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Abstract: Compared to laboratory equipment inertial sensors are inexpensive and portable, permit-
ting the measurement of postural sway and balance to be conducted in any setting. This systematic
review investigated the inter-sensor and test-retest reliability, and concurrent and discriminant va-
lidity to measure static and dynamic balance in healthy adults. Medline, PubMed, Embase, Scopus,
CINAHL, and Web of Science were searched to January 2021. Nineteen studies met the inclusion
criteria. Meta-analysis was possible for reliability studies only and it was found that inertial sen-
sors are reliable to measure static standing eyes open. A synthesis of the included studies shows
moderate to good reliability for dynamic balance. Concurrent validity is moderate for both static
and dynamic balance. Sensors discriminate old from young adults by amplitude of mediolateral
sway, gait velocity, step length, and turn speed. Fallers are discriminated from non-fallers by sensor
measures during walking, stepping, and sit to stand. The accuracy of discrimination is unable to be
determined conclusively. Using inertial sensors to measure postural sway in healthy adults provides
real-time data collected in the natural environment and enables discrimination between fallers and
non-fallers. The ability of inertial sensors to identify differences in postural sway components related
to altered performance in clinical tests can inform targeted interventions for the prevention of falls
and near falls.

Keywords: inertial measurement unit; postural balance

1. Introduction

Postural control of balance is essential for keeping upright, moving effectively, and
reacting to environmental challenges [1]. Good balance improves quality of life and
wellbeing. Conversely, balance deficits can lead to a near fall or fall that may result
in physical, psychological, or social consequences and, in some cases, death [2]. Near
falls occur due to a loss of balance from a slip, trip or stumble where a fall is avoided
“because a corrective action is taken to recover balance” [3] (p. 49). Although near falls
are a predictor for falls [4], there is limited research concerning near falls, resulting in an
unknown trajectory of the decline from near falls to falls [5]. People living in the community
who have near falls and do not sustain an injury escape the attention of the health system.
However, they are the group most likely to benefit from interventions to prevent falls.
Until recently, having a fall has been the best predictor of having another fall. Recent
evidence has identified clinical tests, namely single leg stance, lunge, and tandem walk
five steps, that are able to discriminate near-fallers from fallers and non-fallers [6]. While
gross changes in the performance of these tests are associated with falls history, there is no
understanding of the contribution of postural sway to these outcomes.

Postural sway, the movement of the body over the base of support, is an indicator
of balance. The traditional methods of measuring the speed, direction, and amplitude of
postural sway by force plates or motion capture in gait laboratories has been superseded by
wearable inertial sensors with recent interest in their measurement of standing balance [7]
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and gait [8]. Compared to the laboratory equipment, inertial sensors are inexpensive,
portable, and permit measurements of postural sway to be taken in any setting specific to
the population under investigation [9]. Additionally, wearable inertial sensors are small,
lightweight, unobtrusive, and can be fixed on the body by tape, belt, or strap. Sensor data
can be captured on three axes and can therefore provide detailed information in three
dimensions of subtle changes in postural sway for static or dynamic conditions.

Inertial sensor measures of sway can discriminate between various age groups, and
between healthy adults and adults with Parkinson’s disease [10], multiple sclerosis [11],
and other neurological conditions [12]. Falls risk assessment by wearable inertial sensor is
more sensitive than clinical testing using the timed up and go [13]. However, the reliability
and validity of inertial sensors to measure postural sway is still unclear [14], especially in
seemingly healthy populations without known pathology who experience near falls and
falls.

Therefore, the aim of this systematic review was to examine and synthesize the current
literature on the validity and reliability of wearable inertial sensors to measure postural
sway in healthy adults undertaking static and dynamic balance tests.

2. Materials and Methods
2.1. Search Strategy

Three stages of searches were undertaken, following PRISMA guidelines [15]. The
first stage was to identify systematic reviews that investigated ‘postural balance’, ‘in-
ertial sensors’, and ‘reproducibility of results’ via the reference list of a scoping review
of systematic reviews previously conducted [16]. This search identified five systematic
reviews [3,12,14,17,18]. One further relevant systematic review [7] was published after
the scoping review went to press. The critical appraisal of these six recent systematic re-
views [3,7,12,14,17,18] was undertaken by two independent reviewers, with a third person
to mediate in the case of disagreement. None of these reviews directly answered the aims
of this study. Therefore, a new search was conducted as stage two.

The existing systematic reviews assisted the development of search strategies, terms,
and dates. Three main concepts informed keywords, MeSH, and search terms: ‘postural
control’, ‘inertial sensors’, and ‘validity/reliability’ (see Appendix A for full list of search
terms). Relevant truncations and expansions were applied for each database, which
included Medline, PubMed, Embase, Scopus, CINAHL, and Web of Science. The dates for
searching were from January 2019 to January 2021. Searches were conducted by a research
librarian experienced in conducting systematic reviews.

