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Abstract: Promising electrical properties of single-walled carbon nanotubes (SWCNTs) open a spec-
trum of applications for this material. As the SWCNT electronic characteristics respond well to the
presence of various analytes, this makes them highly sensitive sensors. In this contribution, selected
organophosphorus compounds were detected by studying their impact on the electronic properties
of the nanocarbon network. The goal was to untangle the n-doping mechanism behind the beneficial
effect of organic phosphine derivatives on the electrical conductivity of SWCNT networks. The
highest sensitivity was obtained in the case of the application of 1,6-Bis(diphenylphoshpino)hexane.
Consequently, free-standing SWCNT films experienced a four-fold improvement to the electrical
conductivity from 272 ± 21 to 1010 ± 44 S/cm and an order of magnitude increase in the power
factor. This was ascribed to the beneficial action of electron-rich phenyl moieties linked with a long
alkyl chain, making the dopant interact well with SWCNTs.

Keywords: phosphines; single-walled carbon nanotubes; doping

1. Introduction

The discovery of carbon nanomaterials such as carbon nanotubes (CNTs) [1,2] and
graphene [3] created new perspectives for materials science. Ever since the remarkable
electrical [4–6], mechanical [7–9], thermal [10–12], and optical [13–16] characteristics were
first observed, the research community focused efforts to apply these nanostructures in a
broad spectrum of applications. Due to their favorable electrical and mechanical properties,
able to offer simultaneously high strength and flexibility [17,18], they became particularly
interesting components for flexible electronics or low grade heat harvesting [19].

However, the key problem with making these goals reality is that translation of the
properties from the nano realm to the real-life scale is non-trivial. Macroscopic assemblies
in the form of fibers and thin films made from carbon nanostructures experience the
so-called contact resistance, which very much limits their electrical conductivity [20].
Charge transport at the boundaries of individual CNTs or graphene flakes making up the
ensemble increases its resistance considerably. Furthermore, the isotropic distribution of
these building blocks within the network contributes its share to the extrinsic component of
resistance, which must be considered. Recent advances in the field alleviate these problems
by substantially improving the internal structure alignment [21–24]. Nevertheless, the
intrinsic factors of resistance remain a problem.

To overcome this issue and enhance the electrical conductivity of networks based on
nanocarbon structures, one also needs to focus on the building blocks themselves. This
aim can be accomplished by, e.g., improving the crystallinity of the C(sp2) lattice or adding
dopants able to boost the charge transport characteristics. Their presence impacts the
Fermi level of the material in a similar fashion, thereby improving their opportunities for
commercialization by making the CNTs more conductive.
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Single-walled CNTs (SWCNTs) are amphoteric, which means that they can donate or
accept electrons to become p- and n-doped, respectively [25,26]. A wide range of chemical
compounds can be employed for this purpose. The first class encompasses electron-poor
species such as mineral acids [27,28] or halogens [29,30]. On the other hand, the latter
group typically comprises amines and their derivatives [31,32] or alkali metals [29,33].

An interesting category of electron-rich dopants was illustrated by Nonoguchi et al.,
who showed that phosphorus-bearing chemical compounds can act as powerful n-dopants
with doping strength dependent on the molecular structure [34]. Addition of these species
to SWCNT films considerably improved their electrical and thermoelectric properties. One
of the most auspicious phosphorus dopants explored therein was 1,3-Bis(diphenylphosphino)
propane. It gave enhanced conductivity from 36 to 100 S/cm and changed the Seebeck
coefficient of the SWCNT network from +49 to −52 µV/K. The observed sign reversal was
proof that the material was strongly n-doped. Simultaneously, pollution of the environment
with phosphorous bears a number of critical consequences. It is one of the most widespread
pollutants in water [35]. It affects 66% of river streams and 42% of lakes in the Unites States
alone [36]. Consequently, the water quality is subject of eutrophication leading to mortality
of flora and fauna [37,38].

In this work, we studied how the presence of phosphorus may be monitored by
the application of electrically conducting sensors from SWCNT films. So far, similar
SWCNT ensembles have been employed for sensing alcohols [39], NH3 [40], NO2 [41],
and volatile organic chemicals (VOCs) [42], etc. [43]. Herein, the aim was to resolve
the critical structural features of an organophosphorus compound to make the detec-
tion by the SWCNTs the strongest. A selection of model organic phosphine deriva-
tives was employed: 1,3-Bis(dimethylphosphino)propane (linear alkyl substitution on
P atom), 1,3-Bis(dicyclohexylphosphino)propane (cyclic alkyl substituent on P atom), and
1,3-Bis(diphenylphosphino)propane (aryl substituent on P atom). The impact of length of
the alkylene group was studied using 1,6-Bis(diphenylphosphino)hexane. The change of
microstructure/purity of the SWCNT films upon doping was analyzed. Then, electrical
conductivity, Seebeck coefficients, and power factors were established. Finally, modeling
the electronic density distribution of the dopants enabled us to hypothesize the structure
of an organophosphorus most sensitively detected by SWCNTs.

