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Abstract: Constant monitoring of road traffic is important part of modern smart city systems. The
proposed method estimates average speed of road vehicles in the observation period, using a passive
acoustic vector sensor. Speed estimation based on sound intensity analysis is a novel approach to
the described problem. Sound intensity in two orthogonal axes is measured with a sensor placed
alongside the road. Position of the apparent sound source when a vehicle passes by the sensor is
estimated by means of sound intensity analysis in three frequency bands: 1 kHz, 2 kHz and 4 kHz.
The position signals calculated for each vehicle are averaged in the analysis time frames, and the
average speed estimate is calculated using a linear regression. The proposed method was validated
in two experiments, one with controlled vehicle speed and another with real, unrestricted traffic.
The calculated speed estimates were compared with the reference lidar and radar sensors. Average
estimation error from all experiment was 1.4% and the maximum error was 3.2%. The results confirm
that the proposed method allow for estimation of time-averaged road traffic speed with accuracy
sufficient for gathering traffic statistics, e.g., in a smart city monitoring station.

Keywords: traffic analysis; speed estimation; sound intensity; acoustic vector sensor

1. Introduction

Intensity of road traffic is increasing every year. Therefore, efficient means of traffic
monitoring are needed by both the vehicle drivers and the road network managers. Drivers
need up-to-date information on traffic congestion in order to choose the quickest route.
Currently, vehicle navigation systems rely mainly on dynamic data collected from their
users. Authorities that manage the road networks collect data from radar sensors and
inductive loops, and from ad-hoc measurements. Smart city solutions are the modern
approach to the management of urban areas [1]. Traffic monitoring in a smart city system
requires installing a large number of efficient and cost-effective sensors. A network of
monitoring stations collects data (from various sensors) that is analyzed in the cloud. The
results are available in real-time for drivers, the authorities, and the automated intelligent
transportation systems. The monitoring stations often measure traffic speed averaged in
time slots [2].

Currently, state-of-art traffic monitoring sensors include radars, lidars and inductive
loops [3–5]. Newer trends include video analysis from cameras [6,7] and data collection
from vehicles [8]. Radars and lidars are used whenever an accurate measurement of
vehicles speed is required to ensure safety of drivers and pedestrians (e.g., for traffic
law enforcement) [9]. Such measurement devices must be certified; therefore, they are
expensive, and they are used mainly for short-term measurements. Cheaper radar sensors,
with limited accuracy, are often installed on urban roads, e.g., at the pedestrian crossings.
However, radar sensors are active devices, emitting electromagnetic waves. A large number
of radar sensors installed in the monitored area increases environmental pollution with
electromagnetic waves that may interfere with cellular networks, Wi-Fi devices, etc. The
radar itself is susceptible for electromagnetic interference from power lines, airport radar
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systems, etc., which makes traffic monitoring in certain locations problematic or even
impossible. Also, adverse weather conditions, such as intense rainfall, prevent radar
sensors from working correctly. Current urban traffic monitoring systems are often based
on inductive loops. While they are effective, they need to be installed in the road surface,
which may be problematic in some cases. Other means of traffic monitoring, such as
pneumatic tubes, are only suitable for short-term measurements, as they obstruct the traffic.
Smart city traffic monitoring systems, covering large areas, should preferably consist of
passive sensors, robust to interference from the environment. It should be possible to install
the sensors in convenient places, without interfering with the existing road infrastructure.
Finally, the cost of the sensor (both the device itself and its power consumption) should
be low.

Acoustic sensors seem to be underutilized in traffic monitoring systems. They are
passive sensors, relying only on the analysis of environmental sounds. Passing vehicles
emit sounds from various parts: the engine, the exhaust, the tires, etc. Even if the electric
cars become the majority of the road vehicles, their tires still produce noise as a result of
contact with the road surface, and that sound can be picked up and analyzed. A single
microphone only allows for pressure analysis; acoustic events may be detected, but it
is problematic to determine whether this event is related to a road vehicle. The level of
noise in urban areas is often high, so the sensor must be able to not only detect the sound,
but also determine its direction. Most devices that perform detection of the incoming
sound direction are large microphone arrays that are not practical for installation in traffic
monitoring stations.

The aim of the research presented in this paper was to propose an alternative method
of estimating average traffic speed. We base our algorithm on the analysis of sound intensity
measured by an acoustic sensor. The algorithm is intended to provide an average speed of
road vehicles measured in defined time windows. The requirement is that the accuracy
of the proposed method is comparable with the state-of-art methods, such as radars, but
it has advantages over standard sensors: it is a passive sensor, it is not susceptible to
electromagnetic interference, it can be easily installed at a chosen location and it has low
cost (of construction and usage), so that it may be implemented e.g., in a large smart
city system.

An acoustic vector sensor (AVS) is a device able to analyze both the intensity and the
direction of sound waves, using a setup of sensors (e.g., microphones) contained in a small
enclosure [10,11]. An AVS, such as the one used in the experiments described in this paper,
may be constructed from low-cost microphones, and the sensor size is small. Therefore,
such sensors are suitable for the smart city monitoring stations. In our earlier research,
we employed an AVS for detection of acoustic events and determining direction of the
incoming sounds [12]. We successfully applied an AVS for determining traffic intensity, i.e.,
providing a reliable data on the number of vehicles within the observation period [13,14].
An advantage of the AVS, compared with a single microphone, is the ability to determine
the incoming sound direction, which allows for establishing the direction of a vehicle
movement, and for filtering out acoustic events not related to road vehicles. In this paper
we extend this approach, and we propose a novel method of estimating the average speed
of road traffic, with a sufficient accuracy for the task of traffic monitoring in a distributed
smart city system.