Selection criteria followed PICO (population, intervention, comparison, outcome)
principles as follows: (P) healthy adults including healthy adults as a control group; (I)
wearable inertial sensor to measure static and dynamic balance; (C) force plates, motion
capture or other digital or clinical measure; (O) reliability, validity, accuracy. Exclusions
were for papers published with children or non-human subjects, balance or equilibrium
other than postural, postural alignment, pressure sensors, and studies that investigated
only static or dynamic balance, not both. Papers published before 2010 were excluded on
the basis of technological advances in sensor manufacture in the past 10 years. Smartphone
use was excluded because of the need to hold a device in the hand, thereby altering natural
arm movement for balance maintenance or recovery [19]. Moreover, the range of balance
tests interpretable by phone does not incorporate novel balance tests, such as tandem walk
and lunge [6]. Only primary investigation studies were incorporated, including conference
proceedings if peer reviewed. Language was limited to English.

The third search examined the reference lists of the included studies and the six
systematic reviews for relevant studies that fitted the inclusion criteria.

2.2. Eligibility, Quality and Data Extraction

Two independent reviewers screened titles and abstracts against selection criteria
prior to full text review. A third author was available for arbitration but was not required.
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All search information was managed using Covidence systematic review software. Critical
appraisal of the internal and external validity of included studies was undertaken using
JBI critical appraisal checklist for analytical cross-sectional studies [20].

The first two authors extracted data from the first five studies into Excel and cross-
checked for accuracy. The first author then extracted the remainder of the data, which were
checked for thoroughness by the third author.

2.3. Data Pooling

Data pooling was multistage. Studies were initially grouped broadly to validity or
reliability, then refined within these two contexts. Validity was categorized as concurrent
(compared to gold standard), discriminant (able to distinguish between groups), and con-
vergent (related to the clinical measure). Reliability was categorized as internal consistency
(inertial sensor accurately measures postural sway) or test-retest reliability (sensor data
replicates the results of the same postural sway activity in the same person at two time-
points). Balance activities were dichotomized to static or dynamic tests, then further refined
to sort into the same measurement outcomes, e.g., single leg stance for static balance; timed
up and go for dynamic. Finally, the outcome measures for validity and reliability were
grouped, e.g., Pearson’s rho for validity; intraclass correlations for reliability. Heterogene-
ity was examined using τ2, I2 and Cochran’s Q statistic using the interpretations: τ2 = 0
suggests no heterogeneity, I2 values < 25, 26–50%, and >75% suggest low, moderate, and
high heterogeneity respectively, and a significant Q statistic indicated that the studies do
not share similar effects [21].

2.4. Statistical Analysis

Interrater agreement between two reviewers was captured at three stages, namely
title/abstract screen, full text inclusion, and reference list inclusion. Rater agreement
was analysed using Cohen’s kappa with agreement values interpreted as ≥0.81 excellent,
0.61–0.8 good, 0.41–06 fair and ≤0.4 poor [22]. For meta-analysis, homogeneity with
balance activity, sensor location, and measurement outcome were required [23]. Where
heterogeneity prevented meta-analysis, synthesis of the data was conducted.

3. Results

The search strategy identified 5430 articles. Following duplicate removal, as well as
screening of titles, abstracts, and full text, 19 articles met the inclusion criteria. One paper
repeated a previous study with different analysis and was therefore excluded [24] (see
PRISMA flow diagram, Figure 1).
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Figure 1. PRISMA flow diagram.

3.1. Study Characteristics

The 19 studies assessed static and dynamic balance in 1145 people, of whom 686
(59.9%) were healthy (see Table 1, Study Characteristics). Exclusively healthy populations
were investigated in three studies: two in young adults [25,26] and the third in older
adults [27], while healthy populations formed the control or comparison group in the
remaining studies. Fallers were identified as a subject group in four studies [28–31].
The majority of papers investigated postural sway in neurological conditions, including
Parkinson’s disease (PD) [32–35], multiple sclerosis (MS) [36,37], Huntington’s disease [38],
progressive supranuclear palsy [33], muscular dystrophy [39], cerebellar ataxia [40,41], and
a single case study of person with a stroke [42]. Only one musculoskeletal condition was
investigated: anterior cruciate ligament reconstruction rehabilitation [43]. In Table 1, both
the healthy and pathological groups are described for completeness.
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Table 1. Study Characteristics.

Author, Year,
Setting, Country

[Reference]

Study
Population,

Number (Sex)
Age in Years
Mean ± SD

(Range)

Healthy Group
Number (Sex)
Age in Years
Mean ± SD

(Range)

Static Balance
Activity

Dynamic
Balance Activity

Clinical Balance
Measure

Outcome
Measure

Bzduskova et al.,
2018, NA, Slovak

Republic, [32]

PD
n = 13

(8M 5F)
63.7 ± 5.7 y

Young
n = 13

(4M 9F)
25.0 ± 2.3 y

Older
n = 13

(4M 9F)
70.1 ± 4.5 y

FA EO,
FA EC

Step with
vibration NA

RMS acc AP ML,
jerk, mean veloc,
peak veloc, stride

length, stride
veloc, cadence,

stance time

Craig et al., 2017,
Lab, USA [36]

MS
n = 15

(3M 12F)
48.2 ± 8.7 y

HC
n = 15

(3M 12F)
47.8 ± 9.5 y

FA EO 7 m TUG TUG RMS acc ML AP
V

Dalton et al., 2013,
Lab, Wales, UK

[38]

