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Abstract: To control the spread of coronavirus disease 2019 (COVID-19), it is effective to perform
a fast screening of the respiratory rate of the subject at the gate before entering a space to assess
the potential risks. In this paper, we examine the potential of a novel yet cost-effective solution,
called thermopile-based respiratory gating, to contactlessly screen a subject by measuring their
respiratory rate in the scenario with an entrance gate. Based on a customized thermopile array
system, we investigate different image and signal processing methods that measure respiratory
rate from low-resolution thermal videos, where an automatic region-of-interest selection-based
approach obtains a mean absolute error (MAE) of 0.8 breaths per minute. We show the feasibility
of thermopile-based respiratory gating and quantify its limitations and boundary conditions in a
benchmark (e.g., appearance of face mask, measurement distance and screening time). The technical
validation provided by this study is helpful for designing and implementing a respiratory gating
solution toward the prevention of the spread of COVID-19 during the pandemic.

Keywords: thermopile array; thermal imaging; respiratory rate; remote screening

1. Introduction

Coronavirus disease 2019 (COVID-19) is a novel coronavirus-induced respiratory
disease, which has caused over 4,159,378 deaths as of 24 July 2021, according to [1]. It is
urgent to take some measures to mitigate the outbreak of COVID-19. As difficulties in
breathing is one of the major symptoms, the respiratory rate (RR) can be used as a critical
physiological parameter to indicate the health deterioration or well-being of a person [2].
Since COVID-19 is a community-acquired pneumonia that is mainly transmitted through
saliva droplets or discharge from the nose [3], people are therefore advised to wear face
masks and have their body temperature measured at the entrance of public areas (e.g., train
stations, airports, supermarkets, and libraries) to prevent the transmission of the virus [4].
However, body temperature only provides one dimension of information, and its accuracy
is affected by environment (e.g., room temperature). The guidelines of National Institute
for Health and Care Excellence (NICE) show that clinical features (e.g., body temperature
≥ 38 ◦C, respiratory rate ≥ 20 breaths per min, pulse rate > 100 min and crackles) could
provide a rapid diagnosis of community-acquired pneumonia [5,6]. Adding one more
variable (e.g., respiratory rate) can improve the accuracy of COVID-19 screening in public
areas. Since COVID-19 is an infectious disease, we propose and examine the potential of
a non-contact respiratory screening solution, called thermopile-based respiratory gating,
that eliminates the risk of infection/contamination caused by sensing in a contact manner.

The concept of respiratory gating is illustrated in Figure 1. Before entering a public
space, subjects (with or without face mask) shall pass the gate, where a contactless sensor
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is used to measure and check the RR. In this application scenario, the sensor selection and
algorithm design are critical. Since it aims at screening the RR of a subject in the stand posi-
tion, the motion-based methods [7–10] and photoplethysmography-based methods [11–13]
are not suitable for this scenario. The reasons are as follows: (i) it is difficult to accurately
measure the chest/belly movement (induced by inhaling and exhaling) from a subject in
the stand position due to involuntary body motions; (ii) it is difficult to detect the skin
pulsation from limited skin areas under a face mask; (iii) the uncertainty and variation of
the on-site illumination condition pose an extra challenge (i.e., unknown factor) for the
measurement that requires an active light source (e.g., RGB or near-infrared camera); and
(iv) motion-based respiratory rate measurements do not resemble the true measurement of
nostril airflow. Therefore, we consider a thermography-based modality as an appropriate
option here.

Figure 1. Illustration of the proposed thermopile-based respiratory gating solution that contactlessly
screen the RR of a subject at the entrance gate. (a) Entry gate, (b) security gate.