Analysis of audio signals, and specifically sound intensity signals, is rarely employed
for traffic monitoring. Most of the published works on the analysis of sounds produced by
road vehicles is related to traffic noise measurement and prediction, e.g., the Harmonoise
project [15]. An interesting work, from the point of view of the method described in this
paper, was published by Ballesteros et al. [16]. They evaluated spatial distribution of noise
emitted by a car, in frequency bands, using a large beamforming array. Their conclusions
regarding spatial and spectral distribution of sound sources in a passenger car were utilized
in our research.



Sensors 2021, 21, 5337 3 of 18

In the context of acoustic traffic monitoring, the published works usually employ large
microphone arrays. For example, Na et al. [17] used an array consisting of 37 microphones
for detection of vehicle positions on multiple lanes. Barbagli et al. [18] used a wireless
sensors network for estimation of traffic intensity. Chen et al. [19] applied correlation-based
sound field mapping to signals from a microphone array. An alternative approach is to use
two microphones positioned alongside the road. Duffner et al. [20] used a two-microphone
setup and cross-power spectrum algorithm for detection of road vehicles. Although they
mention speed estimation, no experimental data were provided. López-Valcarce et al. [21]
employed a similar setup and a maximum likelihood algorithm for estimation of a vehicle
speed from its acoustic signature. Cevher et al. [22] used acoustic wave patterns obtained
with a single microphone for vehicle speed estimation based on vehicle profile vectors.
Ishida et al. [23] employed a time-difference sound mapping technique based on dynamic
time warping for vehicle counting. Other works focus on estimation of traffic intensity
based on audio analysis. Warghade and Deshpande [24] used a single omnidirectional
microphone to evaluate traffic intensity on a three-degree scale. Gatto and Forster [25]
applied machine learning to detect traffic congestion using a single microphone. An
interesting approach proposed by Vij and Aggarwal [26] relies on crowdsourced sound
acquisition from smartphone users to detect traffic state.

In the publications listed above, acoustic traffic monitoring was based on analysis of
sound pressure, using complex and computationally expensive algorithms. Contrary to
that, a novel approach presented in this paper focuses on analysis of sound intensity. The
algorithm is simple and suitable for implementation on low-cost processors. The remaining
part of the paper is organized as follows. First, we describe a method of calculating sound
intensity signals from pressure signals obtained from the sensor and calculating the source
position from the intensity signals. Next, we describe a model of an ideal, moving point
source observed by the sensor and we compare it with the results obtained from the actual
vehicle pass. In the following Section, we present the proposed method of estimating the
average speed of road vehicles within an observation window. Next, we present the results
of experiments that validated the proposed method, and the paper ends with Conclusion.

2. Materials and Methods
2.1. Intensity Signals and Source Direction

Sound intensity is a measure that describes the energy flow in sound waves, defined
as the power carried by sound waves per unit area in a direction perpendicular to that
area [27,28]. Instantaneous sound intensity is calculated as a product of sound pressure p
and particle velocity u. The velocity u is a vector, direction of which corresponds to the
sound wave direction. Therefore, the intensity is also a vector. In practice, sound intensity
I is averaged in time windows T:

I =
1
T

T∫
0

p(t)u(t) dt (1)

An acoustic vector sensor (AVS), also called a sound intensity probe, measures the
magnitude I of the sound intensity [10]. A single-dimensional (1D) AVS may be constructed
from one pressure sensor and one velocity sensor (a p-u probe) [11], or from two closely
spaced pressure sensors (a p-p probe) [12]. In the latter, pressure p at the middle point
between the sensors is calculated as an average of both sensors pressure values (p1, p2), and
the magnitude u of the velocity vector is computed as the integral of a pressure gradient:

p(t) =
p1(t) + p2(t)

2
(2)

u(t) =
∫ t

−∞
(p2(t)− p1(t)) dt (3)



Sensors 2021, 21, 5337 4 of 18

The direction of the velocity vector is determined by the axis from p1 to p2. Averaged
intensity I is calculated by time-averaging the product of pressure and velocity. The sensor
must be calibrated if the measured intensity value is to have a physical meaning.

Placing two 1D intensity sensors on orthogonal axes so that the middle points of both
sensors are in the same position, creates a two-dimensional (2D) AVS. The axes of a 2D
AVS form a XY plane, and the azimuth ϕ of the incoming sound may be calculated as:

ϕ = arctan
(

IY
IX

)
(4)

where IX, IY are intensity values (magnitudes of the intensity vectors) measured in axes X
and Y, respectively.

