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Abstract: To create a realistic 3D perception on glasses-free displays, it is critical to support continuous
motion parallax, greater depths of field, and wider fields of view. A new type of Layered or Tensor
light field 3D display has attracted greater attention these days. Using only a few light-attenuating
pixelized layers (e.g., LCD panels), it supports many views from different viewing directions that
can be displayed simultaneously with a high resolution. This paper presents a novel flexible scheme
for efficient layer-based representation and lossy compression of light fields on layered displays.
The proposed scheme learns stacked multiplicative layers optimized using a convolutional neural
network (CNN). The intrinsic redundancy in light field data is efficiently removed by analyzing
the hidden low-rank structure of multiplicative layers on a Krylov subspace. Factorization derived
from Block Krylov singular value decomposition (BK-SVD) exploits the spatial correlation in layer
patterns for multiplicative layers with varying low ranks. Further, encoding with HEVC eliminates
inter-frame and intra-frame redundancies in the low-rank approximated representation of layers
and improves the compression efficiency. The scheme is flexible to realize multiple bitrates at the
decoder by adjusting the ranks of BK-SVD representation and HEVC quantization. Thus, it would
complement the generality and flexibility of a data-driven CNN-based method for coding with
multiple bitrates within a single training framework for practical display applications. Extensive
experiments demonstrate that the proposed coding scheme achieves substantial bitrate savings
compared with pseudo-sequence-based light field compression approaches and state-of-the-art JPEG
and HEVC coders.

Keywords: light field; lossy compression; layered tensor 3D displays; convolutional neural network;
Krylov subspace; low-rank approximation; randomized block Krylov singular value decomposition;
rank analysis; rate distortion

1. Introduction

Realistic presentation of a three-dimensional world on displays has been a long-
standing challenge for researchers in the areas of plenoptics, light field, and full parallax
imaging [1–3]. Glasses-free or naked-eye autostereoscopic displays have replaced stereo-
scopic displays which offer motion parallax for different viewing directions [4]. However,
current naked-eye displays fall far short of truly recreating continuous motion parallax,
greater depth-of-field, and a wider field-of-view for visual reality [5–8].

Designs based on a single display panel attached with a parallax barrier or special
lens (lenticular screen or integral photography lens) usually suffer from inherent resolution
limitations. The resolution for each view decreases with an increase in multiple viewing
directions. Thus, supporting a full parallax visualization of the 3D scene is impractical [4].
On the other hand, both monitor-style and large-scale systems based on several projectors
introduce a wide viewing approach, but such light field displays do not maintain a thin
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form factor and require ample space for the entire setup. Besides, such large-scale systems
require costly hardware and a computationally expensive light field processing pipeline to
reproduce high-quality views [9,10].

Multi-layered or tensor light field displays offer an optimized solution to support
direction-dependent outputs simultaneously, without sacrificing the resolution in reproduc-
ing dense light fields. This is deemed as a critical characteristic of glasses-free multi-view
displays [5,11–17]. A typical structure of a layered 3D display is demonstrated in Figure 1a.
It is composed of a few light-attenuating pixelized layers stacked with small intervals in
front of a backlight. The transmittance of pixels on each layer can be controlled indepen-
dently by carrying out light-ray operations (multiplication and addition) on the layered
patterns. A multi-layered display with liquid crystal display (LCD) panels and a backlight
is implemented by performing multiplicative operations on layers, and additive layers
are fabricated with holographic optical elements (HOEs) and projectors [14]. With this
structure, the layer patterns allow light rays to pass through different combinations of
pixels depending on the viewing directions. As shown in Figure 1b, multiplicative layer
patterns overlap with different shifts in observed directions. With layered displays, we
can precisely reproduce multi-view images or an entire light field simultaneously with
high resolution by considering just a few light attenuating layers. Further, compactly
representing the light field using transmittance patterns of only a few layers offers display
adaptation. Directed from a target light field, transmittance patterns of stack pixelized
layers are useful in determining the multi-view images required for various display types
design with light fields, such as projection displays [9,18], mixed reality head-mounted
displays [19–21], table-top displays, and mobile platforms [22]. It is critical to analyze the
intrinsic redundancy in light fields to generate an efficient 3D production and content de-
livery pipeline using multi-layer-based approaches. This is essential to efficiently represent
(multiplicative or additive) stacked layers for the desired light-field output.

(a) Structure of layered light field display (b) Configuration of multiplicative layers (c) Light field parameterizaion

Figure 1. Light field is defined in 4-D space. The structure (a) and configuration (b) of layered light field display for constructing
multiplicative layers are shown in 2-D for simplicity; (c) the light ray is parameterized by point of intersection with the (u, v) plane and the
(s, t) plane located at a depth z.

In this paper, we address the problem of light field dimensionality reduction for
existing multi-layer or tensor 3D displays. The CNN is employed to optimize multiplicative
layers obtained from light field data. CNN-based methods are proven to be better in
terms of balance between computation time and accuracy than the previous analytical
optimization approaches based on non-negative tensor factorization [5,14,17,18]. A novel
coding scheme for the multiplicative layers is proposed based on a randomized block
Krylov singular value decomposition framework. The proposed algebraic representation
of stacked multiplicative layers on the Krylov subspace approximates the hidden low-rank
structure of the light field data. Factorization derived from BK-SVD efficiently exploits
the high spatial correlation between multiplicative layers and approximates the light field
with varying low ranks. The encoding with HEVC further eliminates inter-layer and
intra-layer redundancies in low-rank approximated representation of multiplicative layers
and considerably improves the compression efficiency. By choosing varying ranks and
quantization parameters, the scheme is flexible to optimize the bandwidth depending
on the display device availability for a given target bitrate. This allows the delivery of
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3D contents with the limited hardware resources of layered displays and best meets the
viewers’ preferences for depth impression or visual comfort.

The majority of existing light field coding approaches are not directly applicable for
multi-layered displays. Several coding approaches extract the SAIs of the light field and
interpret them as a pseudo video sequence [23–28]. They utilize existing video encoders,
like HEVC [29] or MV-HEVC, for inter and intra-frame hybrid prediction. View estimation
based methods [30–33] reconstruct the entire light field from a small subset of encoded
views and save bandwidth. However, such algorithms fail to remove redundancies among
adjacent SAIs and restrict prediction to the local or frame units of the encoder. In addition,
learning-based view-synthesis methods for light field compression [34–39] require large-
scale and diverse training samples. To reconstruct high quality views, a significant fraction
of the SAIs have to be used as references.