Thermal-based respiration monitoring has been proposed and demonstrated on both
high and low resolution thermal cameras [14–20]. Based on our targeting scenario (i.e., a
subject that may wear a face mask in the stand position at the entrance gate), we consider
the low-resolution thermal camera as a feasible option, as the respiratory region of interest
(ROI) is significantly decreased, due to the use of a face mask. Another consideration
is that high-resolution thermal cameras are rather expensive such that they cannot be
widely deployed in cost-sensitive areas. Therefore, we propose to use the low-cost ther-
mopile array sensor to build the respiratory gating setup. The thermopile array sensor
is comprised of a series of thermocouples, which detects the infrared radiation emitted
by all objects within a certain temperature range. It has been widely used for human
occupancy detection [21–23]. It is favored in contactless health monitoring applications
because the thermopile array sensor evades privacy issues by its low-resolution property
(e.g., 8× 8 pixels), e.g., seizure detection during sleep [24], fall detection [25,26], sleep
posture classification [27,28], household activities monitoring [29], bed-exit detection [30]
and head/body posture detection [31].
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Though low resolution is an attractive property for thermopile array sensors in terms
of privacy protection, it remains a main challenge for image and video processing. It is
impossible to perform face detection or facial landmark detection [14,15] on a thermopile
image. Different approaches have been proposed to address the issue of ROI detection.
Pereira [16] computed the signal quality index (SQI) of each ROI and selected suitable ROIs
to extract the respiratory signal based on SQI values. Since the ROI to be selected contains
breathing-induced motion and respiratory flow, the extracted signal is unreliable, especially
when apnea events are present. Lorato [17] used nostril temperature changes to define the
ROI, but since the nostril is a very small area, the distance between the subject and sensor
needs to be very close (e.g., 10 cm). The method used in [17] is not suitable for our gating
scenario, because it is difficult to require people to keep a certain distance from the sensor
in public. To detect the RR from low-resolution thermal videos in our gating scenario, we
built a setup in the lab and investigated different image processing and signal extraction
approaches, which include the following: (i) full video processing that uses very simple
spatial statistics of 8× 8 pixels to generate the respiratory signal; (ii) ROI-base processing
that performs a rough segmentation of respiratory and non-respiratory regions to refine the
extraction of the respiratory signal. The feasibility of thermopile-based respiratory gating
was demonstrated and its limitations and boundary conditions that may appear in real
applications were fairly discussed. Fast Fourier transform (FFT) and inter-beat-intervals
(IBI) are commonly used for respiratory rate calculation (averaged and instantaneous
rates) [32]. However, the difference of these two respiratory rate calculations has not been
thoroughly explored. We evaluated their differences in this work in the context of fast
respiratory screening.

The main contribution of this paper is that we propose a novel concept for contactless
respiratory gating that uses a cost-effective thermopile sensor and a simple image- and
signal-processing method to screen the RR of a subject at the entrance of public areas,
where the subject is in the standing position (with or without face mask). It targets a new
application scenario in COVID-19 that helps in controlling the spread of the pandemic,
using contactless health sensing technology. The proposed respiratory gating is cost
effective and easy to deploy in practice. For image-processing algorithms, we present
different options where an automatic ROI selection-based method is highlighted in our
benchmark. We also report the limitations and boundary conditions of this proposal by
quantifying the effect of the factors included (e.g., with/without face mask measurement
distance and screening time). The obtained insights improve the understanding toward
real applications. The remainder of this paper is organized as follows. In Section 2, we
introduce the measurement setup for respiratory gating. In Section 3, we present and
analyze six benchmark methods based on either the full video processing or ROI selection.
Section 4 shows the experimental results and discussions. Finally, in Section 5, we draw
the conclusions.

2. Setup and Measurement

This section introduces the measurement setup for thermopile-based respiratory
gating, which was used to collect the benchmark dataset.