Similarly, a third axis Z, orthogonal to the XY plane, may be added in a way that the
middle points of all three sensors are in the same position. A 3D AVS allows for measuring
both the azimuth ϕ and the elevation θ, given by:

θ = arctan

 IZ√
I2
X + I2

Y

 (5)

where IZ is the magnitude of intensity vector measured on the Z axis.
In a three-dimensional space, a 2D AVS determines a plane, on which the sound source

is positioned, a 3D AVS determines a ray that originates from the sensor and intersects the
sound source. An AVS is not able to determine the distance to sound source, so it cannot
find the exact position of the source in polar coordinates.

Obtaining accurate azimuth and elevation values from the AVS requires that all
pressure signals are aligned in amplitude, and the velocity signals are aligned in phase. This
is ensured by means of the calibration procedure that calculates the amplitude and phase
correction functions [29]. These functions are applied during the intensity measurement.

2.2. Analysis of an Ideal Moving Point Source

In this example, the calculated intensity and angles are used to track an ideal, omni-
directional point source emitting acoustic energy with a constant power, moving along
a linear path with a constant speed v. The Z axis is omitted for simplicity. The sensor is
oriented so that its X axis is orthogonal to the source trajectory, the Y axis is parallel to the
trajectory, the distance x between the X axis and the source trajectory is constant (Figure 1).
The position of the sound source is (x, y). Assuming that the source emits constant power P
and the intensity is inversely proportional to the squared distance from the source, intensity
observed by the sensor is given by:

IX ∼ P
x

(x2 + y2)
3/2 (6)

IY ∼ P
y

(x2 + y2)
3/2 (7)

Position y of the source may be calculated from the intensity measured in X and
Y axes:

y(t) = x · tan(ϕ(t)) = x · tan
(

arctan
(

IY(t)
IX(t)

))
= x · IY(t)

IX(t)
(8)

Since the position y changes in time, we will be using the term ‘position signal’
throughout the paper to describe y(t).

Speed v of the source may be calculated as:

v(t) =
dy(t)

dt
= x · d

dt
IY(t)
IX(t)

(9)
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For velocity estimation with this method, it is essential that the accurate value of x is
known. However, x cannot be measured directly with an AVS, it can only be estimated. A
possible solution to this problem is presented further in the paper.
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Figure 1. Orientation of the AVS coordinate system: (a) top view, (b) side view. The sensor position
is (0, 0, 0), the sound source position is (x, y, z).

2.3. Analysis of a Single Vehicle Pass

The aim of the presented method is to track a moving vehicle using a sensor placed
alongside the road and oriented as in Figure 1. However, a real road vehicle cannot be
represented as an ideal point source because it is a superposition of multiple sound sources
(the engine, the exhaust, the tires, the vehicle body, etc.). These sources differ in intensity
and directivity, and their intensity may change with time and depend on frequency. As a
result, a road vehicle is a complex setup of individual sound sources, also the distances
between these sources are comparable with the distance between the sensor and the vehicle.
Moreover, each vehicle is a distinct setup of sound sources. Speed of a vehicle may also
change while the vehicle passes the sensor. Azimuth and elevation obtained from the
sensor indicate an apparent point source that is a superposition of the individual sources.
Intensity, directivity, and position of that source inside the vehicle are time-dependent.

Figure 2 presents the intensity in X-Y directions, the azimuth, and the estimated
position, computed from recorded signals of a passenger car, passing by the sensor at an
approximately constant speed of 66.9 km/h (18.6 m/s), ca. 3.8 m from the sensor, from left
to right. These plots are compared with an ideal point source moving at the same speed
and distance from the sensor. Differences are clearly visible. Sound intensity plot in the
perpendicular direction (IX) for a real vehicle is shifted back in time (precedes the point
source) and the plot of intensity in parallel direction (IY) is asymmetrical, with more weight
on the left of the zero-crossing point. This indicates that the vehicle propagates most of
the sound energy towards the front of the vehicle, mainly due to a horn effect [30]. The
azimuth plot of the vehicle also deviates from the point source, and the position plot shows
even larger differences compared with a linear plot of the point source, for the reasons
described earlier in this Section. It should be also noted that when the vehicle is far away
from the sensor, signal-to-noise ratio becomes very low and the azimuth and the position
are not measurable. Therefore, only a short section of the signal (near the zero azimuth
point) is usable for analysis.

To conclude, in order to measure speed of each individual vehicle, its exact setup
of individual sound sources would have to be known. This is not realizable with the
presented sensor, it would require employing a large sensor array. However, the aim of the
method presented here is to estimate an average speed of vehicles within the observation
period, by processing a set of position signals obtained from multiple vehicles. The details
of this method are presented in the subsequent sections of the paper.
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source moving at the same speed (dashed line).

