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Abstract: Embodied cognitive attention detection is important for many real-world applications,
such as monitoring attention in daily driving and studying. Exploring how the brain and behavior
are influenced by visual sensory inputs becomes a major challenge in the real world. The neural
activity of embodied mind cognitive states can be understood through simple symbol experimental
design. However, searching for a particular target in the real world is more complicated than during
a simple symbol experiment in the laboratory setting. Hence, the development of realistic situations
for investigating the neural dynamics of subjects during real-world environments is critical. This
study designed a novel military-inspired target detection task for investigating the neural activities of
performing embodied cognition tasks in the real-world setting. We adopted independent component
analysis (ICA) and electroencephalogram (EEG) dipole source localization methods to study the
participant’s event-related potentials (ERPs), event-related spectral perturbation (ERSP), and power
spectral density (PSD) during the target detection task using a wireless EEG system, which is more
convenient for real-life use. Behavioral results showed that the response time in the congruent
condition (582 ms) was shorter than those in the incongruent (666 ms) and nontarget (863 ms)
conditions. Regarding the EEG observation, we observed N200-P300 wave activation in the middle
occipital lobe and P300-N500 wave activation in the right frontal lobe and left motor cortex, which are
associated with attention ERPs. Furthermore, delta (1–4 Hz) and theta (4–7 Hz) band powers in the
right frontal lobe, as well as alpha (8–12 Hz) and beta (13–30 Hz) band powers in the left motor cortex
were suppressed, whereas the theta (4–7 Hz) band powers in the middle occipital lobe were increased
considerably in the attention task. Experimental results showed that the embodied body function
influences human mental states and psychological performance under cognition attention tasks.
These neural markers will be also feasible to implement in the real-time brain computer interface.
Novel findings in this study can be helpful for humans to further understand the interaction between
the brain and behavior in multiple target detection conditions in real life.
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1. Introduction

Embodied cognition is a theoretical concept that assumes cognitive functions are
closely related to the body and physical behavior [1,2]. In traditional cognitive model
experiments, such as symbolic mental representations governed by logical and compu-
tational rules, the body only responds to information received by the senses. However,
embodied cognition argues that the physicality of the body in action is not merely a vehicle
for logical and computational process, but also the co-producer of the cognitive process [1].
In addition, the body reflects the state of the mind to some extent. For example, hand
movements play a cognitive role in language development when speaking, while gestures
and finger counting also help to express mathematical concepts. Embodied cognition is
a highly flexible and complex mechanism, and it is difficult to explain this phenomenon
with a single experiment, but it could be observed through experiments on cognition and
physical behavior [1,3].

The theory of embodied cognition indicates that perception is based on the state
and actions of the body, but research has also shown that there was no simple boundary
between perception and action [4]. The cognitive state of the mind and the behavioral
response of the body are the issues discussed in many studies [5]. Although psychology
affects the body’s response, the degree of its influence is difficult to quantify through
experiments. However, Gregg D’s [6] research showed that the change of mental state
and the connection of the body and mind could be measured by the spectrum analysis of
electroencephalographic (EEG) signal. For researchers studying situated cognition and
sensorimotor function, embodied cognition is increasingly accepted as a viable theoretical
choice [5,7,8].

Humans’ attention while focusing on a specific target would affect the neural activities
of the human brain. Experiments designed with simple symbols, such as Go/No-Go
tasks [9,10] and attention network tasks (ANT) [11–13] have been used in the study of mind–
attention cognition tasks to investigate the neural activities of embodied mind cognition
states. Although the neural activity of embodied mind cognition states can be understood
through simple symbol experimental design, in the real world, focusing on a specific target
is more complex than during an experiment in a laboratory. However, previous studies did
not use a real-world environmental setting for the participants. Hence, the development of
effective methods for measuring neural activities during mind–attention cognition tasks in
real-world environments is critical. In the present study, we designed a novel embodied
cognitive target detection experiment based on a real-world military scenario to explore the
brain’s dynamic changes in the process of the mind and body’s response under a real-world
setting target detection task.