2.1. Experimental Setup

To explore the feasibility of using a thermopile array sensor for respiratory gating,
we built an experimental setup (see Figure 2) that consists of a Grid-Eye thermopile array
AMG8833 from Panasonic, an Arduino Uno and a laptop. The thermopile sensor was
placed in front of the subject with an angle of view of 60 degrees, roughly aiming at the
nostril/mask area for nasal flow measurement. The thermal videos were recorded at a
constant frame rate of 10 frames per second (fps). The spatial resolution is 8× 8 pixels with
absolute temperature distribution. During the recording, the thermopile array sensor was
connected to an Arduino Uno, and the acquisition was performed through Python on a
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laptop with an Intel Core i5 processor (2.30 GHz). A moving mean filter was applied on the
raw data of each video with a sliding window (with 1 s length) to reduce quantization noise.

Figure 2. The experimental setup for recording the thermopile videos of a standing subject with a
face mask.

2.2. Benchmark Dataset

A total of 75 videos were recorded from 12 healthy subjects (3 males and 9 females,
aged from 22 to 68 years) with different configurations. Unless specified otherwise, each
subject stood still in front of the thermopile array sensor and was guided to mimic the
sinusoidal breathing pattern displayed on the frontal screen during the recording. The
guided breathing signal had a duration of four minutes and the breathing frequency was
changed from 10 to 30 breaths per minute (bpm). Specifically, the breathing frequency in
the first and fourth minute was 20 bpm, and in the second and third minute, 10 bpm and
30 bpm, respectively. For the recording with a face mask, each subject was required to wear
a surgical mask. This study was approved by Hunan University, and written informed
consent was obtained from each subject.

2.2.1. Dataset A: Guided Breathing with and without Face Mask

In real applications, the subject standing at the gate may not wear a face mask, and
the distance between the subject and sensor may vary. We included these challenges in
our experiments. Five scenarios with different subject-to-sensor distances were created,
including the cases with and without a face mask. For the recordings with a face mask,
the thermal videos were recorded at three different distances of 10, 30 and 50 cm. For the
recordings without a face mask, we only performed recordings at distances of 5 cm (N-5 cm)
and 10 cm (N-10 cm). Based on a pilot measurement, we found that the thermopile cannot
measure the nostril temperature changes beyond the distance of 10 cm, due to the large
quantization noise when the measurement is performed on the small nostril ROI with a
few pixels [17]. Figure 3 exemplifies the image areas with respiratory flow induced heat
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exchange for a subject with and without a face mask. The waiting time of the subject at the
gate is a critical factor that needs to be considered in practical applications. Therefore, we
defined four different sliding window lengths of 5, 10, 20, and 30 s and analyzed the effects
of different sliding window lengths to measure the respiratory rate on this dataset.

Figure 3. Examples of a subject face (with and without a face mask) captured by thermopile array
sensor at the distance of 10 cm.

2.2.2. Dataset B: Guided Breathing at Different Subject-to-Sensor Distances (with
Face Mask)

To explore the boundary conditions for measurement distance (i.e., the maximum
distance allowed between the sensor and subject for a valid measurement), the recordings
were performed on a single subject with a face mask at multiple discrete distances, ranging
from 10 to 150 cm with an interval of 10 cm.

3. Methods

To extract the RR from low-resolution videos acquired by the thermopile array sensor,
we explored different image processing approaches for respiratory signal extraction and
different methods for respiratory rate calculation (see the overview in Figure 4). The image
and signal processing methods are detailed in this section.

Figure 4. Overview of our algorithmic benchmark system. It consists of two image processing
methods (full video based and segmentation based) for respiratory signal extraction and two methods
for respiratory rate calculation. AVG—signal selection based on averaging; VAR—signal selection
based on variation; Alpha—signal selection based on Alpha tuning; SNR—signal selection based on
signal-to-noise ratio; AC—signal selection based standard deviation.
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3.1. Full Video Processing-Based Methods (FVP)

In this subsection, we introduce three full video processing-based methods that use
simple image statistics to create a respiratory signal.