2.4. Sound Intensity in Frequency Bands

Estimation of a vehicle speed with an AVS requires that a fixed point within the vehicle
is tracked as the vehicle passes by the sensor. However, the horizontal and vertical position
of the apparent sound source, observed by the sensor, depends on both the vehicle position
and the frequency. Therefore, it is reasonable to perform the analysis of sound intensity in
frequency bands. Ballesteros et al. published a study on spatial distribution of noise from a
passing vehicle, in third-octave frequency bands [16]. At 1 kHz, the whole vehicle emits
noise, with a car engine being the dominant source. The apparent source is positioned
approximately in the middle of the vehicle, shifted towards the engine and towards the
tires that are closer to the sensor. At 2 kHz, the influence of the engine decreases and the
tire noise becomes more prominent. The apparent source is expected to be positioned
lower than for 1 kHz. Finally, at 4 kHz, tire noise becomes the main component. The
apparent source is positioned close to the ground, but its horizontal position, resulting
from superposition of four separate sources, depends on the horizontal position (azimuth)
of the vehicle, relative to the sensor. It should also be noted that noise intensity decreases
with frequency, so the sound intensity measured in the 1 kHz frequency band is usually
significantly higher than in the 4 kHz band. At the same time, attenuation of sound intensity
with increasing distance between the source and the sensor depends on the frequency.
Therefore, relationship between intensity measured in 1 kHz and 4 kHz bands also depends
on the distance of the vehicle from the sensor.

Based on the observations described above, we decided to perform the analysis of
sound intensity in three octave bands centered at frequencies: 1 kHz, 2 kHz, and 4 kHz.
Lower frequency bands were rejected because they usually contain a high level of noise
(e.g., wind), and higher frequency bands have too low signal-to-noise ratio [14–16]. The
task is to track a point that remains at a relatively constant position within a vehicle during
the measurement. In order to determine the position y of the source, we discard the 4 kHz
band, because the intensity from four separate sources (tires) causes the apparent sound
source to move as the azimuth increases. Either of the 1 kHz and 2 kHz bands (or both)
can be used for determining the source position. We decided to perform an independent
analysis of sound intensity in two bands and to average the results, as a form of result
smoothing, reducing the measurement errors.

Determining the distance x between the source trajectory and the sensor, which is
required for speed estimation according to Equation (8), is more problematic. A vertical
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position of the sound source is not known, and it cannot be measured. However, since
the height of the sensor above the ground can be measured, it is possible to calculate
the distance between the sensor and a projection of the apparent sound source on the
ground, using simple trigonometric relations (Figure 1b). Consider the case when the
source azimuth is zero. For the 1 kHz band, the source is positioned approximately at
the middle point of the vehicle, so its projection to the ground level is usually beyond the
vehicle. For the 4 kHz band, the source projection is positioned close to the intersection of
lines connecting the car tires. In the proposed method, the values calculated for the 1 kHz
and 4 kHz bands are averaged:

x =
hs

2
(cot θ1k + cot θ4k) (10)

where hs is the sensor height above the ground. In order to reduce the measurement
error, values of x are averaged over the time window of 0.2 s, centered at the point of
zero azimuth.

It is our assumption that with this approach, we obtain a distance to the point situated
near the tires further from the sensor, approximately at the half of distance between the
front and the rear tire, and that this point remains constant relative to the vehicle when
the source is observed within the azimuth range used for the measurements (about −45 to
45 degrees). In order to verify this assumption, we performed the following experiment.
Several passes of vehicles moving at a constant speed were recorded with the AVS. A
certified lidar-based device (Vitronic Poliscan) was used to measure the vehicle speed and
to determine the position of two edge points at the front of vehicle’s body, called a near
and a far reference point. Based on these measurements, movement of two reference points
was estimated using a point source model presented earlier and compared with the sound
intensity signals computed for the vehicle, in three frequency bands. The obtained azimuth
and elevation signals for a single vehicle are shown in Figures 3 and 4. The results of
azimuth measurement in the 1 kHz and 2 kHz bands mostly overlap with each other and
with the modelled far reference point. The 4 kHz band values deviate from the other bands
as the azimuth increases, as expected. From the elevation plot it may be observed that
at the zero azimuth, the 4 kHz value indicates a point consistent with the near reference
point, while the 1 kHz point is well beyond the vehicle (larger negative elevation means
that the point is closer to the sensor). However, for larger absolute azimuth values, the
source projection in the 1 kHz band moves closer to the far reference, while the 4 kHz band
values indicate a position before the vehicle. The values in the 2 kHz band are inconclusive.
Analysis of elevation is required only in a short time window around the zero-azimuth
point (±0.1 s), and the average of results from the 1 kHz and 4 kHz bands follows the
modelled movement of the far reference point within this time frame. Therefore, the
assumption stated earlier is confirmed for the far reference point as the tracked source.

2.5. Source Position for a Single Vehicle

The method presented here computes the position signal for a single vehicle. Pro-
cedure for calculation of intensity signals from pressure signals provided by the AVS is
presented in Figure 5. In this paper, we assume that the pressure signals are discrete and
uniformly sampled. The pre-processing stage performs amplitude and phase equalization
of the pressure signals to minimize differences between the transfer functions of micro-
phones that would contribute to errors in sound intensity measurements [29]. Next, signal
sections that represent individual vehicles are determined by analysis of the intensity and
azimuth functions [14]. For each vehicle, sound intensity in three axes, as well as azimuth
and elevation functions, are calculated in three octave bands (1 kHz, 2 kHz, and 4 kHz).
The results are then used to calculate the position of the vehicle, using the previously
presented method.



Sensors 2021, 21, 5337 8 of 18Sensors 2021, 21, x FOR PEER REVIEW 8 of 19 
 

 

 
Figure 3. Azimuth measured by the AVS and computed by the model. 

 
Figure 4. Elevation measured by the AVS and computed by the model. 