2. Materials and Methods
2.1. Compounds and Materials

Large-diameter SWCNTs (Tuball™; OCSiAl, Leudelange, Luxembourg) were evalu-
ated in the form of ensembles. The following organophosphorus dopants were used: 1,3-
Bis(dimethylphosphino)propane (dmpp), 1,3-Bis(dicyclohexylphosphino)propane (dcpp),
1,3-Bis(diphenylphosphino)propane (dpp), 1,6-Bis(diphenylphosphino)hexane (dpph). All
of them were procured from Sigma-Aldrich (St. Louis, MO, USA). Acetone and toluene
engaged as a medium for preparing SWCNT networks were obtained from Avantor, Gli-
wice, Poland. Ag conductive paint (SCP03B; Electrolube, Ashby-de-la-Zouch, UK) was
employed to prepare specimens for characterization of their electrical conductivity.

2.2. Manufacture of Free-Standing SWCNT-Based Films

SWCNT films were manufactured by a technique developed in-house [44]. The
difference between the reference and the newly reported approach is that a different class
of doping agents was used herein to elucidate the mechanism of their action (Figure 1).

Briefly, 150 mg of SWCNTs kept in a desiccator were added to 80 mL of acetone and
toluene mixture (1:1 by weight). Then, an appropriate amount of the above-mentioned
doping agents was introduced to establish a 0.1 M concentration in this medium (for
sensitivity experiments the concentration was varied from 0.001 M to 1 M for dpph).
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Figure 1. Manufacture of n-doped SWCNT films by vacuum filtration in the presence of organophosphorus compounds. 

Afterward, the mixture was homogenized by ultrasonication at 100% amplitude 
(UP200St sonicator; Hielscher, Teltow, Germany) for 10 min over an ice bath. Such an 
amount of time was sufficient to reach a uniform dispersion. It was filtered under reduced 
pressure using PTFE membrane filters (pore size: 0.45 µm, diameter: 47 mm; Fisherbrand, 
Ottawa, ON, Canada). Due to the low adhesion of SWCNT films to PTFE, they were easily 
peeled off the surface. Dopant-free SWCNT films were also made as a reference.  

2.3. Characterization 
Raman spectroscopy (inVia Renishaw system, Wotton-under-Edge, UK) was used to 

gauge the structural perfection of SWCNTs and the impact of doping on the electronic 
characteristics. The spectra were acquired at the excitation wavelength of λ = 633 nm from 
100 to 3000 cm−1. Laser power was kept to the minimum (0.01% total power) to ensure that 
the sample was not heated by absorption of radiation [32]. Mean values of ID/IG ratios with 
established standard deviations are reported along with the position of the G+ component 
to study the doping effect. Multiple acquisitions at different locations of the samples elim-
inated the possible impact of sample inhomogeneity and background noise, respectively. 

Scanning electron microscope (SEM, JEOL JSM-7500FA, Tokyo, Japan) visualized the 
microstructure of the SWCNT films before and after doping. The experiments were con-
ducted at the acceleration voltage of 15 kV. The material was well conductive, so it was 
not sputtered with metal for imaging. 

The electrical conductivity of the SWCNT films was gauged in a four-terminal con-
figuration. The specimens (3 mm × 40 mm) were cut out from the SWCNT films obtained 
after filtration. Then, they were attached to custom-designed sample holders. The termi-
nals were made of Cu to give current-carrying and voltage-sensing pairs. To ensure no 
issues with electrical and mechanical contact between SWCNTs and Cu, Ag conductive 
paint (SCP03B; Electrolube, Ashby-de-la-Zouch, UK) was applied at the interface. A 

Figure 1. Manufacture of n-doped SWCNT films by vacuum filtration in the presence of organophosphorus compounds.