This study is the first to adopt high-temporal-resolution wireless EEG recordings that
are more suitable in the real word [14] for investigating the brain activities of individuals
performing embodied mind cognition tasks in a military scenario by using independent
component analysis (ICA) [15] and dipole source localization [16]. In addition, to further
explore the interaction between the subject’s mental cognitive process and behavioral
response under different commands and tasks, our experiment was designed for the partic-
ipant to execute corresponding tasks after each command was issued, as compared with
traditional ANT experiment settings with no-cue design [17,18]. The event-related potential
(ERP) and event-related spectral perturbation (ERSP) techniques were used to investigate
the neural activities of the brain when the participants were performing embodied mind
cognition tasks under the experiment based on the military scenario. The ERSP reflects
an event-related time/frequency state within the EEG signals and elucidates the extent
to which underlying event-related synchronization or event-related desynchronization
occurs [19]. Consequently, ICA and ERSP analysis provides a direct measure of the changes
in the activity of the brain [15,19–21].
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2. Materials and Methods
2.1. Participants

A total of 19 healthy participants (15 men and 4 women, aged 23 to 30 years) were
recruited in this study [22,23]. All the participants were right-handed and had normal or
corrected vision without a history of neurological or psychiatric diseases. This study was
performed in accordance with the recommendations of the Institutional Review Board of
National Chiao Tung University, Hsinchu, Taiwan, and was approved by the Research
Ethics Committee of National Chiao Tung University, Hsinchu, Taiwan, under the protocol
code NCTU-REC-108-085E. Informed consent included options to exclude these diseases
and problems. Each participant had to sign the informed consent before the experiment.

2.2. Procedures
2.2.1. Experimental Design

The experiment was designed to simulate a real-world military shooting scenario
using Unity (2018.3.6 version) software. Unity is a platform game engine developed
by Unity Technologies, which creates three-dimensional (3D) and two-dimensional (2D)
games, as well as interactive simulations and other experiences [24]. We used Unity to
design the scenario and record the event mark and behavior data. The task scenario
simulates the real environment for target search, and the real target was the image of a
soldier wearing camouflage clothing with a black gun, and the interference object was
the image of other characters wearing clothes of similar colors composed of gray, green,
khaki, and black. As shown in Figure 1, the total duration of the experiment was 68.5 min,
divided into 30 s of baseline (resting EEG). This was followed by 12 min sessions with a
5 min break between each session, and then followed by the next session with a total of
four sessions and four breaks.
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Figure 1. Experimental design of the simulated real-world target detection task based on a military
scenario. (a) Schematic flow of the experiment. (b) Nine types of targets. (c) Response buttons on the
keyboard. (d) Three different conditions.

Each session included a total of 180 trials. In each trial, a fixation cross appeared in
the center of the screen all the time. After a duration (1400 ms), a red asterisk command
symbol appeared randomly on the left or right sides of the fixation cross in the center of
the screen for 150 ms. After 450 ms, the target and interference object were presented, and
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the participant will search for the real target within 2 s and make an execution by pressing
the corresponding arrow button after judging the previous command. We recorded the
time from the appearance of the target until the subject executes the button as reaction
times (RT), as shown in Figure 1a. When the real target appeared on the left side, the
subject was supposed to press the “left” arrow button on the keyboard, whereas if the
target appeared on the right side, the subject was supposed to press the “right” arrow
button on the keyboard. When no specified target appeared, the subject was supposed to
press the “up” arrow button, as shown in Figure 1c. In addition to the real target, there was
other interfering targets. These targets with different characteristics formed a combination
of 9 scenarios and appeared randomly in different trials, as shown in Figure 1b.

The command symbol appeared on the left or right side randomly, but the direction
in which the target will did not necessarily correspond to it. According to the direction
in which the command appears and the target appears, three different conditions were
defined. When the command symbol and target appear on the same side, we define them
as congruent conditions. Conversely, when the command symbol and target appear on
different sides, we define them as incongruent conditions. If there are command symbols
but no target appearing, we defined them as the nontarget conditions, as displayed in
Figure 1d. These three conditions appeared in the same proportion in each session.

2.2.2. EEG Acquisition and Preprocessing

EEG signals were collected from all healthy participants using a wireless EEG cap
called St. EEGTM Vega, as shown in Figure 2. St. EEGTM Vega is manufactured by Artise
Biomedical Co., Ltd., Taiwan. It features detachable water-based sponge sensors and a
miniature amplifier, in which EEG signals were transmitted wirelessly through Bluetooth
at a sampling rate of 500 Hz. St. EEGTM Vega came with 35 sensors, including 32 recording
electrodes, A1 and A2 reference electrodes, and FPz ground electrodes. All the 32 recording
channels were located at the positions used in the International 10–20 systems.
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Figure 2. The wireless and wearable EEG system (St. EEGTM Vega) used in data acquisition.