2.5. Source Position for a Single Vehicle 
The method presented here computes the position signal for a single vehicle. Proce-

dure for calculation of intensity signals from pressure signals provided by the AVS is pre-
sented in Figure 5. In this paper, we assume that the pressure signals are discrete and 
uniformly sampled. The pre-processing stage performs amplitude and phase equalization 
of the pressure signals to minimize differences between the transfer functions of micro-
phones that would contribute to errors in sound intensity measurements [29]. Next, signal 
sections that represent individual vehicles are determined by analysis of the intensity and 
azimuth functions [14]. For each vehicle, sound intensity in three axes, as well as azimuth 

Figure 3. Azimuth measured by the AVS and computed by the model.

Sensors 2021, 21, x FOR PEER REVIEW 8 of 19 
 

 

 
Figure 3. Azimuth measured by the AVS and computed by the model. 

 
Figure 4. Elevation measured by the AVS and computed by the model. 

2.5. Source Position for a Single Vehicle 
The method presented here computes the position signal for a single vehicle. Proce-

dure for calculation of intensity signals from pressure signals provided by the AVS is pre-
sented in Figure 5. In this paper, we assume that the pressure signals are discrete and 
uniformly sampled. The pre-processing stage performs amplitude and phase equalization 
of the pressure signals to minimize differences between the transfer functions of micro-
phones that would contribute to errors in sound intensity measurements [29]. Next, signal 
sections that represent individual vehicles are determined by analysis of the intensity and 
azimuth functions [14]. For each vehicle, sound intensity in three axes, as well as azimuth 

Figure 4. Elevation measured by the AVS and computed by the model.

The source position is calculated from the intensity signals (Equation (8)). However,
in practical situations, sound intensity measured with the AVS is contaminated by noise,
resulting from sensor imperfections, sound source movement, external factors (e.g., wind
noise), etc. Therefore, Equation (8) in practice becomes:

y(t) = x · IY(t) + ηX(µX , σX)

IX(t) + ηY(µY, σY)
(11)

where η is Gaussian noise with mean µ and standard deviation σ. As a result, position
estimation from noisy sound intensity signals is inaccurate.
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Suppression of noise involves smoothing the intensity signals obtained for a single
vehicle, in each frequency band. This is necessary to reduce the influence of noise on
calculation of the source angles, distance, and position. Several methods of intensity
smoothing were examined, the method that provided optimal results performs filtering the
intensity signal with a rolling median filter with time window of ca. 267 ms, followed by a
rolling average filter with averaging time of ca. 139 ms.

The smoothed intensity signals are used to compute azimuth, elevation, distance,
and position of the source on the road. Distance x to the source is estimated using the
method described earlier, as shown in Figure 6. Position y is calculated from Equation (8),
using the estimated distance x (Equation (10)), within a time window of 0.4 s, centered at
the zero-azimuth point. The position signals are calculated independently in the 1 kHz
and 2 kHz bands, and the results are averaged in order to diminish the influence of noise
(Figure 7).
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2.6. Estimation of Time-Averaged Traffic Speed

Accuracy of determining the distance x from the sensor to the path of the moving
source is the main factor limiting the accuracy of speed estimation. Despite the noise
suppression, the distance estimates are still noisy, and small changes of distance x cause
large errors in speed estimation. However, it is expected that errors in distance estimation
(and speed estimation) observed for a large number of vehicles form a normal distribution
(this was confirmed in the experiments described further in the paper). Therefore, we
assumed that if a sufficiently large number of position signals from individual vehicles are
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averaged over the observation period, the influence of the estimation noise diminishes, and
the speed estimate computed from the average position signal will be close to the actual
time-averaged traffic speed. This assumption was verified during the experiments and the
results are presented in the paper.

A method of estimation of the averaged traffic speed from position signals is shown
in Figure 8. Instead of simply averaging the estimated speed values of individual vehicles,
the proposed approach calculates an average position signal from all vehicles within the
observation period. The aim is to reduce the measurement noise present in individual
position signals. First, the position signals y from all analyzed vehicles are synchronized so
that their zero-azimuth points are aligned. The position signals (discrete, with an identical
sampling period) are resampled using a linear interpolation method, so that the discrete
values of all signals occur at the same time instants, and one in each signal represents
exactly the zero-azimuth point.
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In the next step, M time-aligned position signals yi are averaged over time, resulting
in a position signal ya of the ‘averaged’ vehicle:

ya,n =
1
M

M

∑
i=1

yi,n (12)

Speed estimation is obtained by performing a linear regression on the averaged
position signal which consists of N discrete-time points (tn, ya,n). The regression coefficient
is given by:

vest = ya −

N−1
∑

n=0

(
tn − t

)
(ya,n − ya)

N−1
∑

n=0

(
tn − t

)2
t (13)

where the x-bar indicates mean values. The position values are evenly spaced, so tn = n·T,
where T is the sampling period of the position signal in seconds. Therefore:

t =
1
N

N−1

∑
n=0

nT =
N − 1

2
T (14)

The denominator in Equation (13) is:

N−1

∑
n=0

(
tn − t

)2
=

N−1

∑
n=0

(
nT − N − 1

2
T
)2

=

(
N3 − N

)
T2

12
(15)