The algorithms that exploit low rank structure in light field data follow disparity
based models [40,41]. Jiang et al. [40] proposed a HLRA method that aligns light field
sub-aperture views using a set of homographies estimated by analyzing how disparity
across views varies from different depth planes. The HLRA may not optimally reduce
the low-rank approximation error for light fields with large baselines. A similar issue is
noticeable in the parametric disparity estimation model proposed by Dib et al. [41]. This
method requires a dedicated super-ray construction to deal with occlusions. Without proper
alignment, it cannot precisely sustain the angular dimensionality reduction (based on low-
rank approximation). Recently, geometry-based schemes have also gained popularity for
efficient compression at low-bit rates [42–44]. Such schemes use light field structure/multi-
view geometry and are not suitable for coding layer patterns directly for multi-layer 3D
display applications.

Methods that explicitly consider the content of light field data for compression [45,46]
also do not work in present settings. Liu et al. [45] compress plenoptic images by clas-
sifying light field content into three categories based on texture homogeneity and use
corresponding Gaussian process regression-based prediction methods for each category.
The performance depends on scene complexity, accurate classification into prediction units,
and sophisticated treatment is required to handle the texture and edge regions of the
lenslet image. Similarly, the GNN-based scheme presented by Hu et al. [46] separates
high-frequency and low-frequency components in sub-aperture images which are then
encoded differently. This scheme needs an accurate parameter estimation model and
discards specific frequency components permanently. All these coding techniques are not
explicitly designed for layered light field displays. They also usually train a system (or
network) to support only specific bitrates during the compression.

Different from existing approaches, our proposed Block Krylov SVD based lossy com-
pression scheme works for layered light-field displays with light-ray operations regulated
using stacked multiplicative layers and a CNN-based method. The concept of “one net-
work, multiple bitrates” motivates us to achieve the goal of covering a range of bitrates,
leveraging the generality of low-rank models and data-driven CNNs for different types
of display devices. The proposed coding model does not just support multi-view/light
field displays; it can also complement existing light-field coding schemes, which employ
different networks to encode light field images at different bit rates. Our experiments
with real light field data exhibit very competitive results. The main contributions of the
proposed scheme are:

• A novel scheme for efficient layer-based representation and lossy compression of light
fields on multi-layered displays. The essential factor for efficient coding is redundancy
in multiplicative layers patterns, which has been deeply analyzed in the proposed
mathematical formulation. The source of intrinsic redundancy in light field data
is analyzed on a Krylov subspace by approximating hidden low-rank structure of
multiplicative layers considering different ranks in factorization derived from Block
Krylov singular value decomposition (BK-SVD). The scheme efficiently exploits the
spatial correlation in multiplicative layers with varying low ranks. Further, encoding
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with HEVC eliminates inter-frame and intra-frame redundancies in the approximated
multiplicative layers and improves compression efficiency.

• The proposed scheme is flexible to realize a range of multiple bitrates within an
integrated system trained using a single CNN by adjusting the ranks of BK-SVD
representation and HEVC quantization parameters. This critical characteristic of the
proposed scheme sets it apart from other existing light field coding methods, which
train a system (or network) to support only specific bitrates during the compression. It
can complement existing light-field coding schemes, which employ different networks
to encode light field images at different bit rates.

• The proposed scheme could flexibly work with different light-ray operations (mul-
tiplication and addition) and analytical or data-driven CNN-based methods. It is
adaptable for a variety of holographic and multi-view light field displays. This would
enable deploying the concept of layered displays on a variety of computational or
multi-view auto-stereoscopic platforms, head-mounted displays, table-top or mo-
bile platforms by optimizing the bandwidth for a given display target bitrate and
desired light-field output. Further, the study is important to understand the kinds
of 3-D contents that can be displayed on a layered light-field display with limited
hardware resources.

• The proposed low-rank coding scheme compresses the optimal multiplicative layered
representation of the light field, rather than the entire light field views. Since the
proposed scheme uses just three multiplicative layers, it is advantageous in terms
of computation speed, bytes written to file during compression, bitrate savings, and
PSNR/SSIM performance. We believe that this study triggers new research that will
lead to a profound understanding in applying mathematically valid tensor-based
factorization models with data-driven CNNs for practical compressive light field
synthesis and formal analysis of layered displays.

The rest of this article is organized into three major sections. The proposed mathemat-
ically valid representation and coding scheme for multi-layered displays is described in
Section 2. Section 3 describes our implementation, experiments, results, and evaluation.
Finally, Section 4 concludes the article with a discussion on comprehensive findings of our
proposed scheme and implication of future extension.

2. Proposed Coding Scheme for Multi-Layered Displays

The workflow of our proposed representation and coding scheme is illustrated in
Figure 2. The proposed scheme is divided into three major components. The first compo-
nent (BLOCK I) represents a convolutional neural network that converts the input light field
views into three multiplicative layers. In the second component (BLOCK II), the intrinsic
redundancy in light field data is efficiently removed by analyzing the hidden low-rank
structure of multiplicative layers on a Krylov subspace by varying BK-SVD ranks. This
followed by the encoding of low-rank approximated multiplicative layers using HEVC
effectively eliminates inter-frame and intra-frame redundancies. In the last component
(BLOCK III), the light field is reconstructed from the decoded layers, as depicted in Figure 2.
Each component of the proposed representation and compression scheme is described in
the following sections.

2.1. Light Field Views to Stacked Multiplicative Layers

In the first component, the proposed scheme generates optimized multiplicative
layers from real light field data. The four-dimensional light field is parameterized by the
coordinates of the intersections of light rays with two planes [47,48]. The coordinate system
is denoted by (u, v) for the first plane and (s, t) for the second plane (Figure 1c). In this
system, a light ray first intersects the uv plane at (u, v) and then the st plane at coordinate
(s, t). The light field is represented by L(u, v, s, t). If the (s, t) plane is located at depth z,
the ray will have coordinates (u + zs, v + zt).
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Figure 2. The complete workflow of the proposed scheme comprising of three prime components: conversion of light
field views into multiplicative layers, low-rank approximation of layers and HEVC encoding, and the decoding of the
approximated layers followed by the reconstruction of the light field.