3.1.1. Averaging

Given a thermal video, we use I(x, y, t) to denote the temperature of a pixel at location
(x, y) of a t-th thermal image. When the subject wears a face mask or the distance between
the subject and sensor is very close (e.g., 5 cm), the respiratory region has a relatively large
area in the thermal image. Therefore, we can temporally concatenate the spatially averaged
pixel values to approximate a time signal that includes respiratory rhythm, denoted as
AVG. For a thermal image with height H, and width W, the t-th respiratory signal AVG(t)
calculated by AVG can be expressed as follows:

AVG(t) =
1

HW

H

∑
x=1

W

∑
y=1

I(x, y, t) (1)

3.1.2. Variation

When the subject does not wear a face mask or the subject-to-sensor distance is large
(e.g., 50 cm), the respiratory region will be small in the image. Hence, the spatially averaged
signal resembles temperature variations of non-respiratory areas rather than the respiratory
flow. According to [33], spatial mean and spatial standard deviation have a complementary
effect in qualifying pixels. So, we use the spatial standard deviation of pixel values as an
alternative to generate a time signal, denoted as VAR, i.e., the mean of the non-respiratory
area is removed from the standard deviation representation. Since the standard deviation
is calculated on the second order statistics, it does not reflect the polarity of the signal
(e.g., values are all positive). To preserve the inhaling and exhaling phases in the standard
deviation signal, we use the third power instead of the second power to compute the spatial
variance. A comparison of the spatially averaged signal, 2nd-order and 3rd-order variation
signals is shown in Figure 5. The t-th respiratory signal VAR(t) calculated by VAR can be
expressed as follows:

VAR(t) =
3

√
∑H

x=1 ∑W
y=1(I(x, y, t)− µ)3

HW
(2)

where µ denotes the spatially averaged pixel values in the thermal image.

3.1.3. Alpha Tuning

As described above, AVG and VAR have complementary temporal behaviors, i.e., if
respiratory modulation is stronger in one signal, it will be weaker in another signal. There-
fore, as the third approach, we propose to combine the AVG and VAR signals such that the
respiratory component could be enhanced. In addition, the dependency on the respiratory
area size will be lessened in a combined version. Similar to [34,35], we use alpha-tuning to
combine the two signals with a positive sign in between (i.e., additive relationship). The
rationale is that during exhaling, both the averaged value of the respiratory area (AVG) and
the contrast between respiratory and non-respiratory areas (VAR) increase simultaneously,
and vice versa for inhaling (see examples in Figure 5). Thus, the respiratory components in
AVG and VAR signals should be in-phase, so adding two signals shall boost the strength of
respiration. Therefore, the t-th respiratory signal Alpha(t) calculated by alpha tuning can
be expressed as follows:
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Alpha(t) = AVG(t) +
σ(AVG(t))
σ(VAR(t))

·VAR(t) (3)

where σ denotes the standard deviation operator. Note that the AVG and VAR signals are
centered to zero (i.e., zero-mean) before the alpha-tuning combination.

Figure 5. The spatially averaged, 2nd-order variation signal (standard deviation) and 3rd-order variation signal extracted
from the thermopile video where the subject wears a face mask and the distance between the subject and sensor is (a) 10 cm
and (b) 50 cm, respectively. The left column, middle column and right column of thermal images (c) are taken at the
peak (exhaling), valley (inhaling) and zero-crossing of the respiratory signal (a). The left column, middle column and
right column of thermal images (d) are taken at the peak (exhaling), valley (inhaling) and zero-crossing of the respiratory
signal (b).

3.2. Segmentation-Based Methods (Seg)

As the respiratory signal is extracted from low-resolution thermal images, facial
landmark-based ROI detection cannot be applied. In our application scenario, the tempera-
ture of the background can be assumed to be lower than the temperature of the human
body (as shown in Figure 6). Thus, we can separate the thermal image into foreground
and background areas based on the DC-temperatures, where the DC-temperatures refer
to temporally averaged temperature values in a time interval. First, we calculate the DC-
temperature of each pixel in a thermal image sequence. Next, K-means clustering [36,37] is
applied to these DC-temperature features to cluster the pixels into two groups, denoted
as the foreground and background (the maximum and minimum DC-features are used as
the initial centroids of K-means clustering, and the distance from each centroid to pixels
is computed by squared Euclidean distance.) After that, we calculate the mean of each
cluster and choose the one with the higher temperature as the foreground. We note that the
foreground/background clustering is updated in a sliding window process in real-time,
which will be introduced later.
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Figure 6. (a,c) Thermal images of subject with a face mask at the distance of 30 cm and 150 cm away from the sensor,
respectively. (b,d) Automatically segmented foreground (navy blue) and background (green) regions by K-means clustering.