HD
Pre-manifest

n = 10
(4M 6F)

44.8 ± 11.7 y
Manifest

n = 14
(8M 6F)

51.8 ± 14.8 y

HC
n = 10

(5M 5F)
56.4 ± 10.9 y

FT EO,
FT EC 5 m walk Romberg ENMO

De Vos et al., 2020,
Lab, England, UK

[33]

PSP
n = 21

(12M 9F)
71 y (63–89)

PD
n = 20

(11M 9F)
66.4 y (50–79)

HC
n = 39

(19M 20F)
67.1 y (51–82)

FA EC TUG,
2 min walk TUG min, max, mean

acc AP ML V

Greene et al.,
2012, Hospital

clinic, Ireland [28]

Fallers
n = 100 (NA)
Whole study

(57M 63F)
73.3 ± 5.8 y

Non-faller
n = 20
(NA)

Semi TS EO 40 s,
FT EC 30 s, Turn

head

STS,
stand to sit,

transfer,
fwd reach, pick

up object,
turn 360, place
foot on stool

BBS

Peak accel, jerk,
stride length,
stride veloc,

cadence, stance
time.

Hasegawa et al.,
2019, NA, USA

[34]

PD
n = 144

(93M 51F)
68.4 ± 8.0 y

HC
n = 79

(48M 31F)
68.2 ± 8.1 y

FT EO,
FT EC,

FT EO soft, FT EC
soft, LOS,
APA, APR

Step, ISAW, ISAW
single task, ISAW

dual task

ISAW
MiniBEST

RMS acc ML AP;
cadence.

Heebner et al.,
2015, NA, USA

[25]
NA

Healthy
Reliability

n = 10
(10M 0F)

24.3 ± 4.2 y
Validity
n = 13

(13M 0F)
24.1 ± 3.1 y

FA EO,
FA EC, FAEO soft,
FAEC soft, TS EO,

TS EC,
SLS EO,
SLS EC.

DPSI-AP,
DPSI-ML NA

RMS acc AP ML,
mean acc AP ML,

stride length,
stride veloc,
stance time.

Jimenez-Moreno
et al., 2019, NA,

England UK [39]

MD
n = 30

(20M 10F)
48 y (25–72)

HC
n = 14

(6M 8F)
32 y (23–47)

FA EO
6 minWT,

10 mWT, 10 m
Walk/Run Test

6 minWT Peak trunk veloc
sagittal.
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Table 1. Cont.

Author, Year,
Setting, Country

[Reference]

Study
Population,

Number (Sex)
Age in Years
Mean ± SD

(Range)

Healthy Group
Number (Sex)
Age in Years
Mean ± SD

(Range)

Static Balance
Activity

Dynamic
Balance Activity

Clinical Balance
Measure

Outcome
Measure

Leiros-Rodriguez
et al., 2016, NA,

Spain [27]
NA

n = 66
(0M 66F)

64.9 ± 7.6 y

SLS EC,
SLS EO soft

walk 10 m, turn,
walk 10 m NA

RMS acc ML AP,
stride length,

cadence.

Liu et al., 2012,
NA, USA [29]

Fallers
n = 4

(2M 2F)
74.5 ± 2.7 y

Young
n = 4

(1M 3F)
21.8 y ± 1.0 y

Older
n = 4

(2M 2F)
73.3 ± 7.1 y

FA EO,
FT EO,

FA EC 10 s
Treadmill walk NA

RMS acc AP ML
V, jerk, sway area,
path length, mean
velocity, cadence.

Mancini et al.,
2016, Lab

(validity), clinic
(reliability) USA

[35]

PD
Validity
n = 10

(8M 2F) 67.2 ± 5 y
Reliability

n = 17
(12M 5F)

67.1 ± 7.0 y

HC
Validity
n = 12

(9M 3F)
68.0 ± 5.0 y
Reliability

n = 17
(6M 11F)

67.9 ± 6.0 y

FA EO APA,
first step, walk NA

Peak acc ML AP,
angular veloc,
APA duration,

step length, step
velocity.

Martinez-
Mendez et al.,

2011, NA, Japan
[26]

NA
n = 10

(7M 3F)
26 ± 3 y

FA 2 cm EO APA,
step fwd NA

RMS acc AP ML,
peak acc AP ML,
sway area, jerk,

trunk veloc
sagittal, stride
length, stride

veloc, stance time,
cadence.

Matsushima et al.,
2015, NA, Japan

[40]

SCA or CA
n = 51

(24M 27F)
60.3 ± 10.4 y

HC
n = 56

(28M 28F)
57.2 ± 14.1 y

FA EO,
FA EC,
FT EO,
FT EC

walk 10 m NA

VM horizontal
acc; gait velocity,

cadence, step
length, step

regularity, RMS
ratio.

O’Brien et al.,
2019, NA, USA

[42]

Stroke
n = 1

(1M 0F)
57 y

Young
n = 14

(8M 6F)
26.4 ± 3.9 y

Middle
n = 19

(8M 11F)
43.7 ± 5.8 y

Older
n = 16

(8M 8F)
61.8 ± 5.1 y

FA EO,
FA EC,
FT EO,
TS EO,
SLS EO

10 mWT normal
veloc, 10 mWT

high veloc, TUG

BBS
TUG

Max/mean acc
AP ML V, stride

length.