Multiplicative layers [5] are light attenuating panels that are stacked in evenly spaced
intervals in front of a backlight as shown in Figure 1. The transmittance of a layer Mz
is given by Mz(u, v) and a light ray emitted from this display will have its intensity
normalized by the intensity of the backlight and can be expressed as

Lmul(s, t, u, v) = ∏
z∈Z

Mz(u + zs, v + zt). (1)

Here, we assume that a light-field display is composed of three layers located at
Z = {−1, 0, 1}, where z ∈ Z. It must be noted that z corresponds to the disparity among
the directional views, rather than the physical length [14]. The multiplicative layers need
to be optimized to display a 3-D scene. The optimization goal for the layer patterns is
given by

argmin
Mz |z∈Z

∑
s,t,u,v
‖L(s, t, u, v)− Lmul(s, t, u, v)‖2, (2)

where L(s, t, u, v) depicts the light field emitted from the display.
We utilize a CNN to generate optimal multiplicative layers from the input light field

images. The CNN-based optimization method proves to be better in terms of the balance
between computation time and accuracy than the previous analytical optimization ap-
proach based on non-negative tensor factorization (NMF) methods [5,14,17,18]. Analytical
methods obtain three multiplicative layers of an input light field by carrying out the op-
timization one layer at a time and repeating it for all layers until convergence [14]. The
solutions are updated in an iterative manner, with a trade-off between computation time
(number of iterations) and accuracy of the solution. On the other hand, CNN-based meth-
ods are proven to be faster and produce better accuracy, as well [14]. We have discussed the
merits of using a convolutional neural network over analytical methods for layer pattern
optimization in Section 3.5. Optimization for the three layer patterns from the full light
field using CNN can be mapped as

f : L→ M, (3)

where M represents a tensor containing all the pixels of Mz(u, v) for all z ∈ Z.
Similarly, the mappings from the layers patterns to the light field Lmul(s, t, u, v) can be

rewritten as
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fmul : M→ Lmul, (4)

where Lmul represents all the light rays in Lmul(s, t, u, v). During training, a CNN minimizes
the squared error loss given by

argmin
f
‖L− Lmul‖2. (5)

Note that Lmul = fmul(f (L)), where f (L) is performed by the CNN to produce the
multiplicative layer patterns M, and fmul reconstructs light field Lmul from M. Tensors L
and Lmul have 169 channels corresponding to the 13× 13 views of the light field image, and
tensor M has three channels corresponding to the three layer patterns of the multiplicative
layered display. The final trained network can convert the input light field views into
three optimized output layer patterns. This is the first component in our proposed coding
scheme (BLOCK I in Figure 2). Figure 3 illustrates the CNN-produced multiplicative layers
of the Bunnies light field [49].

(a) Layer −1 (b) Layer 0 (c) Layer 1

Figure 3. The three optimal multiplicative layers obtained from CNN (with 20 convolutional layers,
trained for 20 epochs with a learning rate of 0.0001, and batch size 15) for Bunnies data (BLOCK I of
the proposed scheme).

2.2. Low Rank Representation and Coding of Stacked Multiplicative Layers on Krylov Subspace

The key idea of the proposed scheme is to remove the intrinsic redundancy in light
field data by analyzing the hidden low-rank structure of multiplicative layers. The second
component of our workflow (BLOCK II in Figure 2) involves this low-rank representation of
optimized multiplicative layers. We represented the layers compactly on a Krylov subspace
and approximated them using Block Krylov singular value decomposition (BK-SVD).

The Randomized Simultaneous Power Iteration method has been popularized to
approximate the singular value decomposition (SVD) of matrices [50,51]. This simultaneous
iteration approach can optimally achieve the low-rank approximation of a matrix within
(1 + ε) of optimal for spectral norm error by quickly converging in Õ( 1

ε ) iterations for
any matrix. However, it may not guarantee a strong low-rank approximation or return
high-quality principal components of the matrix. To improve this, Cameron Musco and
Christopher Musco introduced a simple randomized block Krylov method [52], which
can further improve the accuracy and runtime performance of simultaneous iteration.
Experimentally, the randomized block Krylov SVD (BK-SVD) performs fairly better in just
Õ( 1√

ε
) iterations. The BK-SVD approach is closely related to the classic Block Lanczos

algorithm [53,54] and outputs a nearly optimal approximation for any matrix, independent
of singular value gaps.

In our proposed scheme, we denote each multiplicative layer pattern produced by
the CNN as Mz ∈ Rm×n×3, where z ∈ {−1, 0, 1}. The red, green, and blue color channels
of the layer z are denoted as Mr

z, Mg
z , and Mb

z , respectively. We constructed the matrices
Bch ∈ R3m×n, where ch ∈ {r, g, b}, as

Br =

 Mr
−1

Mr
0

Mr
1

 Bg =

 Mg
−1

Mg
0

Mg
1

 Bb =

 Mb
−1

Mb
0

Mb
1

. (6)
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The intrinsic redundancies in multiplicative layers of the light field can be effectively
removed by following low-rank BK-SVD approximation in a Krylov subspace for each
Bch, ch ∈ {r, g, b} (Figure 4). For simplicity, we will denote Bch as B in the following
mathematical formulation.

Figure 4. The BK-SVD procedure adopted in the proposed scheme. The layers Mz, z ∈ {−1, 0, 1} are
split into color channels and rearranged to form matrices Bch, ch ∈ {r, g, b}. The rank k approximation
of Bch results in Wch, which are then divided and rearranged to attain the approximated layers.

