truth heatmaps. The heatmap values around the object center point
are subject to a two-dimensional Gaussian distribution, the distribution variance and radius
are determined by the object scale. Yxyc are predicted heatmaps. In the multi-classification
branch, c represents the amount of interested categories, while in objectness branch, c is 1.

Sensors 2021, 21, 5656 9 of 16

N refers to the amount of center points. The scale branch as well as the offset branch are
trained with L1 loss, corresponding to Lsize and Lo f f :

Lo f f =
1
N ∑

p

∣∣∣Ôp̃ −
(p

R
− p̃

)∣∣∣, (10)

Lsize =
1
N

N

∑
k=1

∣∣Ŝ− s
∣∣, (11)

where Ôp̃ is predicted offset and Ŝ is predicted scale, which can be defined as Ŝ = (Ŵ, Ĥ),
s = (w, h) is ground truth scale, p and p̃ represent the coordinate of the center point on the
network input, as well as on the heatmaps with a down-sampling rate of R, respectively.

The hyper-parameter α is designed to be to two while β of focal loss is designed to be
four. In addition, we set the loss coefficients λsize and λo f f to 0.1 and 1. The above settings
follow the CenterNet. We set λobj to 0.5 through experiments.

3.6. Experiment

Massive experiments were then conducted on the UAV image datasets to verify
whether the method we put forward is effective or not. The metric for evaluation includes
the most commonly used precision and the amount of computation and parameters that
are particularly important in resource-constrained applications.

3.6.1. Datasets

(1) Visdrone-2018-VID
The Visdrone-2018-VID dataset [40] contains 96 video clips taken by the drone with
resolutions varies from 1344 × 756 to 3840 × 2160. The training set contains 56 clips,
with 24,201 pictures in total, the validation set contains seven clips, with 2819 pictures
in total, and the test set contains 33 clips, 12,968 pictures in total. The videos were
recorded at various places withf similar surroundings. The annotated boxes were
divided into ten categories, namely pedestrian, person, car, van, bus, truck, motor,
bicycle, awning-tricycle and tricycle. Specifically, pedestrians and people are treated
as different categories: a standing or walking man will be classified as a pedestrian; a
man in other positions will be sorted to be a person. In our experiment, the training
set as well as the validation set were utilized to train and test the model, respectively.

(2) UAVDT-DET
The UAVDT-DET dataset [41] consists of 50 video clips with a fixed resolution of
1024 × 540, which are shot with a UAV platform at different places in cities. Thirty
of the video clips were set to be the training set with 24,143 pictures in total, and
the testing set contained 20 clips, with 16,592 pictures in total. The annotated boxes
were divided into three categories, namely car, truck and bus. The other two clips
were set apart to test the results. In our experiment, we used the Visdrone-2018-VID
dataset to perform an ablation study to examine the validity of each part in the model.
Meanwhile, the model we proposed is compared with the baseline approaches on the
Visdrone-2018-VID and UAVDT-DET datasets.

3.6.2. Metric

(1) Accuracy
We apply mean average precision (mAP) to assess the accuracy of the object detection
algorithm , which averages the average precisions (APs) in various categories and the

Sensors 2021, 21, 5656 10 of 16

APs are calculated by precision-recall curves. The following equations define precision
and recall:

Precision =
TP

TP + FP
, (12)

Recall =
TP

TP + FN
. (13)

TP, FP and FN refer to the number of true positives, false positives and false negatives,
respectively. True positives and false positives are determined by the IOU between
the predicted box and the ground truth box in the same category: If the IOU is greater
than a certain threshold, the detection box is true positive, otherwise it is false positive.
Meanwhile, a ground truth box without matching any predictions will produce a false
negative. IOU is defined as:

IOU =
Bpr ∩ Bgt

Bpr ∪ Bgt
, (14)

where Bpr and Bgt represent the predicted box as well as the ground truth box, respec-
tively. This paper sets the IOU level to 0.5 according to the Pascal VOC guidelines.
The possible values of Recall range from 0 to 1. We produced a coordinate system by
setting recall and precision as the x and y axis, respectively, which altogether formed
a precision-recall curve. The area between the curve and the coordinate axises of each
category is the AP of the algorithm in that category.