Rivolta et al.,
2019, Rehab

Centre, Italy [30]

Inpatient Fallers
n = 33

(26M 7F)
72.7 ± 15.2 y

Inpatient
n = 46

(30M 16F)
72.5 ± 11.5 y
Volunteers

n = 11
(0M 11F)

35.7 ± 14.0 y

FA EO,
FA EC,

FA EC nudge

360◦ turn, walk
10 m, sit to stand,

stand to sit
Tinetti test

RMS acc AP ML
V; mean acc AP
ML V; VM; step
height/length/

symmetry/
continuity, trunk

sway.
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Table 1. Cont.

Author, Year,
Setting, Country

[Reference]

Study
Population,

Number (Sex)
Age in Years
Mean ± SD

(Range)

Healthy Group
Number (Sex)
Age in Years
Mean ± SD

(Range)

Static Balance
Activity

Dynamic
Balance Activity

Clinical Balance
Measure

Outcome
Measure

Senanayake et al.,
2013, NA, Brunei
Darussalam [43]

ACLR rehab
n = 8

(6M 2F)
31.0 ± 4.1 y

HC
n = 4

(3M 1F)
31.0 ± 8.3 y

SLS EO,
SLS EC

Treadmill 4 kph;
Treadmill 6 kph NA RMS acc AP ML.

Spain, St George
et al., 2012, NA,

USA [37]

MS
n = 31

(12M 19F)
39.8 y (24–67)

HC
n = 28

(9M 19F)
37.4 y (26–60)

FA EO,
FA EC

T25FW,
7 m TUG

ABC,
MSWS12,

EDSS
TUG

RMS accel AP
ML, jerk,

mean/peak/sway
veloc, stride

length, cadence,
turning time,

trunk rotation.

Tang et al., 2019,
Uni, USA [31]

Fallers
n = 14 Whole
study n = 30

(13M 17F)
76.0 ± 10.5 y

Non faller
n = 16 (NA) FA EO

MiniBEST
including TUG
and dual task

TUG; BBS

BBS,
MiniBEST,

TUG

Peak acc
AP ML V, cadence,
stride/step/swing,

stance time.

Velazquez-Perez
et al., 2020,

research centre,
Cuba [41]

SCA
n = 30

(7M 23F)
43.5 ±10.5 y

HC
n = 30

(7M 23F)
43.3 ± 10.2 y

FA EO
FT, TS

10 m walk,
Tandem walk 10

steps

Key: ABC Activities-specific Balance Confidence; acc acceleration; ACL anterior cruciate ligament reconstruction; AP antero-posterior; APA
anticipatory postural adjustment; APR automatic postural response; BBS Berg Balance Scale; BEST Balance Evaluation Systems Test; CA
cerebellar ataxia; DPSI dynamic postural stability index (jump landing one leg); EC eyes closed; EDSS Expanded Disability Status Scale;
ENMO Euclidean Norm Minus One; EO eyes open; FA feet apart; FT feet together; fwd forward; HC healthy controls; HD Huntington’s
Disease; ISAW instrumented stand and walk test; Lab motion analysis laboratory; m meter; min minute; MD myotonic dystrophy; ML
mediolateral; MS Multiple Sclerosis; MSWS12 MS Walking Scale (12 item); NA Not available; PD Parkinson’s Disease; PSP Progressive
Supranuclear Palsy; Rehab rehabilitation; RMS root mean square; ROM range of motion; s second; SCA spinocerebellar ataxia; SLS single
leg stance; STS sit to stand; TS tandem stance; TUG timed up and go test over 3 m; T25FW Timed 25 Foot Walk; Uni university; V vertical;
veloc velocity; VM vector magnitude; WT walk test; y years of age.

Static balance activities varied by foot position (feet apart, together, tandem, semi-
tandem or single leg stance), eye condition (open or closed), surface texture (firm or soft),
length of time (from 10 s [25,30,39,42] to 3 min [29]), and some static activities also included
perturbation (nudge or pull) [30]. Static balance was measured by the Romberg [30],
Tinetti [38], or limits of stability [34] clinical tests.

Dynamic balance was assessed with postural transitions (sit to stand, stand to sit,
transfer chair to chair), stepping (first step, step up), walking for a set time or distance,
running, turning around, and jumping forward and sideways (Table 1). The outcome
measures to evaluate these activities were varied. For example, gait was measured by step
length, velocity, regularity, height, length, continuity, or symmetry; stride length or velocity;
cadence and/or stance time. No single clinical test was used consistently. Dynamic clinical
measures also included walking tests (timed up and go [31,33,36,37,42], 10 m walk [41],
six-minute walk test [34], 25-foot walk test [37], and jumping (dynamic postural stability
index (DPSI)) [25].