Given a matrix B ∈ Rc×d of rank r, the SVD can be performed as B = UΣVT , where
the left and right singular vectors of B are the orthonormal columns of U ∈ Rc×r and
V ∈ Rr×d, respectively. Σ ∈ Rr×r is a positive diagonal matrix containing σ1 ≥ · · · ≥ σr,
the singular values of B. Conventional SVD methods are computationally expensive. Thus,
there is substantial research done on randomized techniques to achieve optimal low-rank
approximation [50–52]. The recent focus has shifted towards methods that inherently do
not depend on the properties of the matrix or the gaps in its singular values. In our present
formulation of low-rank light field layer approximation, we seek to find a subspace that
closely captures the variance of B’s top singular vectors and avoids the gap dependence
in singular values. We target spectral norm low-rank approximation error of B, which is
intuitively stronger. It is defined as∥∥∥B−WWT B

∥∥∥
2
≤ (1 + ε)‖B− Bk‖2, (7)

where W is a rank k matrix with orthonormal columns w1, · · ·, wk. In a rank k approximation,
only the top k singular vectors of B are considered relevant and the spectral norm guarantee
ensures that WWT B recovers B up to a threshold ε.

Traditional Simultaneous Power Iteration algorithms for SVD initialized with random
start vectors achieve the spectral norm error (7) in nearly Õ( 1

ε ) iterations. Block Krylov
SVD approach presented in Reference [52], a randomized variant of the Block Lanczos
algorithm [53,54], guarantees to achieve the same in just Õ( 1√

ε
) iterations. This not only

improves runtime for achieving spectral norm error (7), but guarantees substantially better
performance in practical situations, where gap independent bound is critical for excellent
accuracy and convergence. In the present formulation, we start with a random matrix
Π ∼ N(0, 1)d×k and perform Block Krylov Iteration by working with the Krylov subspace,

K =
[
Π BzΠ B2

z Π B3
z Π · · · Bq

z Π
]
. (8)

We take advantage of low degree polynomials that allow us to compute fewer powers
of B and improve performance with fewer iterations. We construct pq(B)Π for any polyno-
mial pq(·) of degree q by working with Krylov subspace K. The approximation of matrix B
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done by projecting it onto the span of pq(B)Π is similar to the best k rank approximation of
B lying in the span of the Krylov space K. Thus, the nearly optimal low-rank approximation
of B can be achieved by finding this best rank k approximation. Further, to ensure that
the best spectral norm error low-rank approximation lies in a specific subspace (i.e., in
the span of K), we orthonormalize the columns of K to obtain Q ∈ Rc×qk using the QR
decomposition method [55]. We take SVD of matrix S = QT BBTQ where S ∈ Rqk×qk, for
faster computation and accuracy. The rank k approximation of B is matrix W, which is
obtained as

W = QŪk,

where Ūk is set to be the top k singular vectors of S. Consequently, the rank k block
Krylov approximation of matrices Br, Bg, and Bb are Wr, Wg, and Wg, respectively. The
Wch ∈ Rx×y for every color channel ch. The approximated layers M̂z , z ∈ {−1, 0, 1} are
obtained by drawing out the color channels from the approximated Wch matrices.

We sectioned out the rows uniformly as

M̂ch
−1 = Wch[1 : x , 1 : y ], (9a)

M̂ch
0 = Wch[x + 1 : 2x , 1 : y ], (9b)

M̂ch
1 = Wch[2x + 1 : 3x , 1 : y ]. (9c)

The red, green, and, blue color channels are then combined to form each approximated
layer, M̂−1, M̂0, and M̂1. These three block Krylov approximated layers are subsequently
encoded using HEVC.

2.3. The Encoding of Rank-Approximated Layers

The High Efficiency Video Coding (HEVC) [29] is the latest international standard for
video compression. It was standardized by ITU-T Video Coding Experts Group and the
ISO/IEC Moving Picture Experts Group. It achieves improved compression performance
over its predecessors, with at least a 50% bit-rate reduction for the same perceptual quality.

The encoding algorithm of HEVC flexibly divides each frame of the video sequence
into square or rectangular blocks. This block partitioning information is relayed to the
decoder. The first video frame is coded using only intra prediction (spatial prediction from
other regions of the same frame), and succeeding frames are predicted from one, two, or
more reference frames using inter and intra prediction. Motion-compensated prediction is
used to remove the temporal redundancy during inter prediction.

In our proposed scheme, we converted the block Krylov approximated layers into the
YUV420 format. We then used HEVC encoder for various QPs to remove inter and intra
redundancies of the low-rank approximated layers and compress them into a bitstream.
A linear spatial transform is applied to the residual signal information between the intra
or inter predictions. The transform coefficients are then scaled and quantized. The HEVC
performs quantization of the coefficients using QP values in the range of 0–51. To make the
mapping of QP values to the step sizes approximately logarithmic, the quantizer doubles
step size each time the QP value increases by 6. The scaled and quantized transform
coefficients are entropy coded and transmitted to the decoder along with the prediction
information. The workflow of the entire encoding process is depicted in Figure 5.

Figure 5. The workflow of the encoding and decoding steps of HEVC codec.
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2.4. The Decoding and Reconstruction of the Light Field

This section reports the decoding procedure of compressed layers and the reconstruc-
tion of light field (BLOCK III in Figure 2). The HEVC decoder performs entropy decoding
of the received bitstream. It then reconstructs the quantized transform coefficients by
inverse scaling and inversely transforming the residual signal approximation. The residual
signal is added to the prediction, and this result is fed to filters to smooth out the artifacts
introduced because of the block-wise processing and quantization. Finally, the predicted
frames are stored in the decoder buffer to predict successive frames.

We decoded three layers from the bitstream and converted them into the RGB format.
The decoded layers are denoted as M̀z, where z ∈ {−1, 0, 1} depicts the depth of the layers.

The SAIs are reconstructed from these decoded layers in the following way. Let
I(s∗ ,t∗) ∈ Rm×n be the sub-aperture image at the viewpoint (s∗, t∗) and the intensity at
pixel location (u, v) be I(s∗ ,t∗)(u, v), where u ∈ [1, m] and v ∈ [1, n], u, v ∈ Z. Since we
aim to reconstruct the inner 13 × 13 views of the light field, s∗, t∗ are integers such that
−6 ≤ s∗, t∗ ≤ 6. This SAI I(s∗ ,t∗) is obtained by translating the decoded layers to ‚Mz and
performing an element-wise product of the color channels of the translated layers. For a
particular view (s∗, t∗), the translation of every zth layer M̀z, to ‚Mz is carried out as

‚Mz(s∗ ,t∗)(u, v) = M̀z(u + zs∗, v + zt∗). (10)

Thus, the three translated layers for every viewpoint (s∗, t∗) are

‚M−1(s∗ ,t∗)(u, v) = M̀−1(u− s∗, v− t∗),
‚M0(s∗ ,t∗)(u, v) = M̀0 (u, v),
‚M1(s∗ ,t∗)(u, v) = M̀1(u + s∗, v + t∗).