(2) Model Complexity
The metrics for evaluating the complexity of the CNN-based algorithm are the amount
of computation and the parameters. When the CNN model performs forward infer-
ence, the amount of computation determines the time complexity, that is, the time
required for obtaining the detection results, and the number of parameters determines
the space complexity, that is, the capacity of storage medium required. Generally,
floating point operations (FLOPs) are used to evaluate computational cost, and the
parameter size is obtained by counting the total weights of the network. In the
experiment, we also adopted these metrics.

3.6.3. Training Details

Pytorch 0.4.1 was employed to run our method. All models in our experiment were
trained and tested using a single NVIDIA TITAN RTX GPU with 24 GB RAM.

(1) Baseline Methods
We chose CenterNet, Tiny YOLOv3, Pelee, and SSD for comparison. The specific
training settings were as follows: For CenterNet, we trained the model using 16 as the
lot size and 0.005 as the original learning rate for 180 epochs, with the learning rate
decreasing by 10 each time at 90, 120 as well as 140 epochs. The weight decay was
0.0001, the momentum was 0.9, and the input size was 512 × 512. For Tiny YOLOv3,
we trained the model using 32 as the lot size and 0.001 as the original learning rate for
150,000 steps, with the learning rate decreasing by 10 each time at 80,000 as well as
120,000 steps. The input size was 416 × 416. For Pelee, we trained the model using
32 as the lot size and 0.005 as the original learning rate for 150,000 steps, with the
learning rate decreasing by 10 each time at 40,000, 80,000 as well as 120,000 steps. The
input size was 304 × 304. For SSD, we trained the model using 32 as the lot size and
0.005 as the original learning rate for 120,000 steps, with the learning rate decreasing
by 10 each time at 80,000 and 100,000 steps. The input size is 512 × 512.The weight
decay was 0.0005 and momentum was 0.9 for Tiny YOLOv3, Pelee and SSD.

(2) Our Method
The model was trained using 16 as the lot size and 0.005 as the original learning rate
for 180 epochs, with the learning rate decreasing by 10 each time at 90, 120 and as
well as 140 epochs. The learning rate we propose, and the one in baseline approaches,
both start from the 10−3 level, and decrease by 10 each time when the loss curve stops

Sensors 2021, 21, 5656 11 of 16

dropping. Moreover, the training epochs of these methods are sufficient and similar
in size to maintain a fairer comparison. Furthermore, other training hyperparameters
keep their original setting of implementation.

4. Results
4.1. Evaluation of Lightweight Backbone

The use of lightweight backbone may damage the detection accuracy. MobileNet is a
type of classification network aiming to equilibrate accuracy and speed of mobile terminals
properly. In our work, MobileNet is selected as the backbone network.

For the purpose of verifying the efficacy of MobileNet as a backbone network, we
compared MobileNetV2 and MobileNetV3 [42] with ResNet18 for experiments, as is shown
in Table 3. It can be found that the efficient architecture of MobileNetV2 as a backbone
network does not damage the accuracy. Even if MobileNetV3 is more efficient than Mo-
bileNetV2, its mAP is lower. The use of MobileNetV2 reduces the amount of computation
and number of parameters by 31% and 36.7% and the use of MobileNetV3 reduces the
amount of computation and number of parameters by 33.6% and 49.9%. Both of them are
more efficient than ResNet18.

Table 3. Evaluation of simultaneous upsampling and detection module with MobileNetV2 Backbone
and evaluation of the influence of the last convolutional layer in MobileNetV2 Backbone.

Backbone mAP FLOPs Params

ResNet18 11.5 22.71 G 15.82 M
MobileNetV2 12.1 15.66 G 10.01 M
MobileNetV3 10.8 15.08 G 7.92 M

4.2. Evaluation of Simultaneous Upsampling and Detection Module

For demonstrating the effectiveness of the simultaneous upsampling and detection
module, we implemented the upsampling and detection functions through a shared single
1 × 1 convolutional layer and periodic shuffling; specific settings are shown in Table 1.
We used MobileNetV2 as backbone for the experiment. Meanwhile, we tried to remove
the last 1 × 1 convolutional layer of the MobileNetV2 so that the input dimension of the
simultaneous upsampling and detection module is cut down, which further cuts down
the quantity of computation and parameters. Table 4 shows the experimental results
in detail. According to Table 4, the application of a whole simultaneous upsampling
and detection module can help the network run more easily. Compared to the structure
with the MobileNetV2 backbone, as well as the transpose convolution and independent
detection head in Table 3, the simultaneous upsampling and detection module saved the
computational costs by 87.5%, reducing the parameter size by 66.3% and without reducing
accuracy. At the same time, we found that removing the last 1 × 1 convolutional layer of
the backbone network, on the one hand, makes the computation of detection head easier,
and on the other hand makes the detection more precise. Considering both the complexity
and the detection accuracy, we chose to use the revised MobileNetV2 backbone network
that removed the last 1 × 1 convolutional layer.