All the EEG signals were evaluated using MATLAB R2012b (MathWorks Inc. Natick,
MA, USA) and EEGLAB toolbox (10.2.2.4b version) [16,20]. The EEG signals were down
sampled from 500 to 250 Hz. A 1–50 Hz finite impulse response bandpass filter was used
to filter the EEG signals. ICA was performed to eliminate various artifacts, including
muscle artifacts, eye movements, blinking artifacts, noise from indoor power lines, and
environmental artifacts. ICA is an excellent computational method for the separation of
blind sources in EEG signals [15,25]. An EEGLAB toolbox (10.2.2.4b version) and MATLAB
R2012b (MathWorks Inc.) were used to perform ICA [16]. After performing ICA, EEG
dipole source location analysis was conducted using DIPFIT2 routine functions of the
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EEGLAB toolbox (10.2.2.4b version) [15,16,25]. We then performed k-means clustering
(K = 5) analysis using the aforementioned toolbox. Components with similar scalp maps,
dipole locations, and power spectra were grouped in a cluster. We observed three consistent
independent component scalp maps and dipole clusters, namely, right frontal lobe, left
motor cortex, and middle occipital lobe, from the participants. We used these three clusters
as the brain regions of interest to investigate the brain dynamics, in terms of ERP and ERSP,
responsible for the interactions between the mind and body, while the participants were
performing the embodied cognition experiment in the military scenario [16]. According to
the event marker in EEG signals, each epoch was extracted from −500 to 2600 ms in the
congruent, incongruent, and nontarget trials. In this study, each participant performed
720 trials under three conditions (congruent: 240 trials, incongruent: 240 trials, and nontar-
get: 240 trials). During the artifact removal procedure, poor-quality raw EEG signals were
obtained in approximately 10% of the trials. Therefore, 10% of the EEG trials were removed
to obtain clean EEG signals for ERP and ERSP analysis. Figure 3 displays the flowchart of
the EEG signal analysis under the congruent, incongruent, and nontarget conditions.
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2.3. Statistical Analyses

The behavioral data were collected using Unity software and were processed using
MATLAB. For each participant, we categorized the response execution time corresponding
to the three different trial conditions (as in Figure 1d) according to the event markers.
Finally, we calculated the average and standard deviation of the 19 subjects under three
conditions. We used one-way analysis of variance (ANOVA) and multiple comparison tests
to determine whether the differences among the congruent, incongruent, and nontarget
trials were significant (p < 0.05).

In the EEG signal analysis, this study investigated the neural dynamics of the right
frontal lobe, left motor cortex, and middle occipital lobe under congruent, incongruent,
and nontarget conditions in the military-based embodied cognition scenario. ERP analysis
was performed to determine the statistically (p < 0.01) significant differences among the
congruent, incongruent, and nontarget conditions, based on the Wilcoxon signed-rank test.
The yellow asterisks indicate pairwise significance between the congruent and incongruent
conditions. Violet asterisks display pairwise significance between the incongruent and
nontarget conditions. Green asterisks reveal pairwise significance between the congruent
and nontarget. In the ERSP analysis, the statistically significant differences in the time and
frequency domains were evaluated using the bootstrap method [16,26] at a significance
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threshold of p < 0.05 under congruent, incongruent, and nontarget trials over the right
frontal lobe, left motor cortex, and middle occipital lobe. Furthermore, the average power
spectral density (PSD) of EEG signals (1–50 Hz) was visualized under the congruent,
incongruent, and nontarget conditions in the right frontal lobe, left motor cortex, and
middle occipital lobe. Asterisks indicate a significant difference among the congruent,
incongruent, and nontarget conditions in the Wilcoxon signed-rank test (* p < 0.05).

3. Results
3.1. Behavioral Results

The significant difference in the RT between various conditions (the congruent, in-
congruent, and nontarget conditions) was calculated, as presented in Figure 4 and Table 1.
Table 1 lists the RT of the participants under the aforementioned three conditions. The
average RT was 582 ± 89, 666 ± 102, and 863 ± 158 ms under the congruent, incongruent,
and nontarget conditions, respectively. We used ANOVA1 and post hoc comparisons to
analyze the significant differences in RTs among the three conditions. ANOVA1 revealed
significant differences in the RTs for the three conditions (F (2, 53) = 5.07, p < 0.01), and
post hoc comparisons indicated that the RT under the congruent condition was signifi-
cantly shorter than those under the incongruent and nontarget conditions (p < 0.05 and
p < 0.01, respectively), as displayed in Figure 4. The RT under the incongruent condition
was significantly shorter than that under the nontarget condition (p < 0.01), as illustrated in
Figure 4.