Substituting Equations (14) and (15) and the means of position values into Equa-
tion (13), we obtain the regression coefficient which is the calculated speed estimate ex-
pressed in meters per second:

vest =
1
N

N−1

∑
n=0

ya,n −
6 · (N − 1)
(N3 − N) T

N−1

∑
n=0

[(
ya,n −

1
N

N−1

∑
m=0

ya,m

) ((
n − N − 1

2

)
T
)]

(16)
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3. Results and Discussion

For the purpose of validation of the proposed method, a custom AVS device was
constructed from six digital, omnidirectional MEMS microphones (InvenSense INMP441,
sensitivity −26 dBFS [31]). The microphones were mounted in a cube, distance between
microphones on each axis was ca. 0.01 m (Figure 9a), forming a three-dimensional AVS
working on a p-p principle [32]. Spacing between the microphones allows for sound
intensity analysis up to ca. 10 kHz. The pressure signals from all microphones, sampled
at 48 kHz, with 24-bit resolution, were passed through an I2S-USB interface to a micro-
computer or a portable computer and recorded on a disk for an offline analysis. An online
analysis on a Raspberry Pi 3 microcomputer was also tested and it worked correctly.
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The correction functions were obtained by means of the calibration procedure, per-
formed in an anechoic chamber. One amplitude correction function for each pressure
signal (each microphone) and one phase correction function for each axis (each acoustic
velocity signal) were calculated [29]. The correction was applied to the signals during
the calculations, using finite impulse response digital filters of length 512. Instantaneous
sound intensity on each axis was calculated using Equations (1)–(3), and then averaged in
non-overlapping windows of 256 samples. The resulting time-averaged intensity signals
were sampled uniformly at 187.5 Hz (temporal resolution 5.33 ms).

The input data to the proposed algorithm for speed estimation are sufficiently long
signal sections representing moving vehicles, around the zero azimuth point. Therefore,
intensity signals recorded by the sensor need to be processed by a vehicle detector. Such
a detector is not the part of the presented algorithm which does not rely on any specific
detection method. In the experiments, we used a detector described in our previous
publication [14]. The detection is based on two criteria: presence of a peak in IX and
presence of a smooth transition in the azimuth signal, with zero crossing. If these two
criteria are fulfilled, the zero-azimuth point is found and the analysis window of ±1 s is
cut around it for further analysis.
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Two experiments were performed. The first one (experiment M) was conducted in
controlled conditions. Four passenger cars were recorded, and the drivers were asked to
drive at a constant speed from the range 70 km/h to 100 km/h. A total of 31 runs were
recorded. The reference (state-of-art) sensor was a lidar-based device (Vitronic Poliscan [33])
which was used to measure the actual vehicle speed (with resolution of 1 km/h), as well
as the vehicle position on the road, which was used to verify the method of distance
estimation, described earlier. We also tried to use a Doppler radar as a second reference
device, but high level of external electromagnetic interference (a strong harmonic signal that
was added to the signals reflected from the vehicles) made the measurements impossible.
An average speed of all 31 runs was 79.5 km/h (22.1 m/s). The road section at the outskirts
of a town was straight, the surface was dry and the traffic was very low, so the measured
vehicles were isolated. The AVS was placed on a tripod, about 2.6 m from the road edge, at
a height of 1.7 m (Figure 9b), oriented as in Figure 1. The results from this experiment were
used for the initial validation and tuning of the method.

The second experiment was performed in an uncontrolled environment, to validate
the method in a real-life scenario. The measurements were performed on a rural road in
the settlement, on a straight road section (one lane in each direction), in dry conditions.
The sensor was mounted in an enclosure placed 4 m away from the road edge, 3.2 m above
the ground, and it was recording all vehicles moving through the observed section of the
road in an unobstructed road traffic. Recordings of isolated vehicles made during the night
hours were selected for the calculation. Four one-hour long time slots (experiments L1, L2,
L3, and L4) were analyzed, with 8, 7, 5 and 7 observed vehicles in each slot, respectively.
We aim to show that a small number of vehicles is sufficient to obtain an accurate estimate
of average vehicle speed in the observation period. It should be noted that the proposed
method does not depend on the length of observation period, as long as a sufficient number
of vehicles is observed in each time slot. In more dense traffic, shorter observation windows
can be used (e.g., 5 min) to provide sufficient data for analysis. A Doppler-based sensor
was used as a reference device that measured the vehicles speed. No reference for the
distance between the vehicles and the sensor was available.

In the first experiment, we tested speed estimation for individual vehicles with the
proposed method. Figure 10 shows the results calculated from the position signal of each
vehicle in the experiment M. It is clearly seen that the results are too inaccurate to obtain
a reliable estimate of a single vehicle speed. There are two factors that contribute to the
observed errors: noise present in the intensity signals and inaccuracy of estimation of
vehicle’s distance from the sensor. Therefore, further experiments were focused on the
time-averaged traffic speed estimation.