3.2.1. Averaging

Given the foreground that includes the respiratory area (face mask or nostril), we
propose to use the spatially averaged pixel values of the foreground and concatenate them
into a temporal trace in the similar way as AVG used for full video processing.

3.2.2. SNR

To further exclude outliers from the foreground, such as forehead, neck and body
(see Figure 6), we use the signal-to-noise ratio (SNR) as the quality metric to assess the
quality of thermal signals measured from foreground pixels and select the ones with
stronger respiratory energy as the output. The SNR is calculated as a ratio of the inband
(e.g., [10, 50] bpm) and outband energies of the signal. Finally, the selected pixels are
averaged in the temporal domain. Specifically, the SNR is calculated in the same sliding
window used for K-means clustering.

3.2.3. AC

In addition to SNR, another quality metric to select the respiratory regions is by AC,
which refers to the standard variations of temperature values in the sliding window [18].
We compute the standard deviation of each pixel in the foreground and select the one with
the highest standard deviation as the respiratory region.

3.3. Respiratory Rate Calculation

For all benchmarked respiratory signal extraction methods, a sliding window based
process is applied in the time domain to measure and overlap/add the signals in shorter
time intervals. Since different sliding window lengths mean different time latency for
respiratory signal generation, we define four sliding window lengths (e.g., 5, 10, 20 and
30 s) to extract the respiratory signal. To suppress distortions, a bandpass filter with a low
cut-off frequency of 0.167 Hz and a high cut-off frequency of 0.833 Hz is applied in the
sliding window to eliminate signal components outside the respiratory band.

We investigated two different methods for the respiratory rate calculation (averaged
rate and instantaneous rate). For each measurement, we have different evaluation metrics
to assess its performance.

3.3.1. Averaged Respiratory Rate

It is calculated in the frequency domain by taking the frequency index of the maximum
spectrum peak within the respiratory band ([10, 50] bpm) [13,35]. The frequency spectrum
is derived within a short time interval by a sliding window (with 10 s length and 0.1 s sliding
step). The averaged respiratory rates estimated in the sliding window are concatenated
into a long rate trace.
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We use mean absolute error (MAE) to measure the difference of averaged respiratory
rates obtained by the thermopile array sensor and reference, Pearson correlation coefficient
to evaluate their correspondence, and coverage to evaluate the percentage of correctly
measured rates with an absolute error smaller than 3 bpm. MAE is defined as follows:

MAE =
∑N

i=1 |RRpre(i)− RRre f (i)|
N

(4)

where RRpre and RRre f indicate the RR extracted from the thermopile array sensor and
reference RR signal, respectively. The Pearson correlation coefficient is defined as follows:

Pearson =
∑N

i=1(RRpre(i)− RRpre)(RRre f (i)− RRre f )

2
√

∑N
i=1(RRpre(i)− RRpre)2 ∑N

i=1(RRre f (i)− RRre f )2
(5)

where RRpre and RRre f are the mean values of RR estimated from the thermopile array
sensor and reference RR signal, respectively. Coverage is defined as follows:

Coverage =
C
N

(6)

where C represents the number of RRpre(i) in the range of [RRre f (i)− 3, RRre f (i) + 3].