When both static and dynamic balance were assessed in the one balance test, they
were measured by the Berg balance scale [28,31,42] and MiniBEST [31,34]. The time or
distance within standardized tests differed between studies, e.g., in the TUG, the standard
3 m walking distance was increased to 7 m distance to provide more consistent data for gait
parameters [36,37], and included additional single or dual tasks [31]. Static balance data
from the sensors were analysed by multiple methods, most commonly root mean square
(RMS) of acceleration, but also maximum, minimum, or mean of acceleration, jerk, various
measures of velocity and Euclidian norm minus one (ENMO), providing challenges in
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grouping for meta-analysis. Dynamic balance similarly had multiple different analyses of
step and stride length, stance time, cadence, and velocity.

3.2. Quality Assessment

All included papers were observational studies. Quality assessment used JBI analytical
cross-sectional study critical appraisal checklist (see Table 2 Quality Assessment). All
papers described the exposure, outcomes, and appropriate data analysis methods in detail.
All studies but one [39] used standard, objective criteria. However, four studies lacked
explicit selection criteria [27,29,38,39] and several provided no detail of the setting for
the study [25–27,29,32,34,37,39,40,42,43], which impacts replicability. Five of the papers
provided no identification or management of confounding factors [25,26,29,34,38], which
impacts the trustworthiness of the results in these papers. Interrater agreement between
two reviewers for screening, full text, and reference list selections was analysed using
Cohen’s kappa, with a result of k = 0.805 interpreted as a good result.

Table 2. Quality Assessment–JBI cross-section study.

Author, Year, [Reference]
Inclusion
Criteria
Defined

Subject,
Setting

Described

Exposure
Valid

Reliable

Objective
Standard
Criteria

Confounders
Identified

Confounder
Strategies

Outcomes
Valid

Reliable

Appropriate
Stats

Analysis

Bzduskova, 2018 [32] + - + + + + + +
Craig, 2017 [36] + + + + + + + +

Dalton, 2013 [38] - + + + - - + +
De Vos, 2020 [33] + + + + + + + +
Greene, 2012 [28] + + + + + + + +

Hasegawa, 2019 [34] + - + + - - + +
Heebner, 2015 [25] + - + + - - + +

Jimenez-Moreno, 2019 [39] - - + - + + + +
Leiros-Rodriguez, 2016 [27] - - + + + + + +

Liu, 2012 [29] - - + + - - + +
Mancini 1, 2016 [35] + + + + + + + +

Martinez-Mendez, 2011 [26] + - + + - - + +
Matsushima, 2015 [40] + - + + + + + +

O’Brien, 2019 [42] + - + + + + + +
Rivolta, 2019 [30] + + + + + + + +

Senanayake, 2013 [43] + - + + + + + +
Spain, 2012 [37] + - + + + + + +
Tang, 2019 [31] + + + + + + + +

Velazquez-Perez, 2020 [41] + + + + + + + +
1 Both reliability and validity sub-studies.

3.3. Sensors

Sensor type, number, position, fixation, sampling frequency, and calibration meth-
ods differed between studies as outlined in Table 3. Only one study used a dual axis
accelerometer (antero-posterior and mediolateral) [32] while the remainder used triaxial
sensors, providing accelerometry data for the additional vertical plane. Thirteen studies
also used inertial sensors with inbuilt gyroscopes providing further rotational velocity
information [26,28,29,33–37,41–43]. The most common inertial sensors were Opals and
XSens, where accelerometry data measured concurrent input from multiple sensors placed
on the trunk and extremities. Various options for sensor body position and fixation were
identified between studies. The preferred position for a sole sensor was on the lumbar
spine [25,28,40,42] as this position corresponded closest to the centre of gravity of the
body. Further, sensors situated on the low lumbar spine produced greater accuracy than
thoracic sensors [27]. Studies using multiple sensor systems located them on the lower
back, sternum, wrists, and ankles. Methods of fixation were not described in nine stud-
ies (47%). When stated, fixation from elasticated belts or bands [25,30,34–36,39,40] or
adhesive tape [27,28,42] were the preferred methods. Two papers discussed movement
artefacts [25,42]. However, only one excluded data due to sensor movement [42]. Sam-
pling frequency ranged from 20 to 400 Hz, although Velazquez-Perez [41] provided no
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information on this. Only one paper [31] described down-sampling, which is the process
of reducing the sample rate of a signal to manage the size of data. Accelerometry and
gyroscopic data were analysed using sensor-specific tools [27,30], or in programs such as
MATLAB [25–29,31,32,34,35,37,38,42,43] or Mobility Lab [33,34,36]. The statistical program
‘R’ was used in one study [39] and STASTICA in another [41].

Table 3. Sensors Overview.