Table 4. Evaluation of simultaneous upsampling and detection module with MobileNetV2 Backbone
and evaluation of the influence of the last convolutional layer on the MobileNetV2 Backbone.

Structure mAP FLOPs Params

MobileNetV2+SUAD w/o obj 12.3 1.96 G 3.37 M

MobileNetV2 w/o last 1 × 1 13.6 1.63 G 2.10 M+SUAD w/o obj

MobileNetV2 w/o last 1 × 1 14.3 1.64 G 2.12 M+SUAD w obj

Sensors 2021, 21, 5656 12 of 16

4.3. Evaluation of Objectness Branch

Based on the experiments in the above two subsections, we added an objectness branch
to the network with the revised MobileNetV2 backbone and simultaneous upsampling
and detection module, and demonstrate the contribution of objectness branch to detection
accuracy, as is shown in Tables 4 and 5. Table 5 shows that the optimal weight of objectness
loss is 0.5. Table 4 shows that the objectness branch contributes to an improvement of 0.7 in
mAP, while the increase in computational cost is only 0.3%. Figure 3 shows some subjective
results of our method before and after adding the objectness branch. The visual score
threshold is 0.3, and we can see that the objectness branch contributes to the reduction in
false positives.

G
round Truth

w
/o O

bj Branch
w

 O
bj Branch

Figure 3. Some examples of visualizing the impact of the objectness branch. In each comparative example, the top picture
shows the ground truth, the middle picture shows the results without objectness branch, the bottom picture shows the
results with the objectness branch.

Table 5. Experiment to determine the weight of objectness loss.

λobj 0.1 0.3 0.5 0.7 1.0

mAP 12.3 13.0 14.3 12.9 13.2

4.4. Comparisons with Other Detection Methods

Finally, this subsection compares our approach with the the current state-of-the-
art lightweight or anchor-free object detection networks on the Visdrone-2018-VID and
UAVDT-DET datasets. The methods include Tiny YOLOv3, Pelee, and SSD, the outputs of
which are provided in Table 6. For Tiny YOLOv3, as well as Pelee, the input size follows
the original settings [18,22]. Though the input resolution is diverse, what we actually focus
on is the relationship between model complexity and accuracy which can be indicated by
mAP, FLOPs, and Parameters. According to Table 6, for the Visdrone-2018-VID dataset, our
method has improved mAP by 6.4 compared with the commonly used Tiny YOLOv3, and
the computational cost and parameters’ size are only 23.2% and 48.6% of Tiny YOLOv3
respectively. Compared with Pelee, due to its small input scale, it has a certain advantage
in the amount of computation, but our method is superior to Pelee 1.6 mAP, and the
parameter size is only 35.5% of Pelee. Compared with MobileNetV2-SSD and SqueezeNet-

Sensors 2021, 21, 5656 13 of 16

SSD, we have improved mAP by 2.9 and 3.8, respectively, while the model complexity is
slightly reduced.

Table 6. Comparison of our method with the state-of-the-art Ligntweight or Anchor-free Methods on
Visdrone-2018-vid and UAVDT-DET Datasets.

Method Backbone Input
mAP

FLOPs Params
VisDrone UAVDT

CenterNet ResNet18 512 × 512 11.5 24.0 22.71 G 15.82 M
MobileNetV2 512 × 512 12.1 24.6 15.66 G 10.01 M

Tiny YOLOv3 Tiny DarkNet 416 × 416 7.9 10.5 5.56 G 12.30 M
Pelee PeleeNet 304 × 304 12.7 20.3 1.21 G 5.43 M

SSD MobileNetV2 512 × 512 11.4 18.1 1.82 G 3.15 M
SqueezeNet 512 × 512 10.5 20.7 1.76 G 2.33 M

Ours MobileNetV2 512 × 512 14.3 26.6 1.64 G 2.12 M

In the experiment, the proposed method can reach about 220 FPS on GPU. For UAVDT-
DET dataset, experimental results also demonstrate the advantage of the method we put
forward. Figure 4 shows the comparison of some subjective outputs of our approach
and Tiny YOLOv3. From the above discussion, it should be noticed that our method is a
lightweight object detection algorithm that is more suitable for UAV images.