Table 1. RT of the participants, including the average and standard deviation of the RT under the
congruent, incongruent, and nontarget conditions.

Subjects Congruent
RT (ms)

Incongruent
RT (ms)

Nontarget
RT (ms)

1 635 725 887
2 696 753 1030
3 454 665 830
4 492 535 723
5 551 697 991
6 665 704 902
7 535 631 716
8 600 799 983
9 456 648 766
10 580 600 664
11 486 537 754
12 645 630 843
13 622 693 842
14 501 614 813
15 759 851 1199
16 584 637 950
17 547 584 816
18 655 757 944
19 598 592 744

Avg ± SD 582 ± 89 666 ± 102 863 ± 158
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3.2. EEG Results
3.2.1. ICA Scalp Maps and Dipole Source Locations under Target detection

ICA was performed to isolate the EEG signals of independent brain regions from
noise, such as eye activities and muscle activities that typically affect the analysis of EEG
signals. After conducting ICA, we adopted the DIPFIT2 function to fit the dipoles in
EEG signals by using the EEGLAB Toolbox and MATLAB [16,27,28]. The EEG dipoles
were clustered using the k-means statistical analysis criteria (k = 3) [16,20]. The value of
k was acquired by considering the potential number of dipoles that were related to the
congruent, incongruent, and nontarget conditions. Furthermore, similar scalp maps and
dipole locations were clustered into the same group for all the participants, as depicted in
Figure 5. All three clusters and the Montreal Neurological Institute coordinates of their
dipole source locations are presented in Table 2. These three brain regions directed the
ERP and ERSP analysis of EEG signals associated with the embodied mind cognition state
changes in the realistic military scenario, as described in the following sections.

Table 2. Three independent component clusters in the brain and the Montreal Neurological Insti-
tute coordinates of their dipole source locations under the congruent, incongruent, and nontarget
conditions.

Component
Clusters Side Brain Regions

MNI Coordinates (mm) Cluster Size
(Voxels)X Y Z

1 Right Frontal Lobe 7 57 −13 6
2 Left Motor Cortex −9 −26 54 9
3 Middle Occipital Lobe −2 −80 39 12

MNI: Montreal Neurological Institute.
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3.2.2. ERP Analysis
ERP N500 and P300 Waves in the Right Frontal Lobe

The average ERP under the congruent, incongruent, and nontarget conditions at the
right frontal lobe, left motor cortex, and middle occipital lobe of the brain are displayed
in Figure 6. Peaks of the human visual-attention-related neural markers ERP N500 and
P300 were observed in the right frontal lobe and left motor cortex under the congruent,
incongruent, and nontarget conditions. In the right frontal lobe and left motor cortex of the
brain, the amplitudes of the ERP N500 and P300 waves were considerably higher under
the congruent and incongruent conditions than under the nontarget condition. In addition,
in the right frontal lobe, the ERP N500 and P300 waves appear earlier under consistent
and inconsistent conditions than under nontarget conditions. The aforementioned results
revealed that, compared with nontarget conditions, participants detected the target ear-
lier and caused stronger neural dynamics in the right frontal lobe in the congruent and
incongruent conditions, while under nontarget conditions, the subject’s brain takes longer
to detect the situation where no target image appears, and relatively showed weak nerve
activity in the right frontal lobe. Furthermore, the ERP N200 and P300 waves were observed
in the middle occipital lobe under the congruent, incongruent, and nontarget conditions.
However, the amplitudes of these waves were higher in the right frontal lobe than in the
left motor cortex and middle occipital lobe. The aforementioned ERP results indicate that
the right frontal lobe is highly related to an embodied mind cognitive attention state. These
ERP results show that body function influences human mental states.
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Figure 6. Average ERP under the congruent, incongruent, and nontarget conditions at the right frontal
lobe, left motor cortex, and middle occipital lobe. Yellow asterisks indicate pairwise significance
(* p < 0.01) between the congruent and incongruent conditions in the Wilcoxon signed-rank test.
Violet asterisks denote pairwise significance (* p < 0.01) between the incongruent and nontarget
conditions in the Wilcoxon signed-rank test. Green asterisks denote pairwise significance (* p < 0.01)
between the congruent and nontarget conditions in the Wilcoxon signed-rank test.