An element-wise product of each color channel ch ∈ {r, g, b}, of the translated layers
gives the corresponding color channel of the sub-aperture image.

Ich
(s∗ ,t∗) =

‚M
ch
−1(s∗ ,t∗) � ‚M

ch
0(s∗ ,t∗) � ‚M

ch
1(s∗ ,t∗). (11)

The combined red, green and blue color channels output the reconstructed light field
sub-aperture image at the viewpoint (s∗, t∗) as I(s∗ ,t∗). Figure 6 illustrates the reconstruction
of the central light field view for (s∗, t∗) = (0, 0). All the 169 light field views are similarly
reconstructed. The pseudo code of the proposed scheme is given in Algorithm 1. The main
steps of BK-SVD decomposition are summarized in Algorithm 2.

Algorithm 1: Proposed scheme

Input: Light Field L(s, t, u, v)
Output: Reconstructed SAIs I(s∗ ,t∗), s∗, t∗ ∈ Z, −6 ≤ s∗, t∗ ≤ 6

1 Extract SAIs from Light Field : L(s, t, u, v)→ SAIs
2 Transform SAIs to multiplicative layers using CNN : SAIs→ M−1, M0, M1

3 M−1, M0, M1 → Bch, ch ∈ {r, g, b}
4 Find low-rank approximation : Algorithm 2 (Input : Bch, Output : Wch)
5 Rearrange and obtain approximated layers : Wch → M̂z

6 HEVC encode the approximated layers M̂z

7 HEVC decode M̂z → M̀z

8 Translate for every view (s∗, t∗) : M̀z(u + zs∗, v + zt∗)→ ‚Mz(s∗ ,t∗)(u, v)

9 Obtain color channel of SAI : ‚M
ch
−1(s∗ ,t∗) � ‚M

ch
0(s∗ ,t∗) � ‚M

ch
1(s∗ ,t∗) → Ich

(s∗ ,t∗)
10 Combine the color channels to reconstruct the SAIs : I(s∗ ,t∗)
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Algorithm 2: Block Krylov Singular Value Decomposition

Input: B ∈ Rc×d, error ε ∈ (0, 1), rank k ≤ c, d
Output: W ∈ Rc×k

1 q := Õ(
log d√

ε
), Π ∼ N(0, 1)d×k

2 K :=
[
BΠ , (BBT)BΠ , · · · , (BBT)qBΠ

]
3 Orthonormalize the columns of K to obtain Q ∈ Rc×qk

4 Compute S := QTBBTQ ∈ Rqk×qk

5 Set Ūk to the top k singular vectors of S.
6 return W = QŪk

Figure 6. For the central viewpoint (s∗, t∗) = (0, 0), the decoded layers M̀z are translated to ‚Mz(0,0). The
corresponding color channels are multiplied element-wise to obtain Ich

(0,0). The final central light field view I(0,0) is
obtained by combining the red, blue, and green color channels.

3. Results and Analysis

The performance of the proposed compression scheme was evaluated on real light
fields captured by plenoptic cameras. We experimented with Bikes, Fountain-Vincent2, and
Stone-Pillars Outside light field images from the EPFL Lightfield JPEG Pleno database [56].
The raw plenoptic images were extracted into 15 × 15 sub-aperture images (each with a
resolution of 434× 625 pixels) using MATLAB Light field toolbox [57]. In Liu et al. [23] and
Ahmad et al. [25], only the central 13 × 13 views of the light field were considered as the
pseudo sequence for compression. The border SAIs suffer from severe geometric distortion
(due to light field lenslet structure) and blurring, and they are less useful in recovering the
light field. To facilitate a fair comparison with these state-of-the-art coding methods, we
have also discarded the border SAIs and only considered the inner 13 × 13 light field views
for our tests. Figure 7 shows the extracted views and the central views of the chosen light
field images.

(a) (b) (c) (d)

Figure 7. (a) The extracted 13 × 13 views of the Fountain-Vincent2; central view of (b) Bikes; (c) Fountain-Vincent2;
(d) Stone-Pillars Outside.

3.1. Experimental Settings of CNN

In the first component of the proposed coding scheme (BLOCK I in Figure 2), a
convolutional neural network learns the optimized multiplicative layers from real light
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field data. We experimented on the 5 × 5 Bunnies dataset [49] to analyze the CNN learning
for various hyperparameters. The model was trained with all the following combinations:

• Learning rate (LR) : 0.001, 0.0001, 0.00001;
• Batch size (BS) : 15, 30;
• Number of epochs (E) : 5, 10, 15, 20.

Apart from these combinations of hyperparameters, we analyzed the influence of
the network on results by varying the number of convolutional layers as 15, 20, and 25.
Maruyama et al. [14] had demonstrated 3 × 3 as an optimal filter size in the network and
used 64 channels for the intermediate feature maps. We also chose the same filter size and
number of channels in the intermediate layers.

Figure 8a presents the training results of the experiment with 20 convolutional layers in
the CNN. We examined similar hyperparameter variation plots for 15 and 25 convolutional
layers and concluded that LR 0.0001, BS 15, and E 20 give optimal PSNR results in BLOCK
I of the proposed scheme. The multiplicative layers produced by the 15, 20, and 25
convolutional layered networks with these choices of hyperparameters were further passed
to BLOCK II of the proposed coding scheme. We performed the BK-SVD (for ranks 20 and
60) and HEVC step (with QPs 2, 6, 10, 14, 20, 26, 38). Figure 8b–d display the corresponding
bitrate versus PSNR results. Thus, we inferred a suitable model for the proposed scheme
by choosing 20 convolutional layers and trained the CNN for 20 epochs at a learning rate of
0.0001, and a batch size of 15. Multiplicative layers produced using this model for Bunnies
are shown in Figure 3.