Sensors 2021, 1, 0 14 of 16

Tin
y YO

LO
v3

O
u

rs
Tin

y YO
LO

v3
O

u
rs

Tin
y Y

O
LO

v3
O

u
rs

Figure 4. Some visualization results of our proposed method and Tiny YOLOv3. The first two lines of images are from
the validation set of Visdrone-2018-VID; the last four lines of images are from the testing set of UAVDT-DET. In each
comparative example, the top picture shows the results of our method, the bottom picture shows the results of Tiny YOLOv3.
The areas inside the red rectangles have no annotations, so we did not detect these areas.

5. Conclusions and Future Work

This paper has brought forward a lightweight anchorless object detection approach
based on the prediction of focus for UAV images. Our method is appropriate for mobile
applications and has a low amount of computation and parameters. The proposed network
structure includes a revised lightweight backbone network based on MobileNetV2 and
an efficient detection head with a sub-pixel convolution and objectness-aware structure.
Experimental results demonstrate that, compared with commonly used lightweight and
anchor-based object detection methods, our method has certain advantages in the field of
detection precision as well as model complexity, which can effectively provide support for
traffic data collection and traffic parameter estimation tasks.

Figure 4. Cont.

Sensors 2021, 21, 5656 14 of 16

Sensors 2021, 1, 0 14 of 16

Tin
y YO

LO
v3

O
u

rs
Tin

y YO
LO

v3
O

u
rs

Tin
y YO

LO
v3

O
u

rs

Figure 4. Some visualization results of our proposed method and Tiny YOLOv3. The first two lines of images are from
the validation set of Visdrone-2018-VID; the last four lines of images are from the testing set of UAVDT-DET. In each
comparative example, the top picture shows the results of our method, the bottom picture shows the results of Tiny YOLOv3.
The areas inside the red rectangles have no annotations, so we did not detect these areas.

5. Conclusions and Future Work

This paper has brought forward a lightweight anchorless object detection approach
based on the prediction of focus for UAV images. Our method is appropriate for mobile
applications and has a low amount of computation and parameters. The proposed network
structure includes a revised lightweight backbone network based on MobileNetV2 and
an efficient detection head with a sub-pixel convolution and objectness-aware structure.
Experimental results demonstrate that, compared with commonly used lightweight and
anchor-based object detection methods, our method has certain advantages in the field of
detection precision as well as model complexity, which can effectively provide support for
traffic data collection and traffic parameter estimation tasks.

Figure 4. Some visualization results of our proposed method and Tiny YOLOv3. The first two lines of images are from
the validation set of Visdrone-2018-VID; the last four lines of images are from the testing set of UAVDT-DET. In each
comparative example, the top picture shows the results of our method, the bottom picture shows the results of Tiny YOLOv3.
The areas inside the red rectangles have no annotations, so we did not detect these areas.

5. Conclusions and Future Work

This paper has brought forward a lightweight anchorless object detection approach
based on the prediction of focus for UAV images. Our method is appropriate for mobile
applications and has a low amount of computation and parameters. The proposed network
structure includes a revised lightweight backbone network based on MobileNetV2 and
an efficient detection head with a sub-pixel convolution and objectness-aware structure.
Experimental results demonstrate that, compared with commonly used lightweight and
anchor-based object detection methods, our method has certain advantages in the field of
detection precision as well as model complexity, which can effectively provide support for
traffic data collection and traffic parameter estimation tasks.

Since our current work is only focused on improving model structures at present,
in the future we will explore leveraging novel data augmentation methods, introducing
quantization and pruning techniques to pursue higher speed and more accurate lightweight
object detection networks for UAV images. In addition, deploying the proposed method
on-board and further combining the detection results with ITS applications will also be our
future work.