3.3.2. Instantaneous Respiratory Rate

It is derived in the time domain by taking the inverse of inter-breaths-intervals be-
tween the detected respiratory peaks (due to inhaling) [12,38], which is, therefore, more
sensitive to spontaneous respiratory changes. To quantify the beat-to-beat accuracy of
the measurement, we use the following two metrics to assess the detected respiratory
peaks: (i) precision, which denotes the percentage of valid camera measurement w.r.t. the
total number of detected camera peaks (e.g., accuracy); and (ii) recall, which denotes the
percentage of valid camera measurement w.r.t. the total number of reference peaks (e.g.,
sensitivity or retrieval rate). We define the i-th respiratory peak detected by the thermopile
array sensor as Ppre(i) and that detected by the reference RR signal as Pre f (i). If there is
only one Ppre(i) in the range of 0.5 ∗ [Pre f (i− 1) + Pre f (i), Pre f (i) + Pre f (i + 1)], the Ppre(i)
is a valid peak measured by the sensor. The precision and recall are defined as follows:

precision =
NPvalid
NPpre

(7)

recall =
NPvalid
NPre f

(8)

where NPpre and NPre f represent the number of respiratory peaks detected by the ther-
mopile array sensor and reference RR signal, and NPvalid indicates the number of valid
peaks detected by the thermopile array sensor.

4. Results and Discussion

In this section, we first report the benchmark results of respiratory signal extraction
methods on Dataset A and discuss the feasibility of thermopile-based respiratory gating.
Next, we discuss the robustness and sensitivity of processing with different sliding win-
dow lengths (time latency) and compare the performance of averaged and instantaneous
respiratory rates for this application. Finally, we investigate the distance range allowed for
measurement on Dataset B.

4.1. Feasibility of Thermopile-Based Respiratory Gating

Table 1 shows the averaged metric values obtained by six benchmarked methods,
from which we can see that all methods perform better in the category where subjects wear
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a face mask than that without a face mask. This is expected, as face masks increase the
spatial area with respiration-induced temperature changes, against the nasal respiration
measurement, where only the nostril temperature changes can be measured. At the same
sensor distance, the area that can be used for respiration measurement is significantly
increased by a face mask. Moreover, the larger respiratory area allows subject to stand
in a less restricted direction w.r.t. the aiming angle of the thermopile array sensor. For
nasal measurement, the viewing angle of the sensor is more demanding and critical, as
it needs to “see” the temperature changes of the small nostril area (i.e., bottom-up angle
is recommended in the stand position). Regarding the feasibility of this measurement, a
high-level conclusion is the following: for this measurement (with this dataset), the best
measurement coverage and MAE we obtained for the scenario without face mask are 73.4%
and 4.8 bpm, and for the scenario with a face mask, 96.2% and 0.8 bpm.

From Table 1, we also conclude that Seg-based methods are generally better than
FVP-based methods. Their major difference is in the scenario without a face mask, as
Seg-based methods can more accurately locate the small respiratory area and exclude
the background. In view of the results obtained in the scenario with a face mask, we
feel that the differences between benchmarked methods are not significant, which means
that simple image statistics based methods can attain generally good performance in this
use case (especially during the COVID-19 period, where subjects are demanded to wear
face mask).

Table 1. Statistical results obtained by six benchmarked methods on Dataset A, using the default
setting. Boldface character denotes the best result per row.