(a) Training results (b) Bitrate vs Y-PSNR (c) Bitrate vs U-PSNR (d) Bitrate vs V-PSNR

Figure 8. (a) Training results of the CNN with 20 convolutional layers. Optimal PSNR is observed for model run for 20 epochs with
learning rate 0.0001 and batch size 15; (b–d) rate-distortion curves comparing results of CNN structures with 15, 20, and 25 convolutional
layers trained for 20 epochs with learning rate 0.0001 and batch size 15.

The multiplicative layers can further be fed into BLOCK II (BK-SVD step + HEVC) for
compression. The proposed coding scheme achieves flexible bitrates for the various ranks
of BK-SVD of multiplicative layers and varying HEVC quantization parameters. Thus, it
realizes the goal of covering a range of multiple bitrates using a single CNN model.

3.2. Implementation Details of Proposed Scheme

We implemented the proposed coding scheme on a single high-end HP OMEN X
15-DG0018TX Gaming laptop with 9th Gen i7-9750H, 16 GB RAM, RTX 2080 8 GB Graphics,
and Windows 10 operating system. The multiplicative layer patterns for input light fields
Bikes, Fountain-Vincent2, and Stone-Pillars Outside were optimized using the chosen CNN
with 20 2-D convolutional layers stacked in a sequence. The network was trained (learning
rate 0.0001, batch size 25, 20 epochs) with 30 training images generated from light fields
Friends 1, Poppies, University, Desktop, and Flowers, from the EPFL Lightfield JPEG Pleno
database [56]. Each training sample was a set of 169 2-D image blocks with 64 × 64 pixels
extracted from the same spatial positions in a light-field dataset. We implemented the
entire network using the Python-based framework, Chainer (version 7.7.0).

During training, the CNN (in BLOCK I of Figure 2) solves the optimization problem
(Equation (5)) by computing loss as the mean square difference between the original light
field and the light field reconstructed from multiplicative layers. The optimal multiplicative
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layers are learned as a result of the optimization of the loss function and this eliminates the
need for any ground truth information. The resultant output layers for the Bikes, Fountain-
Vincent2, and Stone-Pillars Outside light field images, obtained from the trained CNN model
are presented in Figure 9. We rearranged the color channels of these multiplicative layers
as described in Section 2.2. We then applied BK-SVD for ranks 4 to 60 (incremented in steps
of four) and computed 50 iterations for each rank. The approximated matrices were then
rearranged back into layers and converted into the YUV420 color space.

(a) Layer −1 (b) Layer 0 (c) Layer 1

Figure 9. The three multiplicative layers of Bikes, Fountain-Vincent2, and Stone-Pillars Outside light fields obtained
from the convolutional neural network.

For the HEVC step, we used 32 bit HM encoder (version 11.0) to compress all the YUV
files of different approximated ranks. We choose seven quantization parameters, QP 2, 6,
10, 14, 20, 26, and 38, to test both high and low bitrate cases. The encoder compression
produces a bitstream for a fixed rank and QP, that can be stored or transmitted. We followed
the reverse procedure on the compressed bitstream to reconstruct the 13 × 13 views of
the light fields. The HM decoder is used to recover the files in the YUV420 format, which
are then converted back to the RGB color space. The three decoded layers are used to
reconstruct the entire sub-aperture images of the light field. A comparison of the original
central view of the Bikes, Fountain-Vincent2, and Stone-Pillars Outside light field images and
the reconstructed central light field views is shown in Figure 10.

(a) Original central views (b) Rank 20, QP2 (c) Rank 60, QP2

Figure 10. Comparison of the original and reconstructed views. (a) Original central views of the three datasets;
(b) reconstructed central views using our proposed scheme for rank 20 and QP 2; (c) reconstructed central views
using our proposed scheme for rank 60 and QP 2.
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3.3. Results and Comparative Analysis

The performance of our proposed coding scheme is compared to previous pseudo-
sequence-based compression schemes [23,25], the HEVC software (version 11.0) [29], and
the JPEG standard [58]. We subjected all these anchor schemes to the same test conditions
and quantization parameters (QPs-2, 6, 10, 14, 20, and 38) as used in our experimental
settings. All PSNR-bitrate graphs are shown in Figures 11 and 12. The total number of bytes
written to file during compression by these four anchors is documented in Table 1. Total
number of bytes used by the proposed coding scheme for various ranks is summarized in
Table 2.

(a) Bitrate vs Y-PSNR (b) Bitrate vs U-PSNR (c) Bitrate vs V-PSNR (d) JPEG

Figure 11. (a–c) The bitrate versus PSNR graphs of Ahmad et al. coding scheme for all three datasets; (d) graph depicting the maximal
bytes per allocations performed against the PSNR for Bikes, Fountain-Vincent2, and Stone-Pillars Outside datasets using the JPEG codec.

(a) Bitrate vs Y-PSNR (b) Bitrate vs U-PSNR (c) Bitrate vs V-PSNR

Figure 12. Rate-distortion curves for the proposed compression scheme and HEVC codec for the three datasets.
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Table 1. The total number of bytes written to file during compression for three datasets using JPEG, Ahmad et al., Liu et al.,
and HEVC codec.

SCENE QP JPEG Ahmad et al. HEVC Liu et al.
Bytes Maximal Allocations Performed

Bikes

2 1,289,500,060 285,334 24,312,508 26,855,413 13,236,265
6 1,282,545,982 278,698 16,769,702 19,348,737 8,502,825

10 1,277,959,454 274,320 9,845,153 13,443,535 4,325,040
14 1,274,522,080 271,040 5,017,757 9,081,969 1,806,765
20 1,270,588,768 267,288 1,702,024 4,612,312 531,260
26 1,267,960,215 264,780 578,837 1,872,858 186,890
38 1,264,811,424 261,776 109,882 309,894 49,819

Fountain-Vincent2

2 1,289,376,407 285,222 25,458,464 28,247,570 -
6 1,284,189,141 280,268 17,822,580 20,753,794 -

10 1,280,142,984 276,406 10,784,296 14,296,728 -
14 1,277,256,515 273,654 5,734,607 9,448,082 -
20 1,274,473,022 270,998 2,005,209 4,611,589 -
26 1,270,323,433 267,038 608,622 1,778,323 -
38 1,266,732,371 263,612 107,314 282,926 -