Author Contributions: Conceptualization, X.L. and H.L.; methodology, X.L. and Y.J.; software, M.W.;
investigation, H.L.; writing—review and editing, X.L., H.L., Y.J., and M.W. All authors have read and
agreed to the published version of the manuscript.

Funding: This research was funded by National Natural Science Foundation of China (No. 62076019).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data presented in this study are available on request from the
corresponding author.

Acknowledgments: The authors would like to acknowledge the anonymous reviewers and editors
whose thoughtful comments helped to improve this manuscript.

Conflicts of Interest: The authors declare no conflict of interest.

Sensors 2021, 21, 5656 15 of 16

References
1. Menouar, H.; Guvenc, I.; Akkaya, K.; Uluagac, A.S.; Kadri, A.; Tuncer, A. UAV-enabled intelligent transportation systems for the

smart city: Applications and challenges. IEEE Commun. Mag. 2017, 55, 22–28. [CrossRef]
2. Ke, R.; Li, Z.; Tang, J.; Pan, Z.; Wang, Y. Real-Time Traffic Flow Parameter Estimation from UAV Video Based on Ensemble

Classifier and Optical Flow. IEEE Trans. Intell. Transp. Syst. 2019, 20, 54–64. [CrossRef]
3. Ke, R.; Li, Z.; Kim, S.; Ash, J.; Cui, Z.; Wang, Y. Real-Time Bidirectional Traffic Flow Parameter Estimation from Aerial Videos.

IEEE Trans. Intell. Transp. Syst. 2017, 18, 890–901. [CrossRef]
4. Xu, Y.; Yu, G.; Wu, X.; Wang, Y.; Ma, Y. An Enhanced Viola-Jones Vehicle Detection Method from Unmanned Aerial Vehicles

Imagery. IEEE Trans. Intell. Transp. Syst. 2017, 18, 1845–1856. [CrossRef]
5. Minaeian, S.; Liu, J.; Son, Y.J. Effective and Efficient Detection of Moving Targets from a UAV’s Camera. IEEE Trans. Intell. Transp.

Syst. 2018, 19, 497–506. [CrossRef]
6. Zhang, X.; Izquierdo, E.; Chandramouli, K. Dense and Small Object Detection in UAV Vision Based on Cascade Network.

In Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV), Seoul, Korea, 27–28 October 2019;
pp. 118–126.

7. Chen, C.; Zhang, Y.; Lv, Q.; Wei, S.; Wang, X.; Sun, X.; Dong, J. RRNet: A Hybrid Detector for Object Detection in Drone-Captured
Images. In Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV), Seoul, Korea, 27–28 October 2019.

8. Zhu, J.; Sun, K.; Jia, S.; Li, Q.; Hou, X.; Lin, W.; Liu, B.; Qiu, G. Urban traffic density estimation based on ultrahigh-resolution uav
video and deep neural network. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2018, 11, 4968–4981. [CrossRef]

9. Tang, Z.; Liu, X.; Shen, G.; Yang, B. PENet: Object Detection Using Points Estimation in Aerial Images. arXiv 2020,
arXiv:2001.08247.

10. Hong, S.; Kang, S.; Cho, D. Patch-Level Augmentation for Object Detection in Aerial Images. In Proceedings of the IEEE/CVF
International Conference on Computer Vision (ICCV), Seoul, Korea, 27–28 October 2019.

11. Sandler, M.; Howard, A.; Zhu, M.; Zhmoginov, A.; Chen, L.C. Mobilenetv2: Inverted residuals and linear bottlenecks. In
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Salt Lake City, UT, USA, 18–23 June
2018; pp. 4510–4520.

12. Shi, W.; Caballero, J.; Huszár, F.; Totz, J.; Aitken, A.P.; Bishop, R.; Rueckert, D.; Wang, Z. Real-time single image and video
super-resolution using an efficient sub-pixel convolutional neural network. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016; pp. 1874–1883.

13. Ren, S.; He, K.; Girshick, R.; Sun, J. Faster r-cnn: Towards real-time object detection with region proposal networks. Adv. Neural
Inf. Process. Syst. 2015, 28, 91–99. [CrossRef]

14. Dai, J.; Li, Y.; He, K.; Sun, J. R-FCN: Object Detection via Region-based Fully Convolutional Networks. In Proceedings of the
Advances in Neural Information Processing Systems (NIPS), Barcelona, Spain, 5–10 December 2016; pp. 379–387.