Afterward, the mixture was homogenized by ultrasonication at 100% amplitude
(UP200St sonicator; Hielscher, Teltow, Germany) for 10 min over an ice bath. Such an
amount of time was sufficient to reach a uniform dispersion. It was filtered under reduced
pressure using PTFE membrane filters (pore size: 0.45 µm, diameter: 47 mm; Fisherbrand,
Ottawa, ON, Canada). Due to the low adhesion of SWCNT films to PTFE, they were easily
peeled off the surface. Dopant-free SWCNT films were also made as a reference.

2.3. Characterization

Raman spectroscopy (inVia Renishaw system, Wotton-under-Edge, UK) was used to
gauge the structural perfection of SWCNTs and the impact of doping on the electronic
characteristics. The spectra were acquired at the excitation wavelength of λ = 633 nm from
100 to 3000 cm−1. Laser power was kept to the minimum (0.01% total power) to ensure
that the sample was not heated by absorption of radiation [32]. Mean values of ID/IG
ratios with established standard deviations are reported along with the position of the
G+ component to study the doping effect. Multiple acquisitions at different locations of
the samples eliminated the possible impact of sample inhomogeneity and background
noise, respectively.

Scanning electron microscope (SEM, JEOL JSM-7500FA, Tokyo, Japan) visualized
the microstructure of the SWCNT films before and after doping. The experiments were
conducted at the acceleration voltage of 15 kV. The material was well conductive, so it was
not sputtered with metal for imaging.

The electrical conductivity of the SWCNT films was gauged in a four-terminal configu-
ration. The specimens (3 mm × 40 mm) were cut out from the SWCNT films obtained after
filtration. Then, they were attached to custom-designed sample holders. The terminals
were made of Cu to give current-carrying and voltage-sensing pairs. To ensure no issues
with electrical and mechanical contact between SWCNTs and Cu, Ag conductive paint
(SCP03B; Electrolube, Ashby-de-la-Zouch, UK) was applied at the interface. A source
meter (Keithley 2450 SourceMeter, Cleveland, OH, USA) measured the conductivity in this
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setup. Conductance was recalculated to conductivity by taking into account the samples’
dimensions. The thickness was measured with a micrometer screw gauge (Electronic
Universal IP54, Linear Tools, Dunstable, UK).

Seebeck coefficients of the materials were obtained using a custom-made apparatus
(SeebCam, LBR, Lublin, Poland) across the 30–100 ◦C temperature range. The samples
were mounted on a board enclosed in a sealed chamber free of air to minimize the effect
of convection. The ends of the samples were then put in contact with resistive heaters
and temperature sensors, which established a temperature gradient and monitored the
temperature, respectively. The difference in electric potential was measured at the tempera-
ture gradient of 5 ◦C. The reported values were averaged across the indicated temperature
range. In all the cases, multiple measurements were conducted to ensure the statistical
significance of the obtained data.

Molecular models of the dopants were drawn by Avogadro: an open-source molecular
builder and visualization tool [45]. The structures were optimized in Universal Force
Field (UFF). Gaussian 09W (B3LYP/6-31G(d) model) was used to approximate the atomic
charges and thus the electron densities of the molecules under investigation in Avogadro.

3. Results

We began the analysis by investigating the crystallinity of evaluated SWCNT networks
by Raman spectroscopy (Figure 2). The SWCNT present in the parent unmodified material
(Figure 2a) manifested typical features such as the radial breathing mode (RBM) (indicative
of single- or double-walled character of the sample) as well as D (corresponding to sp3

carbon atoms), G (stemming from the presence of sp2 carbon atoms), and G’ bands. What
is more, a clear split of the G band into G− and G+ components was observed (Figure 2b),
which confirmed that the material was of single-walled character [46].
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Figure 2. (a) Full Raman spectrum of a neat SWCNT film, (b) magnification of the G peak area with
exemplary deconvolution into G− and G+ components, (c) ID/IG ratios of SWCNT films before and
after doping, and (d) corresponding recorded positions of G+ peak maxima after deconvolution.
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One of the most straightforward techniques of estimating the purity of SWCNTs is to
establish the ID/IG ratio, which quantifies the relative amount of impurities (sp3 carbon
atoms from SWCNT defects or non-SWCNT carbon to D feature intensity) to pristine
SWCNT material (sp2 carbon atoms to G feature intensity) [46]. Firstly, the results obtained
in this study showed that the starting material was pristine as the ID/IG ratio was as low as
0.033 ± 0.003 (Figure 2c). Secondly, upon introducing the dopants, neither of the samples
exhibited a statistically significant increase in the D-band intensity. Instead, the values of
the ID/IG ratios stayed within the 0.031–0.038 range, so the dopant-SWCNT interactions are
physical rather than chemical. The slight discrepancy can be assigned to the measurement
error since the intensity of the D-peak was very low.