Metric Mask
FVP Seg

AVG VAR Alpha AVG SNR AC

MAE (bpm) N 5.1 5.3 5.1 4.9 4.8 5.1
Y 1.5 1.3 1.3 0.8 1.0 1.6

Pearson N 0.33 0.29 0.32 0.36 0.32 0.36
Y 0.85 0.87 0.88 0.95 0.92 0.84

Coverage (%) N 49.5 46.6 48.8 53.2 73.4 48.2
Y 89.5 91.4 92.1 96.2 89.5 89.4

Precision (%) N 71.4 68.5 68.9 71.3 71.2 70.1
Y 85.3 84.7 86.2 87.8 84.4 87.8

Recall (%) N 72.50 69.9 71.3 73.2 73.0 70.2
Y 88.9 88.3 89.5 91.4 89.5 89.1

A more detailed analysis is shown in Figure 7 that focused on the comparison in the
scenario with a face mask (the targeted COVID-19 use case of this study). It confirms
the conclusions we have drawn from Table 1: Seg-based methods have generally better
performance than FVP-based methods, and this conclusion is consistent with different
sliding window lengths (latency). As explained, this is due to the advantage of foreground
and background separation of Seg, i.e., see the comparison between FVG-AVG and Seg-
AVG, where both use the same method (spatial averaging) to create a respiratory signal.
However, we emphasize an intrinsic limitation of image segmentation for thermopile
array sensors: fine-grained segmentation/separation of objects is not possible in the low-
resolution image (8 × 8 pixels). Additionally, Figure 7 shows that FVP-Alpha slightly
improves the performance of FVP-AVG and FVP-VAR, suggesting that the combination
of two in-phase signals can indeed enhance the respiratory energy, compared to their
separate versions.
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Figure 7. The performance curves of six benchmarked methods in the scenario with a face mask. The curves are obtained
with different sliding lengths for verifying the reproducibility of conclusions with different time latencies for processing and
the sensitivities of different methods to the time window.

4.2. Analysis of Processing Time Latency (Sliding Window Lengths)

As this study aims for the application of “vital signs screening”, the processing latency
(defined as sliding window length) is a critical parameter to be investigated. Longer
sliding window length will certainly improve the measurement robustness and stability,
as it includes more respiratory circles, but it also increases the waiting time for the first
measurement, which is less appreciated in terms of user experience (i.e., subjects need to
wait longer at the entrance).

Table 2 summarizes the statistical values of Figure 7 with a focused discussion on
Seg-based methods. Seg-AVG has the overall best performance in this evaluation, i.e.,
fewer variations in different sliding window lengths. The reason is that Seg-AVG uses
simple spatially averaged values rather than SNR or AC properties that rely on temporal
characteristics of the signal. In comparison, Seg-SNR and Seg-AC use temporal properties
of the signal to make the selection, which is more sensitive to the sliding window length.
In the case of a short sliding window, the frequency resolution of respiratory components
is low and the differentiation between respiratory and non-respiratory components will be
more difficult. If the sliding window contains significant respiratory-rate changes (i.e., from
20 bpm to 10 bpm in our protocol), the respiratory frequency spectrum will be more spread
(less spiky) and the SNR will be lower in our definition, which may lead to wrong ROI
selection for Seg-SNR. The same holds for Seg-AC. The major difference between Seg-SNR
and Seg-AC is that the AC selection is not total temporal energy normalized, which might
be more sensitive to sensor noise or motion disturbance/trend with a frequency lower than
the respiratory signal. However, if the sliding window is too short (e.g., 5 s or even shorter),
such normalization will be unstable.

Table 2. Statistical results obtained by Seg-based methods on Dataset A, where subjects wear a face mask. Boldface
character denotes the best result per row.

Metric
L = 5 s L = 10 s L = 20 s L = 30 s

AVG SNR AC AVG SNR AC AVG SNR AC AVG SNR AC

MAE (bpm) 0.76 0.99 1.27 0.73 0.87 1.44 0.80 1.02 1.64 0.84 1.13 1.88

Pearson 0.95 0.93 0.88 0.96 0.95 0.86 0.94 0.92 0.82 0.93 0.89 0.79

Coverage (%) 95.7 86.4 91.2 96.5 89.1 90.3 96.4 91.0 89.0 96.4 91.4 86.9

Precision (%) 74.9 77.1 74.2 87.8 83.2 87.9 94.0 87.8 94.0 94.7 89.6 95.0

Recall (%) 85.2 86.4 83.6 91.4 89.1 89.2 94.4 91.0 92.0 94.7 91.4 91.7

Considering the measurement performance and user experience (waiting time) for
respiratory gating, we recommend Seg-AVG for this application, with a processing latency
(sliding window length) of 10 s.
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4.3. Analysis of Methods for Respiratory Rate Calculation