15. Cai, Z.; Vasconcelos, N. Cascade r-cnn: Delving into high quality object detection. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), Salt Lake City, UT, USA, 18–23 June 2018; pp. 6154–6162.

16. Lin, T.Y.; Dollár, P.; Girshick, R.; He, K.; Hariharan, B.; Belongie, S. Feature pyramid networks for object detection. In Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 21–26 July 2017; pp. 2117–2125.

17. Liu, W.; Anguelov, D.; Erhan, D.; Szegedy, C.; Reed, S.; Fu, C.Y.; Berg, A.C. Ssd: Single shot multibox detector. In European
Conference on Computer Vision; Springer: Cham, Switzerland, 2016; pp. 21–37.

18. Redmon, J.; Farhadi, A. Yolov3: An Incremental Improvement. arXiv 2018, arXiv:1804.02767.
19. Lin, T.Y.; Goyal, P.; Girshick, R.; He, K.; Dollár, P. Focal loss for dense object detection. In Proceedings of the IEEE International

Conference on Computer Vision (ICCV), Honolulu, HI, USA, 21–26 July 2017; pp. 2980–2988.
20. Shen, Z.; Liu, Z.; Li, J.; Jiang, Y.G.; Chen, Y.; Xue, X. Dsod: Learning deeply supervised object detectors from scratch. In Proceedings

of the IEEE International Conference on Computer Vision (ICCV), Honolulu, HI, USA, 21–26 July 2017; pp. 1919–1927.
21. Zhang, S.; Wen, L.; Bian, X.; Lei, Z.; Li, S.Z. Single-shot refinement neural network for object detection. In Proceedings of the

IEEE Conference on Computer Vision and Pattern Recognition 2018, Salt Lake City, UT, USA, 18–23 June 2018; pp. 4203–4212.
22. Wang, R.J.; Li, X.; Ling, C.X. Pelee: A real-time object detection system on mobile devices. In Proceedings of the IEEE Conference

on Computer Vision and Pattern Recognition (CVPR), Salt Lake City, UT, USA, 18–23 June 2018; pp. 1963–1972.
23. Iandola, F.; Moskewicz, M.; Karayev, S.; Girshick, R.; Darrell, T.; Keutzer, K. Densenet: Implementing Efficient Convnet Descriptor

Pyramids. arXiv 2014, arXiv:1404.1869.
24. Womg, A.; Shafiee, M.J.; Li, F.; Chwyl, B. Tiny SSD: A tiny single-shot detection deep convolutional neural network for real-time

embedded object detection. In Proceedings of the 2018 15th Conference on Computer and Robot Vision (CRV), Toronto, ON,
Canada, 8–10 May 2018; pp. 95–101.

25. Iandola, F.N.; Han, S.; Moskewicz, M.W.; Ashraf, K.; Dally, W.J.; Keutzer, K. SqueezeNet: AlexNet-Level Accuracy with 50x
Fewer Parameters and <0.5 MB Model Size. arXiv 2016, arXiv:1602.07360.

26. Luan, S.; Chen, C.; Zhang, B.; Han, J.; Liu, J. Gabor Convolutional Networks. IEEE Trans. Image Process. 2018, 27, 4357–4366.
[CrossRef] [PubMed]

27. Huang, R.; Pedoeem, J.; Chen, C. YOLO-LITE: A real-time object detection algorithm optimized for non-GPU computers.
In Proceedings of the 2018 IEEE International Conference on Big Data (Big Data), Seattle, WA, USA, 10–13 December 2018;
pp. 2503–2510.

http://doi.org/10.1109/MCOM.2017.1600238CM
http://dx.doi.org/10.1109/TITS.2018.2797697
http://dx.doi.org/10.1109/TITS.2016.2595526
http://dx.doi.org/10.1109/TITS.2016.2617202
http://dx.doi.org/10.1109/TITS.2017.2782790
http://dx.doi.org/10.1109/JSTARS.2018.2879368
http://dx.doi.org/10.1109/TPAMI.2016.2577031
http://dx.doi.org/10.1109/TIP.2018.2835143
http://www.ncbi.nlm.nih.gov/pubmed/29870353