Stone-Pillars Outside

2 1,289,107,839 284,980 24,318,932 25,687,041 -
6 1,285,439,994 281,480 16,763,791 18,184,046 -

10 1,281,396,834 277,622 9,966,816 12,175,243 -
14 1,274,580,935 271,118 5,129,148 7,881,904 -
20 1,269,731,759 266,490 1,613,407 3,795,400 -
26 1,267,162,562 264,038 499,315 1,266,845 -
38 1,264,130,704 261,144 81,220 165,209 -

Ahmad et al. [25] interpreted the sub-aperture views of the light field as frames in
a multi-view sequence. They availed the tools in the multi-view extension of HEVC to
exploit the 2D inter-view correlation among the views. We used the PPM color image
format of the inner 13 × 13 views of the Bikes, Fountain-Vincent2, and Stone-Pillars Outside
light field images to evaluate this multi-view compression algorithm. The bitrate versus
PSNR results of Ahmad et al. is shown in Figure 11a–c. We coded the input SAIs of the
chosen light field data with the legacy JPEG [58], as well. The corresponding bytes per
allocation performed versus PSNR curve is in Figure 11d.

Liu et al. [23] formulated a predictive coding approach and treated light field views
as a pseudo-sequence-like video. They compressed the central view first and then the re-
maining views in a symmetric, 2D hierarchical order. Motion estimation and compensation
in video coding systems were reused to perform inter-view prediction. Due to the public
unavailability of Liu et al.’s lenslet YUV files for datasets apart from Bikes, we analyzed
their compression performance [23] on the 13 × 13 SAIs of Bikes only. The total number of
bytes used in compression using this approach is given in Table 1.

To evaluate the HEVC [29] performance, the 169 SAIs in YUV420 color space were
directly fed into the 32 bit HM codec (version 11.0) for the same chosen QPs. The rate-
distortion graphs comparing HEVC with the proposed scheme is shown in Figure 12.
Bitrates in case of Ahmad et al. [25] are in the order of 105. Hence, these results are plotted
separately in Figure 11a–c because of the scale mismatch with bitrates of our proposed
scheme. In addition, in case of JPEG, we have shown the maximal bytes per allocations
performed versus PSNR plot (Figure 11d) and the x-axis is not the same as in Figure 12.
Thus, for a fair comparison, we have not plotted the results of the proposed coding scheme
and JPEG together. The proposed coding scheme consistently outperforms on all datasets.
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Table 2. The total number of bytes written to file during compression using our proposed scheme for fifteen chosen ranks.

SCENE QP Rank 4 Rank 8 Rank 12 Rank 16 Rank 20 Rank 24 Rank 28 Rank 32 Rank 36 Rank 40 Rank 44 Rank 48 Rank 52 Rank 56 Rank 60

Bikes

2 465,324 524,323 556,265 575,476 589,749 596,927 603,836 609,989 612,874 617,204 619,711 621,985 624,307 625,418 626,699
6 345,970 394,844 422,644 440,498 454,163 462,476 468,236 473,869 479,041 482,762 485,010 487,279 490,158 491,914 493,319

10 252,714 289,578 311,384 325,476 335,791 342,412 348,215 353,720 358,598 362,391 365,720 367,504 370,269 371,874 373,835
14 187,722 219,282 236,455 247,443 254,629 259,664 264,641 268,640 270,989 274,188 276,139 277,926 279,651 280,930 282,329
20 117,907 139,701 152,559 160,308 165,537 170,361 173,749 176,666 178,642 179,836 181,396 182,388 184,061 185,106 185,288
26 64,705 79,211 87,522 92,133 96,011 98,170 99,659 101,487 102,731 103,588 104,649 104,932 106,117 106,529 107,238
38 13,892 18,321 20,884 22,785 23,855 24,670 25,376 26,045 26,203 26,600 27,171 27,196 27,673 27,546 27,562

Fountain-Vincent2

2 516,160 549,485 563,480 578,844 586,229 590,485 595,204 597,747 598,965 602,633 602,416 603,626 604,461 605,605 605,053
6 384,173 415,523 428,058 442,982 449,339 454,349 458,496 461,966 464,439 465,384 467,293 467,920 468,986 469,543 470,570

10 282,959 308,182 317,127 329,436 335,826 340,236 343,505 347,469 349,302 350,126 352,036 352,735 354,723 354,932 355,663
14 210,399 231,072 237,650 247,782 252,603 255,323 257,685 260,650 262,153 262,876 264,412 264,870 265,828 266,672 267,453
20 132,576 148,200 153,252 160,184 163,285 165,605 167,499 169,054 169,138 170,198 170,229 170,302 171,155 172,099 172,095
26 70,632 80,893 83,555 88,718 90,406 91,399 92,972 93,937 94,522 94,618 95,285 95,368 95,402 95,757 96,129
38 15,944 18,976 20,430 21,418 21,960 22,430 22,792 23,024 23,241 23,419 23,545 23,529 23,815 23,721 23,750

Stone-Pillars Outside

2 395,160 430,554 463,224 480,429 492,073 501,838 510,784 515,002 519,969 523,496 526,519 529,851 531,759 533,523 534,984
6 282,249 311,619 340,148 356,242 367,825 377,322 383,633 389,337 394,027 398,591 400,673 403,800 405,328 407,812 409,376

10 201,642 224,608 245,521 257,421 265,412 272,566 278,653 282,513 286,930 289,816 292,090 295,110 296,522 298,174 299,145
14 145,152 165,716 183,136 192,439 198,885 204,685 207,946 211,555 213,927 215,770 217,476 2189,64 219,533 220,136 222,381
20 85,558 100,871 112,482 118,850 122,415 125,708 128,209 130,955 132,507 134,048 134,861 136,701 136,890 137,469 138,307
26 43,278 53,407 59,221 63,628 66,177 68,108 69,342 70,701 72,331 72,935 73,700 74,077 74,670 75,747 76,062
38 9478 10,984 11,799 12,521 12,899 13,163 13,472 13,589 13,655 13,632 13,732 13,801 13,933 13,956 13,870
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The total number of bytes taken by our approach is comparatively much less than other
anchors (Tables 1 and 2) for both lower and higher ranks. We also computed SSIM (Struc-
tural Similarity Index) scores for all 13 × 13 views of scenes. Figure 13 illustrates the com-
parative mean SSIM values of the proposed coding scheme and results of Ahmad et al. [25],
HEVC [29], and JPEG [58] codecs. We saved significant bitrates at different ranks and
maintain good reconstruction quality.