Earlier in the paper we stated an assumption that errors in distance and speed es-
timates, calculated for individual vehicles, are normally distributed. Figure 11 shows
histograms of both types of errors, observed in the experiment M. The average error
(mean ± standard deviation) is 0.35 ± 0.06 m for the distance to source estimation, and
2.28 ± 11.0 km/h for the speed estimation. Distribution of both error types is normal, as
confirmed by the Shapiro-Wilk statistical test (distance: W = 0.98, p = 0.91; speed: W = 0.97,
p = 0.5). Although the strength of the Shapiro-Wilk for such a small sample is low, the
results indicate that there is no reason to reject the hypothesis that the population of esti-
mation errors is normally distributed. Therefore, the assumption of the proposed method
is confirmed.

Figures 12 and 13 illustrate how the proposed method of time-averaged traffic speed
estimation works. The following signals are shown: positions of the individual vehicles,
the averaged position signal, and the position of a modelled point source, moving at a
speed equal to the average speed of all vehicles (measured with the reference device). In
the experiment M (Figure 12), the drivers attempted to move at a constant speed. This
is reflected in position signals that are approximately linear, changes in the slope are
mainly due to variations in distance. The averaged position signal is mostly aligned with
the reference, although it deviates from it with the increasing distance from the sensor
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(but outside the analysis window used by the method). For the second experiment (L1;
the remaining L experiments yielded similar results and they are not shown to avoid
redundancy), much larger nonlinearity is observed in the position of individual vehicles.
In this case, uncontrolled traffic was recorded, and the vehicles moved with varying speed
and distance. The averaged position signal is also noticeably non-linear. Nevertheless,
the linear regression applied to the average position provides a result that is reasonably
consistent with the reference.
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Table 1 shows the results of speed estimation in all experiments. The ground truth
speed values were obtained from the reference devices. The results obtained using a
simple approach of averaging individual speed estimates are included for comparison
with the proposed method. The simple averaging method is quick, but it is only able to
average errors in the computed speed estimates. With this approach, the average absolute
error of speed estimation is 2.2 km/h (2.7%), which may be sufficient for the purpose
of traffic monitoring. However, with the proposed method, which averages errors in
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the position signals used for speed estimation, instead of averaging errors in the final
estimates, an improvement in speed estimation accuracy is obtained. The average error
from all experiments is 1.2 km/h (1.44%), which is a reduction by 1 km/h (1.3 percentage
points) compared with the simple averaging method. The increase in accuracy is especially
notable in the experiment M (with controlled vehicle speed), where the error is reduced
by 2.5 percentage points, and the obtained estimate is very close to the reference value
(−0.3 km/h difference). In the L experiments (with uncontrolled vehicle speed), estimation
errors are larger, but they are still lower than in the simple method, and they are at an
acceptable level. It may also be observed that the number of observed vehicles is not a
major factor affecting the estimation accuracy. It may be expected that a larger number
of vehicles will result in a lower estimation error, because if a larger number of position
signals is used, the averaged position signal becomes smoother and more linear. This can
be observed by comparing Figure 12 (larger number of vehicles) with Figure 13 (smaller
number of vehicles, the averaged position signal is less linear). However, the error in
experiment L1 (8 vehicles) is the same as in the M experiment (31 vehicles), while errors in
the L2 and L3 experiments (7 vehicles in both) differ significantly. The largest error was
observed in the experiment L2. From the analysis of position signals, it may be concluded
that the main factor that affects the estimation accuracy is variation in the vehicle speed
(when the vehicle accelerates or brakes rapidly within the measurement area) and in the
distance of vehicle’s trajectory from the sensor. It is expected that the estimation error is
reduced if more vehicles are used in computations. However, the results of L experiments
confirmed that a low number of vehicles (5–8) is sufficient to obtain an average speed
estimate with a sufficient accuracy. Overall, the results confirm that the proposed method is
valid and that it increases the speed estimation accuracy compared with the simple method
that averages the estimates.
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Table 1. Results of vehicle speed estimation with the proposed method.

Method Parameter M L1 L2 L3 L4

Reference
Number of vehicles 31 8 7 5 7

Average speed [km/h] 79.5 68.0 86.2 77.3 87.7

Simple
averaging

Average speed [km/h] 81.8 67.3 83.1 75.0 85.3
Estimation error [km/h] 2.3 −0.7 −3.1 −2.3 −2.4

Estimation error [%] 2.9 1.0 3.6 3.0 2.8

Proposed
method

Average speed [km/h] 79.2 67.7 83.4 76.1 89.1
Estimation error [km/h] −0.3 −0.3 −2.8 −1.2 1.4