Reference, Year Sensor Type
(Brand)

Number, (Body
Location),
Fixation

Sampling
Frequency Variables Data Analysis

Tool

Bzduskova et al.,
2018 [32]

Dual axis accel
(ADXL202) 2, (T4, L5), NS 100 Hz

Low pass filtered; cut-off
frequency 5 Hz;

Butterworth filter;
calibration for ±30◦ range

body tilt

MATLAB software

Craig et al., 2017
[36]

Triaxial accel/gyro
(Opal)

6, (sternum, L5,
bilat wrists, bilat
ankles), elastic

straps

128 Hz
Accel ranges ± 16 g,
±200 g; gyro range

±2000 deg/s

Mobility Lab
software (APDM)

Dalton et al., 2013
[38]

Triaxial accel
(AD-BRC) 1, (sternum), NS 250 Hz

Range ± 2.5–10 g,
calibration by rotation

through established
angles; high pass filtered,

3rd order normalized
elliptical filter, passband

frequency 0.25 Hz

MATLAB software

De Vos et al., 2020
[33]

Triaxial accel/gyro
(Opal)

6, (sternum, L5,
bilat wrists, bilat

feet), NS
100 Hz Wireless data stream to

laptop
Mobility Lab

software

Greene et al., 2012
[28]

Triaxial accel/gyro
(SHIMMER)

1, (L3), adhesive
tape 102.4 Hz

Calibration using standard
method; data streamed via

Bluetooth to laptop
MATLAB

Hasegawa et al.,
2019 [34]

Triaxial accel/gyro
(Opal)

8, (sternum, L5,
bilat wrists, bilat
shins, bilat feet),

elastic straps

128 Hz Unscented Kalman Filter
Mobility Lab
(APDM) and

MATLAB

Heebner et al.,
2015 [25]

Triaxial accel
(ADXL78)

1, (L5), neoprene
belt 100 Hz

Range ± 16 g, built in data
acquisition and storage,

low pass filter 50 Hz
MATLAB

Jimenez-Moreno
et al., 2019 [39]

Triaxial accel
(GENEActiv)

4, (bilat wrists,
bilat ankles),
elastic band

100 Hz Output metric
ENMO–mg. R software

Leiros-Rodriguez
et al., 2016 [27]

Triaxial accel (GT3
Plus)

3, (T4, L4, L5),
adhesive tape 100 Hz

Configured 1 s timeframe.
Concurrent analysis video

& accelerometry data;
reviewed analysis.

ActiLife software

Liu et al., 2012 [29] Triaxial accel/gyro
(MTX Xsens) 2, (L5, ankle), NS 50 Hz Maximum Lyapunov

exponent MATLAB

Mancini et al., 2016
[35]

Triaxial accel/gyro
(Opal validity;

MTX Xsens
reliability)

6 validity/3
reliability

(sternum, L5, bilat
wrists, bilat ankles)

elastic straps

128 Hz
Opal; 50 Hz
MTX Xsens

3.5 Hz cut-off, zero-phase,
low-pass Butterworth

filter. Resampling from
inertial sensor, force

platform and infrared
cameras at 50 Hz.

MATLAB
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Table 3. Cont.

Reference, Year Sensor Type
(Brand)

Number, (Body
Location),
Fixation

Sampling
Frequency Variables Data Analysis

Tool

Martinez-Mendez
et al., 2011 [26]

Unit with triaxial
accel (MMA,

Freescale) & gyros
(X3500 Epson;

ENC-03RC
Matura)

2, (L3/4, ankle of
dominant foot), NS 100 Hz

Accel range ± 1.5 g, gyro
range ± 80 deg/s;

response freq 0.01–58 Hz.
Bluetooth transmission

MATLAB

Matsushima et al.,
2015 [40]

Triaxial accel
(Jukudai Mate) 1, (L3), elastic belt 20 Hz Detection range ± 10 g;

resolution power 0.02 g BIMUTAS II

O’Brien et al., 2019
[42]

Triaxial accel/gyro
(BioStampRC)

1, (L5), Tegaderm
adhesive film 31.25 Hz

Accel ± 4 g; gyro ± 2000
deg/s; 4th order low pass

Butterworth filter 2 Hz;
acquisition with

BioStampRC

MATLAB

Rivolta et al., 2019
[30]

Triaxial accel
(GENEActiv)

1, (chest), elastic
band 50 Hz

12 bits over range ± 8 g;
chronometer for starting
time; high pass 3rd order

Butterworth filter

Manually
segmented accel

signals;
GENEActiv

software

Senanayake et al.,
2013 [43]

Triaxial accel/gyro
(KinetiSense)

4, (bilat thighs,
bilat shins), NS 128 Hz Wireless transmission via

USB
KinetiSense and

MATLAB

Spain, St George
et al., 2012 [37]

Triaxial accel/gyro
(XSens)

6, (sternum, L5,
bilat wrists, bilat

ankles), NS
50 Hz

Accel range ± 1.7 g; gyro
range ± 300 deg/s.

Filtered with 3.5 Hz cutoff,
zero phase, low pass

Butterworth filter

MATLAB

Tang et al., 2019
[31]

Triaxial accel
(ADXL330) 2, (hip, foot), NS

400 Hz,
down

sampled to
25 Hz

Common and Activity
Specific features extracted;
mRMR feature selection

MATLAB

Velazquez-Perez
et al., 2020 [41]

Triaxial accel/gyro
(Opal)

6, (Hands, feet,
sternum, L5), NS NS NS STATISTICA

Key: accel accelerometer; deg degrees rotation; freq frequency; g gravitational velocity (m/s2); gyro gyroscope; Hz hertz; mRMR
minimal-redundancy-maximal-relevance; NS not stated; s second.