Sensors 2021, 21, 5656 16 of 16

28. Li, Y.; Li, J.; Lin, W.; Li, J. Tiny-Dsod: Lightweight Object Detection for Resource-Restricted Usages. arXiv 2018, arXiv:1807.11013.
29. Law, H.; Deng, J. Cornernet: Detecting objects as paired keypoints. In Proceedings of the European Conference on Computer

Vision (ECCV), Munich, Germany, 8–14 September 2018; pp. 734–750.
30. Zhou, X.; Wang, D.; Krähenbühl, P. Objects as Points. arXiv 2019, arXiv:1904.07850.
31. Yang, Z.; Liu, S.; Hu, H.; Wang, L.; Lin, S. Reppoints: Point set representation for object detection. In Proceedings of the

IEEE/CVF International Conference on Computer Vision (ICCV), Seoul, Korea, 27–28 October 2019; pp. 9657–9666.
32. Mao, M.; Tian, Y.; Zhang, B.; Ye, Q.; Liu, W.; Doermann, D. iffDetector: Inference-aware Feature Filtering for Object Detection. In

IEEE TNNLS; IEEE: Piscataway Township, NJ, USA, 2021.
33. Simonyan, K.; Zisserman, A. Very Deep Convolutional Networks for Large-Scale Image Recognition. arXiv 2014, arXiv:1409.1556.
34. He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the IEEE Conference on

Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778.
35. Deng, Z.; Sun, H.; Zhou, S.; Zhao, J.; Zou, H. Toward fast and accurate vehicle detection in aerial images using coupled

region-based convolutional neural networks. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2017, 10, 3652–3664. [CrossRef]
36. Ke, R.; Li, Z.; Tang, J.; Pan, Z.; Wang, Y. DAGN: A Real-Time UAV Remote Sensing Image Vehicle Detection Framework. IEEE

Geosci. Remote Sens. Lett. 2020, 17, 1884–1888.
37. Deng, S.; Li, S.; Xie, K.; Song, W.; Liao, X.; Hao, A.; Qin, H. A Global-Local Self-Adaptive Network for Drone-View Object

Detection. IEEE Trans. Image Process. 2021, 30, 1556–1569. [CrossRef] [PubMed]
38. Wang, T.; Anwer, R.M.; Cholakkal, H.; Khan, F.S.; Pang, Y.; Shao, L. Learning rich features at high-speed for single-shot object

detection. In Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV), Seoul, Korea, 27–28 October
2019; pp. 1971–1980.

39. Odena, A.; Dumoulin, V.; Olah, C. Deconvolution and Checkerboard Artifacts. Distill 2016, 1, e3. [CrossRef]
40. Zhu, P.; Wen, L.; Bian, X.; Ling, H.; Hu, Q. Vision Meets Drones: A Challenge. arXiv 2018, arXiv:1804.07437.
41. Du, D.; Qi, Y.; Yu, H.; Yang, Y.; Duan, K.; Li, G.; Zhang, W.; Huang, Q.; Tian, Q. The Unmanned Aerial Vehicle Benchmark:

Object Detection and Tracking. In Proceedings of the European Conference on Computer Vision (ECCV), Munich, Germany, 8–14
September 2018; pp. 375–391.

42. Howard, A.; Sandler, M.; Chu, G.; Chen, L.C.; Chen, B.; Tan, M.; Wang, W.; Zhu, Y.; Pang, R.; Vasudevan, V.; et al. Searching
for mobilenetv3. In Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV), Seoul, Korea, 27–28
October 2019; pp. 1314–1324.

http://dx.doi.org/10.1109/JSTARS.2017.2694890
http://dx.doi.org/10.1109/TIP.2020.3045636
http://www.ncbi.nlm.nih.gov/pubmed/33360993
http://dx.doi.org/10.23915/distill.00003

	Introduction
	Related Work
	General Object Detection
	Object Detection in UAV Images

	Materials and Methods
	Overall Architecture
	Lightweight Feature Extractor
	Simultaneous Up-Sampling and Detection Module
	Objectness Branch
	Loss Function
	Experiment
	Datasets
	Metric
	Training Details

	Results
	Evaluation of Lightweight Backbone
	Evaluation of Simultaneous Upsampling and Detection Module
	Evaluation of Objectness Branch
	Comparisons with Other Detection Methods

	Conclusions and Future Work
	References