Figure 7 and Table 2 show that the averaged RR and instantaneous RR have opposite
sensitivity to the sliding window length. The performance of the averaged rate decreases
with the increase of the sliding window length, but this is the other way around for the
instantaneous rate. We probe the reasons: this is due to the different ways of rate calculation.
The averaged rate is calculated in the frequency domain. The selection of respiratory
component might be confused if larger lower frequency components/trends are included
in the window, such as involuntary body motion, as is typical in the standing position, yet
motion tracking and compensation are not ideal in the low-resolution video. Conversely,
instantaneous RR obtained by inter-beat-intervals between inhaling peaks detected in
the time domain is more sensitive to high-frequency jitters/noise in short windows. The
inhaling peak detection exploits the waveform characteristics like morphology, which
is less visible in short window intervals. We conclude that for shorter sliding window
lengths (e.g., 5 s), an averaged rate is preferred; for longer sliding window lengths (e.g., 30 s)
where the waveform morphology is clearer, a peak-to-peak based instantaneous rate is
preferred. For visual comparison, we show the examples of averaged and instantaneous
rates obtained by FVP-AVG under different window lengths in Figure 8.

Figure 8. FFT-based and IBI-based respiratory rates obtained by FVP-AVG under different sliding window lengths on
Dataset A, where subject wears a face mask at the sensor distance of 30 cm.

4.4. Distance Range for Respiratory Gating

As mentioned before, as respiratory gating should provide a short screening time with
less processing latency, we define the default sliding window length as 5 s (50 frames at
10 fps) for this experiment (on Dataset B). Figure 9 suggests that FVP-based methods are
more sensitive to the distance between the sensor and subject, which is in line with our
expectation. The subject’s body parts become substantially smaller in the thermopile image
with the increase in measurement distance, i.e., it is not possible to differentiate different
body parts at the maximum distance of 150 cm in this experiment. Seg-based methods
also suffer from degradation with the increase in distance, but their quality drops are less
significant than FVP-based methods, due to the foreground and background separation (by
K-means). This indicates that a basic/simple regional segmentation in a 8× 8 pixels image
is still helpful for improving the robustness to the variations/uncertainties of measurement
distance. However, we note that when the distance is larger than 60 cm, Seg-based methods
do not perform well, i.e., at this distance, it is already difficult to separate different facial
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parts. Based on the setup and pilot measurement built in the lab, we suggest the distance
range for this application (i.e., respiratory screening in the stand position) to be less
than 60 cm.

Figure 9. Statistical results obtained by six benchmarked methods on the Dataset B where subject
wears a face mask under different sensor distances varying from 10 cm to 150 cm with an interval of
10 cm.

5. Conclusions

This paper examined the potential of a novel application for the timely and important
research topic of COVID-19 controlling: contactless screening of RR at the entrance gate
by a low-cost thermopile array sensor. Based on a setup we built in the lab, we explored
different image and signal processing methods to extract the RR from challenging low-
resolution thermal images, i.e., full-video-based or segmentation-based methods, as core
algorithms to extract the respiratory signals. In the benchmark based on two datasets,
we demonstrated the feasibility of thermopile-based respiratory gating, and analyzed the
sensitivity of such an application in view of realistic challenges, such as with/without a
face mask, measurement distance, and screening time. We compared different options of
image processing and highlighted a simple solution based on the rough segmentation of
the respiratory area. We also concluded the merits and drawbacks of different ways to
calculate respiratory rates (averaged or instantaneous) in different time window lengths,
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and the distance range for measurement. Due to the current restrictions on conducting
clinical experiments on COVID patients, the proposed solution was not validated in a
clinical trial with COVID-19 patients; the proposal is a technical proof-of-concept. Future
research should focus on validation with COVID-19 patients. The insights provided by this
study may initiate further exploration and development of the novel concept of contactless
respiratory gating, toward multi-modal physiological sensing, including respiration and
skin temperature, to combat COVID-19.
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