3.2.3. ERSP Analysis
Delta and Theta Power Suppression in the Right Frontal Lobe

The average ERSP under the congruent, incongruent, and nontarget conditions in
the right frontal lobe, left motor cortex, and middle occipital lobe of the participants are
shown in Figure 7. For the right frontal lobe, the embodied cognition attention-related EEG
activity of delta (1–4 Hz), theta (4–7 Hz), and alpha (8–12 Hz) powers from 600 to 1200 ms
were lower under the congruent and incongruent conditions than under the nontarget
conditions. However, after hand response, in the right frontal lobe, the movement of the
hand-related EEG activity in the delta (1–4 Hz), theta (4–7 Hz), and alpha (8–12 Hz) band
powers from 1200 to 2600 ms was higher in the nontarget conditions than in the congruent
and incongruent conditions.
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reveals the target. The third black dashed line represents the response execution after target detection. The ERSP difference
is significant at p < 0.05. The colored bars indicate the scale of ERSP.

Mu Rhythm Suppression in the Left Motor Cortex

Figure 7 also indicates that the alpha (8–12 Hz) and beta (13–30 Hz) band powers or
mu rhythms at the left motor cortex were suppressed to a greater extent in the nontarget
condition than in the congruent and incongruent conditions after target onset. This ex-
pected alpha and beta power suppression is associated with embodied cognition attention
state and hand movement. Figure 7 also indicates that the theta (4–7 Hz) band power at
the middle occipital lobe was higher in the nontarget condition than in the congruent and
incongruent conditions after target onset. The beta power (13–30 Hz) at the occipital lobe
was lower in the congruent condition than in the other conditions. The EEG power activity
changes were related to an embodied cognition attention state.

3.2.4. EEG PSD Analysis

The average PSD of the EEG signals in the right frontal lobe, left motor cortex, and
middle occipital lobe of the participants under the congruent, incongruent, and nontarget
conditions are displayed in Figure 8. At the right frontal lobe, the hand-related EEG PSD
activity in the delta (1–4 Hz), theta (4–7 Hz), and alpha (8–12 Hz) band powers was higher
in the nontarget condition than in the congruent and incongruent conditions after hand
response. Figure 8 indicates that the alpha (8–12 Hz) and beta (13–30 Hz) band powers at
the left motor cortex were suppressed to a greater extent in the nontarget condition than
in the congruent and incongruent conditions. The aforementioned findings are related to
the movement of the right hand. These PSD results show that embodied body function
influences human mental states. Figure 8 also indicates that the theta (4–7 Hz) band power
at the middle occipital lobe was higher in the nontarget condition than in the congruent
and incongruent conditions. This result is attributed to the cognition visual stimulation in
the occipital lobe.
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test (*** p < 0.05).

4. Discussion

In the present study, we used a wireless EEG system to investigate neural activities
when performing embodied mind cognition tasks in a military scenario through ICA
and dipole source location analysis. High-temporal-resolution EEG signals were used
to observe the neural markers of embodied cognition in the right frontal lobe, left motor
cortex, and middle occipital lobe under congruent, incongruent, and nontarget conditions
in a military setting. By combining behavioral methods and ICA, this study identified the
neural EEG markers of embodied cognitive attention states in the right frontal lobe, left
motor cortex, and middle occipital lobe.

4.1. Behavior Outcomes When Performing Embodied Cognition Tasks

The RT in the congruent condition was shorter than those in the incongruent and
nontarget conditions (Figure 4). This result reveals that all the participants paid more focus
to searching for a real target under the congruent condition than under other conditions.
We compared the results obtained under the congruent and incongruent conditions with
those of a previous study on cognition attention tasks [29]. The aforementioned behavioral
findings are consistent with those of a previous study on cognition attention tasks [29].
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In this study, in the nontarget condition, all the participants exhibited a long RT because
they exerted some effort in searching for the target (soldier with a gun). This finding
revealed that human mental state influenced body function and performance in cognition
attention-related tasks.