3.4. Validity

The validity of the inertial sensor to measure balance was explored through concurrent
(compared to gold standard), discriminant (able to distinguish between groups), and
convergent (related to the clinical measure) validity. Data pooling was not possible for
meta-analysis concerning validity due to the variety of protocols and outcome measures
undertaken.

Concurrent validity was assessed by comparing the inertial sensor with force plates
for static balance in six studies [25,26,28,29,32,35] and with force plates or motion capture
systems for dynamic balance in three studies [35,38,42]. The resultant correlations identified
that inertial sensors provide moderate to strong evidence of concurrent validity for medio-
lateral (ML) (r = 0.58–0.84) [25,28,30] and antero-posterior (AP) sway (r = 0.71) [26] in
static balance. There were good to excellent correlations between inertial sensor and
instrumented walkway for step time (ICC 0.68–0.92), step length (ICC 0.68–0.89), and gait
velocity (ICC 0.90–0.94) [25,38,42].

Discriminant validity was used to compare inertial sensor measures between young
and older healthy participants [29,32,42], fallers and non-fallers [28–31], and healthy con-
trols from people with specific diagnosed conditions [32–40,43]. Young adults showed
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significantly less medio-lateral sway than older adults during static stance [32,42]. The
same was true for dynamic activities including gait velocity, step length, turning speed and
stand to sit [42]. Inertial sensors were able to distinguish sway differences between fallers
and non-fallers [28–31]. Dynamic balance activities to discriminate fallers from non-fallers
included AP acceleration of walking [29,30], and functional activities of stepping on a stool
and sitting to standing [30,31]. Inertial sensor classification accuracy for discriminating
fallers from non-fallers ranged between 72.24% (95%CI 69.84–74.52%) [28] and 89% [30].
Compared to diagnostic populations, inertial sensors discriminated healthy controls by sig-
nificantly reduced sway amplitude in eyes closed condition [32–34,37,40,42] and increased
anticipatory postural adjustments [32,34,35,38,39] during standing. In dynamic balance,
both walking cadence and turning velocity discriminated healthy controls [33,34,37]. Nei-
ther sit to stand nor stand to sit activities discriminated diagnostic groups from healthy
controls. Discrimination accuracy varied between studies. There were moderate to strong
results to discriminate healthy controls by sway acceleration amplitude in standing (AUC
0.68) [37], with eyes open or closed (classification accuracy 94–96%) [43] and lateral trunk
range of motion in gait (AUC 0.72) [37].

Regarding sensor position, a single lumbar spine sensor identified significant dif-
ferences between younger and older healthy adults [32,42] and was able to distinguish.
the different dynamic balance tasks of lateral and forward jumps [25]. Further, the single
sensor was as accurate as the six-sensor array [33].

Convergent validity evaluated the inertial sensor balance measures against clinical
balance tools. The six-sensor array identified differences between the study group and
healthy controls when observed, whereas timed clinical tests could not [33,37].

3.5. Reliability

Reliability was investigated in eight papers [25–27,29,34–36,39]. Internal consistency
was assessed in three studies by evaluating test results across multiple sensors during the
same activity (ICC 0.62 to 0.98) [26,27,39]. Inter-accelerometer reliability was good between
right and left limbs (ICC > 0.8) [39], between L4 and L5 (r = 0.78–0.95) [27], between thoracic
and lumbar spine (r = 0.60–0.76) [27] and between lumbar spine and ankle (inter-item
correlation 0.70–0.98) [26], but not between upper and lower limbs (ICC = 0.59) [39].

Test-retest reliability showed reasonable consistency between studies. Meta-analysis
was possible when static stance incorporated feet apart eyes open, measured by RMS
of acceleration ML and AP, and when intraclass correlations were undertaken for statis-
tical analysis [25,34,36]. Results from the grouped studies produced high homogeneity
(I2 = 0.0%) with similar effects (Cochrane’s Q non-significant 0.14) indicating trustworthi-
ness of the sensors to measure static balance (Figure 2). However, the lower quality of
two of the included papers [25,34] (Table 2) influenced the strength of findings. Therefore,
meta-analysis results were considered informative rather than conclusive. Measurements
of static sway distance, sway area, path length, mean velocity, and RMS were reliable,
indicated by moderate to good correlations ranging between ICC 0.57 and 0.79 [34,36].
Although dynamic balance was measured in diverse balance tasks, all test-retest param-
eters of dynamic balance produced moderate to excellent correlations (ICC 0.696–0.94),
indicating strong correlations and good reliability in healthy adults [25,34,36].
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4. Discussion

The aim of this systematic review was to investigate and synthesize the validity and
reliability of wearable inertial sensors to measure postural sway in static and dynamic
balance for healthy adults. Test-retest reliability results were consistently moderate to
excellent for static and dynamic balance across the included studies. Meta-analysis was
impossible for the validity studies due to heterogenous samples and methods. However,
the synthesis showed moderate to good validity overall. These findings indicate consistency
against gold standard equipment for measures of ML and AP sway in static balance and
step time, step length, and gait velocity for dynamic balance. While the sensors were able
to discriminate young from old, and fallers from non-fallers, the accuracy of discriminating
healthy controls from diagnostic groups varied between studies.