More insight regarding the action of the dopants on the SWCNTs can be obtained from
the analysis of the position of the G+ peak maxima [47]. According to the literature, when
a red-shift of this feature occurs, it indicates an upwards shift to the Fermi level caused by
n-doping. While the G+ peak maximum was at 1593 cm−1 for the untreated material, once
organophosphorus dopants were introduced to the network, a clear red-shift was observed
(Figure 2d). The addition of dmpp, dcpp, dpp, and dpph moved the G+ peak maximum
to 1591, 1590, 1588, and 1586 cm−1, respectively. Based on these measurements, dpph
appeared as the strongest dopant, as it repositioned this feature by as much as 7 cm−1.
This is noteworthy as SWCNTs are naturally p-doped by oxygen in the ambient [48], so the
specific dopant had to be powerful enough to overcome this effect.

Furthermore, SEM imaging was conducted to probe for possible changes to the
microstructure of the material upon dopant addition (Figure 3). The neat SWCNT film
(Figure 3a) showed isotropic structure as anticipated for buckypapers made by filtration.
The material was arranged into bundles of a considerable number of SWCNTs. The
employed SWCNTs had an average diameter of 1.6 nm, while the diameter of the bundles
reached up to hundreds of nanometers. No impurities could be discerned in the images.
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Upon doping the SWCNT film with dpph, which showed the most substantial shift to
the G+ peak maximum, there was no obvious change to the alignment or porosity of the
ensemble (Figure 3b). The only difference was the presence of dpph molecules, which are
solid at room temperature, so they were visualized on the surface. It should be noted that
the dopant particles were well dispersed throughout the structure of the material, which
can already partially explain why the observed doping was so effective (vide infra).

The electrical and thermoelectric properties of the SWCNT films were measured
to study this effect in more detail (Figure 4). The electrical conductivity of the parent
material was at the level of 251 ± 12 S/cm, which matches the values reported in the
literature [19] (Figure 4a). The introduction of the organophosphorus dopants clearly
enhanced this parameter. While the addition of dmpp or dcpp caused the electrical
conductivity to increase to 272 ± 21 and 367 ± 27 S/cm, much more tangible benefits
brought the introduction of dpp or dpph. In these cases, the electrical conductivity was
enhanced to 744 ± 34 and 1010 ± 44 S/cm, respectively. Therefore, the addition of dpph at
the point of SWCNT film formation managed to cause a four-fold boost to this property.
The extent to which the electrical conductivity was increased paralleled the magnitude of
the G+ peak shift.
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The measurement of Seebeck coefficients showed that once the organophosphorus
compounds were introduced, the charge transport within the material became dominated
by electrons (displayed by the sign change of the Seebeck coefficients; Figure 4b) following
previous findings [34]. Notably, the addition of dpph changed the Seebeck coefficient from
+49 (starting SWCNTs) to −68 µV/K (doped SWCNTs), which once again proved a strong
influence of these doping species in particular.

A measure that can gauge a material’s suitability to act as a thermogenerator is the so-
called power factor (PF). It considers the electrical conductivity (σ) and Seebeck coefficient
(α) while neglecting the impact of thermal conductivity. It is quantified according to the
following formula: PF = α2·σ. The PF values for all the evaluated dopants are established
in Figure 4c.

Colossal changes to the capability of the material to generate thermopower were
witnessed. The PF value of the parent material, which was 60.27 µW/m·K2, decreased
to a mere 1.44 µW/m·K2 for the sample doped with dmpp. On the other hand, once
dpph was added, one order of magnitude increase was observed. As a result, the PF
value of 467 µW/m·K2 was recorded for such formulation, which is among the highest
thermoelectric performance reported so far [19]. This encouraging improvement was
caused by the synergistic action of electrical conductivity and Seebeck coefficient, both of
which increased considerably after the treatment. Analogously, the deterioration of the
thermoelectric capabilities for SWCNT samples doped with dmpp and dcpp resulted from
the decrease of Seebeck coefficients, which have a quadratic impact on the PF values.