4.2. EEG–ERP N500 and P300 Waves in the Right Frontal Lobe

In this study, peaks of the embodied cognitive attention-related EEG neural markers
ERP N200, N500, and P300 were detected in the right frontal lobe and left motor cortex
under the congruent, incongruent, and nontarget conditions (Figure 6). These ERP waves
had a higher amplitude in the congruent and incongruent conditions than in the nontarget
condition. The ERP N500 and P300 waves had a higher amplitude in the right frontal
lobe than in the left motor cortex and middle occipital lobe. These ERP neural markers
revealed that the right frontal lobe was related to embodied cognition attention. Most
previous cognition attention studies have reported N200 and P300 waves in the frontal
lobe [11,30–33]. Furthermore, ERP-N200 and P300 waves have been proven to be related
to cognition attention in the frontal lobe of the brain. Furthermore, ERP-N200 and P300
waves have been examined under human inhibitory control [30,34]. N500 was previously
found to be related to the semantic incongruities in audio perception [35]. In this study, for
the first time, we investigated the ERP neural markers of the frontal lobe (N500), left motor
cortex (N500 and P300), and middle occipital lobe (N200 and P300) of the brain. The ERP
neural markers and short behavioral RTs under the congruent condition revealed that all
the participants were more likely to pay attention to the target appearing in the congruent
condition of a military scenario. Additionally, the subjects need to spend more time and
thinking when the command and the execution of the task are not in conformity. These
ERP findings show that embodied body function influences mental states under cognition
attention-related tasks.

4.3. Delta, Theta, and Alpha Power Suppression in the Right Frontal Lobe

The average ERSP results indicated that delta, theta, and alpha power suppression
occurred in the right frontal lobe, as displayed in Figure 7. The cognition attention-related
EEG neural activity of the delta, theta, and alpha band powers were lower in the congruent
condition than in the incongruent and nontarget conditions. Cognition attention-related
studies have revealed that theta and alpha band power suppression is related to human
cognition attention in the frontal lobe of the brain [36–39]. Furthermore, in the right frontal
lobe of the brain, the movement of the hand-related EEG powers of the delta, theta, and
alpha bands from 1200 to 2600 ms were higher in the nontarget condition than in the
congruent and incongruent conditions. The aforementioned ERSP findings reveal that the
frontal lobe is related to the hand response and cognition attention.

4.4. Alpha and Beta Power Suppression in the Left Motor Cortex

We measured the spectral changes in the EEG power, such as the suppression of
alpha and beta powers, at the left motor cortex (Figure 8). Alpha power suppression was
considerably higher in the nontarget condition than in the congruent and incongruent
conditions. This result reveals that the left motor cortex is related to cognition attention
and hand movement. Moreover, the alpha and beta band power suppression in the motor
cortex is consistent with the results of previous studies conducted on healthy individuals
under walking conditions [40–43]. The theta band power was considerably higher in
the nontarget condition than in the congruent and incongruent conditions in the middle
occipital lobe, and the beta power in the middle occipital lobe was lower than that in the
other examined brain regions (Figure 8). A classroom attention study reported an increase
in the delta and theta EEG powers in the occipital lobe and a decrease in the beta power in
the occipital lobe [44]. These results reveal that the occipital lobe is related to an embodied
cognition attention task and visual stimulation under a military scenario.
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4.5. The Limitations of This Approach

Some of the previous studies explored how aging affects the influence of embodiment
on mental representations. They examined age-related differences in mental imagery,
motor imagery, and action observation [45,46]. The limitation of the present study is that
normal university students have participated in this experiment. In future work, we will
invite children and older adults to extend our research. Secondly, the experimental scene
in the current study was the simulated real-world target detection task based on a military
scenario, which uses only two-dimensional figures and may not be the most realistic
setting for our subjects. Future work may construct an even more realistic environment in
virtual reality (VR) to increase the impact of target searching. Designing a new scenario for
imaging the human brain during target searching, such as in a virtual reality environment,
will provide further insight regarding embodied cognition.

5. Conclusions

This study is the first to use a wireless EEG system to investigate the brain dynamics of
human attention in an embodied military scenario by using ICA and dipole source location
analysis. In this study, considerable brain activity features stemming from cognition and
attention had been obtained from a target detection task in a novel military scenario.
The behavioral results of this study revealed that the RT in the congruent condition was
considerably shorter than those in the incongruent and nontarget conditions. Furthermore,
the EEG results revealed the existence of three human attention-related ERP markers,
namely, ERP-N200, N500, and P300, in the right frontal lobe, left motor cortex, and middle
occipital lobe of the brain. We examined the embodied attention-related power spectral
change, including the delta and theta power suppression in the right frontal lobe, as well
as the alpha and beta power suppression in the left motor cortex in an attention task. The
theta power was higher in the middle occipital lobe than in the other brain regions. Our
findings demonstrate the feasibility of studying human target detection brain activity in a
simulated real-world condition. In addition, we detected the presence of the N500 marker
in a visual-based cognitive study. The obtained EEG results can be useful for researchers
to understand the interaction between the brain and human behavior in multiple target
detection tasks.
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