Estimation error [%] 0.4 0.4 3.2 1.6 1.6

The results of our experiments validated the accuracy of the proposed algorithm by
comparison of its results with data from state-of-art traffic monitoring sensors: a lidar
and a radar. It is also interesting to compare our results with other approaches based
on audio analysis. A review of state-of-art sensors revealed that there are currently no
commercial devices capable of measuring traffic speed with acoustic sensors. There are
a few acoustic sensors for vehicle detection and counting. Other published works on
acoustic determination of vehicle speed focus on measuring speed of single vehicles
and they often report large measurement errors. A probable explanation is that these
methods treat vehicles as point sources, which (as we discussed in this paper) is not a
valid assumption and it leads to large speed estimation errors. We compared the average
speed error of 1.2 km/h obtained using our method with mean absolute error reported in
several publications related to a wide range of acoustic-based traffic monitoring. Na et al.
estimated the vehicle speed from measuring the time needed to pass through the detection
zones in a multi-zone detector based on a microphone array. The reported average speed
error from 940 vehicles was 16.58 km/h [17]. López-Valcarce et al. employed a maximum
likelihood approach using two microphones. Only three vehicles were measured and the
average error was 4 km/h [21]. Cevher et al. examined acoustic wave patterns from a
single omnidirectional microphone. With a full profile method, they obtained average
error of 2.97 km/h (from 10 vehicles), while two simplified methods provided errors of
13.39 km/h and 8.14 km/h [22]. Wu et al. examined acoustic patterns from smartphone
audio and obtained average error of 2.17 km/h [34]. Göksu estimated the vehicle speed
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from on-board microphone and reported mean absolute error of 1.11 km/h [35]. Ishida et al.
examined a map of sound arrival time difference using two microphones and obtained
average speed error of 16.8 km/h for 12 vehicles, 9.38 km/h for 6 vehicles with motorcycles
excluded [36]. We did not find any published works on using sound intensity analysis for
traffic speed estimation which confirms that our approach is novel. Average speed error
obtained in our experiments is lower than reported in other related publications (except
for [35], where the error values are comparable).

4. Conclusions

In our previous publication [14], we presented a method of vehicle detection and
counting by the analysis of sound intensity signals. In this paper, we extend this approach
by proposing a novel approach to road traffic speed estimation, based on the analysis
of sound intensity. Initially, we hoped to use this method to estimate the speed of each
individual vehicle. However, this proved to be problematic, so we decided to develop
a method that estimates an average traffic speed within an observation period, with the
assumption that the averaging procedure reduces influence of various factors on the speed
estimation accuracy. We identified three main sources of speed estimation errors. (1) The
apparent sound source is not a point that is constant within a moving vehicle (a fact that is
often neglected in related publications), also the source position depends on the analyzed
frequency range. In our method, we diminish the influence of this factor by analyzing
only a short time section when a vehicle is close to the sensor, and we perform analysis
in three frequency bands. (2) Estimation of the distance between the movement path of a
vehicle and the sensor is crucial for obtaining an accurate speed estimate. This proved to be
the hardest problem, which we partially solved in the proposed method by analyzing the
source elevation in two frequency bands, in a short time fragment when a vehicle is close
to the sensor. (3) The signal-to-noise ratio in the calculated intensity and position signals
is low, which results in errors in the calculated speed estimates. This problem may be
diminished by averaging a number of speed estimates within the observation period, and
this approach yields a satisfactory estimation accuracy. However, we proposed a method
based on averaging the position signals obtained for individual vehicles and computing
the speed estimate from the average position signal. The experiments proved that this
method provides more accurate speed estimates than the simple averaging method.

An example of practical application of the proposed method is a traffic monitoring
station in a smart city system. With this method, a vehicle count (in two opposite directions)
and the average traffic speed can be calculated in the defined time slots (e.g., every 15 min).
A network of such monitoring stations would be able to provide dynamic information
on road traffic, suitable for urban traffic management. The advantage of the proposed
method is that it is passive, it does not emit any signals, unlike the radars and lidars, so
it does not contribute to signal pollution in the urban areas. It is also not susceptible to
electromagnetic interference, which is the problem for radar-based sensors (as observed
in the M experiment, in which the radar simply did not work). The proposed method
is cost-effective, it does not require expensive equipment and high energy consumption,
unlike lidar-based sensors. A low-cost setup consisting of six MEMS microphones, an
I2S-USB interface and a Raspberry Pi microcomputer, which we used in our experiments,
is sufficient to perform online analysis in a monitoring station. The sensor is also easy to
install, and it does not need a specific orientation relative to the traffic direction (the sensor
is omnidirectional), which radars and especially lidars require.

As is the case for each sensor-based, automated traffic monitoring method, the pro-
posed approach also has its limitations. High level environmental noise may disturb
the sound analysis. Very strong wind or a heavy rain with raindrops hitting the sensor
enclosure may mask the signals emitted by vehicles. Such problems occur also in other
sensors (e.g., a Doppler radar did not work during a heavy rainfall). There is also a problem
of occlusion when multiple vehicles are observed by the sensor concurrently. The occlu-
sion problem is common to most traffic monitoring sensors. Since the proposed method
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averages a number of vehicles, the occlusion is not critical for obtaining valid results.
Another limitation of the proposed method is that it relies on the data provided by the
vehicle detector. Occlusions are a common problem in traffic analysis. Partial occlusions
are handled correctly by the algorithm, as long as a sufficiently long signal section around
the zero azimuth is provided by the detector. Complete occlusions cannot be handled by
the detector and such cases are excluded from the analysis. However, a reasonably small
percentage of occlusions is not a problem for the speed estimation algorithm.

In the future work, the main possible area of improvement is estimation of the distance
between the sensor and the sound source. Temporal resolution of the analysis may be
increased, provided more data for successful speed estimation. We also intend to focus on
improving the accuracy of speed estimation of individual vehicles. The method described
in this paper will be implemented in a traffic monitoring station and we intend to perform
a long-term, 24/7 analysis of road traffic in selected location. This test will provide more
information on performance of the proposed method under different conditions.
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