Molecular models with electron densities were calculated (Figure 5) to decipher the
radically different influence of various organophosphorus compounds explored in this
work). Firstly, the addition of dmpp caused only slight improvement to the electrical
conductivity, while the Seebeck coefficient was very much reduced. Among the explored
dopants, this was the only aliphatic and acyclic member, which suggests that such char-
acteristics cannot provide the proper dopant-SWCNT interaction necessary to enhance
the electrical and thermoelectric properties of the material. Furthermore, according to the
calculated electron densities, the negative charge is localized at the phosphorus atoms,
which is not optimal (vide infra). On the other hand, dcpp, also an aliphatic compound,
could generate a negative charge away from phosphorus atoms. This modification already
resulted in moderate improvement to the electrical conductivity and made the Seebeck
coefficient of SWCNTs more negative. However, a substantial boost to these parameters
was obtained only when the organophosphorus dopants (dpp and dpph) were equipped
with phenyl groups, where the negative charge was concentrated. Such functional groups
can interact well with the surface of SWCNTs by van der Waals forces (π–π interactions, in
particular). With this in mind, the charge needs to be effectively donated to the SWCNTs
for the doping to be potent. Lastly, the performance of dpph was substantially better than
that of dpp. We hypothesize that the six methylene groups in dpph give more flexibility
to the dopant. Consequently, such doping species can assume a conformation promoting
the interactions between the negatively charged phenyl groups and the SWCNT side-wall.
The difference in electron density distribution between dpp and dpph may be disregarded
from consideration. For both the dopants, the amount of negative charge in the phenyl
substituents is indistinguishable.
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Lastly, the sensitivity of SWCNT films towards detection of organophosphorus com-
pounds was evaluated using dpph across a 0.001 M–1 M concentration range (Figure 6).
Tangible change in electrical conductivity from 251 ± 12 to 311 ± 32 S/cm can already be
detected at the lowest dopant concentration of 0.001 M. As the concentration of dpph is
elevated, a linear increase in conductivity is evident up to 0.1 M concentration. Above this
point, only negligible enhancement of electrical conductivity is observed indicating that
the predominant number of the sites available for dopant adsorption, which could impact
the Fermi level of the SWCNTs, are already occupied.
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order of magnitude, i.e., from 60.27 to 467 µW/m∙K2.  

The crucial attribute of an effective organophosphorus dopant in this study turned 
out to be the presence of phenyl groups connected directly with the phosphorus atoms to 
donate the charge to SWCNTs in a facile manner. Simultaneously, the importance of a 
sufficiently long alkyl chain was demonstrated as the dopant needs to assume an appro-
priate conformation to promote the charge transfer.  

This study showed that to tune the electrical and thermoelectric properties of 
SWCNTs effectively, the know-how of organic chemistry is indispensable. In light of the 
preceding, further molecular design may pave the way to the more effective exploitation 
of the opportunities provided by nanocarbon materials. Simultaneously, the progress 
gained in this area would also reveal how to sense phosphorous pollution with such ma-
terials in the most selective and sensitive fashion.  
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Figure 6. Electrical conductivity values of the SWCNT films before and after doping with dpph as a
function of dopant concentration.

4. Conclusions

In summary, we illustrated how the presence of organophosphorus compounds may
be sensed by monitoring the electrical and thermoelectric properties of ensembles from
SWCNTs. Four model dopants were evaluated—1,3-Bis(dimethylphosphino)propane
(dmpp), 1,3-Bis(dicyclohexylphosphino)propane (dcpp), 1,3-Bis(diphenylphosphino)propane
(dpp), and 1,6-Bis(diphenylphosphino)hexane (dpph) to unravel the electronic and struc-
tural parameters of an ideal chemical compound for this purpose. The results showed
that dpph organophosphorus dopant improves the electrical conductivity four-fold and
notably boosts the Seebeck coefficient of the material by changing its sign and increasing
its absolute value. As a consequence, the power factor of the material was augmented by
order of magnitude, i.e., from 60.27 to 467 µW/m·K2.

The crucial attribute of an effective organophosphorus dopant in this study turned
out to be the presence of phenyl groups connected directly with the phosphorus atoms
to donate the charge to SWCNTs in a facile manner. Simultaneously, the importance
of a sufficiently long alkyl chain was demonstrated as the dopant needs to assume an
appropriate conformation to promote the charge transfer.

This study showed that to tune the electrical and thermoelectric properties of SWCNTs
effectively, the know-how of organic chemistry is indispensable. In light of the preceding,
further molecular design may pave the way to the more effective exploitation of the
opportunities provided by nanocarbon materials. Simultaneously, the progress gained in
this area would also reveal how to sense phosphorous pollution with such materials in the
most selective and sensitive fashion.
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