The variability in equipment included multiple types of sensor. While all studies used
accelerometer data, fewer included gyroscope data, suggesting data from accelerometers
may be sufficient for clinical interventions. This reduced complexity may encourage more
clinicians who are unfamiliar with the technical aspects of the new equipment to integrate
sensors into practice. The multiple strategies for data acquisition, feature extraction, signal
processing, and data analysis presented a heterogenous mix unsuitable for meta-analysis.

There was no consistent number of sensors or sensor placement position. However,
the lumbar spine (L3–L5) was the preferred site overall. A single inertial sensor was as
reliable as multiple sensors when placed near the centre of mass (L3–L5) and showed
moderate to good validity and test-retest reliability for both static and dynamic balance.
A single sensor placed over the centre of mass would provide simplicity in the clinical
setting, particularly during telehealth interactions when instruction, observations, and
interventions are provided remotely. A single sensor also aligns with recent literature
for identifying differences between fallers and non-fallers [44]. However, using different
placements for static and dynamic balance activities [29], and different body positions for
sensor fixation, created challenges with pooling data. While different research questions
demand different types of analysis, the standardization of the sensor position would permit
a comparison of results across studies.
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The validity of sway measures from wearable inertial sensors compared to the gold
standard force plates or motion capture provided promising results across studies. These
results concur with a previous scoping review of systematic reviews [16] as well as recent
studies investigating the concurrent validity of sensors to measure balance in healthy
adults [8,45–47]. In healthy populations, this indicates that inertial sensors provide valid
data when used in home and community settings [48]. This provides flexibility for clinical
treatment and trials, particularly in rural and remote settings, or during social distancing
such as with COVID-19 [49]. Importantly it ensures that performance during testing is
not altered by an unfamiliar environment. Therefore, these findings provide reassurance
that the sensors are a valid proxy for the gold standard as a means of measuring static and
dynamic balance in the community.

Sensors were valid in discriminating sway between younger and older participants,
reinforcing the sway changes that occur due to ageing [50]. Sensors also discriminated
fallers from non-fallers. The sensor data discriminated sub-tasks within clinical tests such
as separating components for the timed up and go into the sit-to-stand, walk straight,
turn, and stand-to-sit, which is consistent with previous findings in timed up and go [51].
While several studies measured the sway differences between fallers and non-fallers, no
studies investigated differences between non-faller, fallers, and those who had experienced
near falls. As this review provides evidence that sensors can identify subtle changes in
sway between different aged healthy people, it is possible that sensors may identify sway
differences between near fallers, fallers, and non-fallers. The early detection of subtle
changes in postural sway is required to identify the risk of near falls [4,52] and can be
measured reliably and with confidence of validity using inertial sensors.

The main limitation to this investigation was the inability to pool included studies for
meta-analysis due to heterogeneity with balance activity, sensor location, and measurement
outcomes. Additionally, some limitation may be considered from the inclusion of articles
written only in English.

5. Conclusions

Measuring postural sway using inertial sensors in healthy adults permits assessment
and treatment in the person’s natural environment, providing reassurance of accurate
measures during times of social distancing. The ability to identify separate components of
clinical tests using sensors permits the detection of subtle sway changes that may contribute
to understanding sway differences for near falls as well as falls. Further research is required
to evaluate the convergent validity of using a single sensor over the centre of mass rather
than a six-sensor array for clinical balance tests such as the timed up and go test. Similarly,
further research using a single sensor to discriminate sway differences between healthy
and diagnostic groups, distinct age groups, and fallers/non-fallers would encourage the
clinical uptake of sensors.
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Appendix A

Table A1. Search strategy for Ovid Medline.

# Searches Results

1 postural balance/or posture/or standing position/ 81,783

2 (balance* or postur* or sway* or stability or equilibrium).ti,ab,kf. 854,996

3 (“center of pressure” or “centre of pressure”).ti,ab,kf. 4573

4 (stumbl* or near* fall* or misstep* or mis step*).ti,ab,kf. 1635

5 or/1–4 [Balance concept] 900,273

6 mobile applications/or cell phone/or smartphone/ 15,528

7 Accelerometry/or Magnetometry/ 5247

8 ((body or motion or wearable*) adj2 sensor*1).ti,ab,kf. 4717

9 (acceleromet* or gyroscop* or magnetomet* or goniomet* or
inclinomet* or baromet*).ti,ab,kf. 28,201

10 or/6–9 84,193

11 “reproducibility of results”/or “sensitivity and specificity”/or
“predictive value of tests”/ 774,004

12
(accura* or assessment* or measur* or evaluat* or reliab* or reproduc*
or consistenc* or repeatab* or validit* or sensitiv* or specificity or
respons* or clinimetric or correlat* or concord* or discrim*).ti,ab,kf.

11,023,968

13 or/11–12 11,173,078

14 and/5, 10, 13 4689

15 limit 14 to (english language and yr = “2019–Current”) 711
Database: Ovid MEDLINE(R) and Epub Ahead of Print, In-Process & Other Non-Indexed Citations and Daily
1946 to 11 January 2021.
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