Figure 13. Comparative mean SSIM for the proposed scheme and anchor coding methods. Average SSIM was computed over all 169
views and all quantization parameters.

Further, we performed an objective assessment using the Bjontegaard [59] metric. This
metric can compare the performance of two different coding techniques. We compared
bitrate reduction (BD-rate) of proposed scheme with respect to Ahmed et al., Liu et al., and
HEVC codec. The average percent difference in rate change is estimated over a range of
quantization parameters for the fifteen chosen ranks.

A comparison of the percentage of bitrate savings of our proposed coding scheme
with respect to the anchor methods for the Bikes, Fountain-Vincent2, and the Stone-Pillars
Outside datasets are shown in Tables 3–5, respectively. On Bikes data, the proposed scheme
achieves 98.94%, 40.42%, and 81.37% bitrate reduction compared to Ahmad et al., HEVC,
and Liu et al., respectively (Table 3). On Fountain-Vincent2 data, we noticed 99.03% and
35.80% bitrate savings compared to Ahmad et al. and HEVC codec, respectively (Table 4).
On Stone-Pillars Outside data, we achieve 99.20% and 22.43% bitrate reduction compared to
Ahmad et al. and HEVC, respectively (Table 5).

3.4. Advantages of Using Multiplicative Layers

The proposed scheme generates three optimal multiplicative layers of input light field
for layered light field displays. There is a clear advantage to approximate and encode just
the three multiplicative layers rather than the entire set of light field views in terms of
computation speed, bytes written to file during compression, bitrate savings with respect
to state-of-the-art coding methods, as well as SSIM performance. To analyze this, we
experimented by directly feeding all 13 × 13 views of the Bikes light field into BLOCK II
of the proposed coding scheme (AV(169)). These results were then compared with usage
of just 3 multiplicative layers described in the previous sections (ML(3)). Block-Krylov
low rank approximation was done for ranks 20 and 60, followed by HEVC encoding for
quantization parameters 2, 6, 10, 14, 20, and 38.

We noted the computation time for each step in BLOCK II. Table 6 highlights the
results. Evidently, the proposed compression scheme works much faster with just three
light field multiplicative layers. This proves to be advantageous over using all views of the
light field. We have also compared the number of bytes written to file during compression
in Table 7, where a higher number of bytes in case of AV(169) can be observed. The bitrate
reduction of ML(3) and AV(169) with respect to Liu et al. [23], HEVC codec [29], and
Ahmed et al. [25] (estimated over a range of quantization parameters 2, 6, 10, 14, 20, 26, 38
for ranks 20 and 60) is depicted in Table 8.
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Table 3. Bjontegaard percentage rate savings for the proposed compression scheme with respect to Ahmad et al., HEVC codec, and Liu et al. (negative values represent gains) on Bikes data.

Ahmad et al. HEVC Liu et al.
Rank Y U V Y U V Y U V

4 −99.251481 −99.276458 −99.274087 −5.881261 0.180365 −11.739816 −67.966775 −71.264162 −70.635424
8 −99.090493 −99.121327 −99.143757 −25.484779 −25.959331 −27.984525 −74.782197 −78.380012 −76.773975

12 −98.999026 −99.034508 −99.068975 −33.773506 −34.641588 −35.470272 −77.639238 −80.996109 −79.166755
16 −98.939151 −98.986041 −99.026115 −38.00838 −38.778121 −39.062217 −79.199071 −82.263679 −80.394787
20 −98.899136 −98.948792 −98.996347 −40.60945 −41.390099 −41.342234 −80.145098 −83.146997 −81.1756
24 −98.871015 −98.930821 −98.967791 −42.383595 −42.746015 −42.750932 −80.793824 −83.601011 −81.803752
28 −98.853191 −98.911292 −98.951353 −43.639337 −43.901611 −44.03624 −81.262957 −83.968503 −82.238102
32 −98.832965 −98.890869 −98.93992 −44.748237 −44.949141 −45.081394 −81.66317 −84.296064 −82.651585
36 −98.819182 −98.884722 −98.921536 −45.532868 −45.35228 −45.574059 −81.967138 −84.506536 −82.849684
40 −98.807443 −98.875328 −98.918501 −46.250925 −46.02426 −46.029313 −82.231804 −84.731675 −82.987648
44 −98.797027 −98.863221 −98.906404 −46.792409 −46.647476 −46.641298 −82.426399 −84.908654 −83.197302
48 −98.792277 −98.857093 −98.8995 −47.142026 −46.930989 −46.844444 −82.556527 −85.038781 −83.297143
52 −98.780806 −98.847028 −98.899573 −47.652849 −47.562722 −47.213633 −82.750674 −85.198862 −83.459447
56 −98.77693 −98.838412 −98.894099 −47.880471 −47.719856 −47.340388 −82.832358 −85.296081 −83.518001
60 −98.77114 −98.836726 −98.885478 −48.133692 −47.798751 −47.625073 −82.932904 −85.334731 −83.607177

Average −98.88541753 −98.94017587 −98.9795624 −40.260919 −40.01479167 −40.9823892 −80.0766756 −82.8621238 −81.1837588
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Table 4. Bjontegaard percentage rate savings for the proposed compression scheme with respect to Ahmad et al. and HEVC
codec (negative values represent gains) on Fountain-Vincent2 data.

Ahmad et al. HEVC
Rank Y U V Y U V

4 −99.183799 −99.229844 −99.264954 −21.521969 −13.921367 −5.773992
8 −99.086069 −99.127875 −99.17076 −31.169436 −30.225204 −21.630714

12 −99.050404 −99.103297 −99.145429 −34.314673 −32.308096 −24.616496
16 −99.005551 −99.063528 −99.100118 −37.4743 −36.182694 −30.309729
20 −98.984593 −99.046354 −99.080496 −39.061992 −37.607852 −32.701631
24 −98.971614 −99.030753 −99.071674 −40.004309 −38.543402 −33.089425
28 −98.957412 −99.020463 −99.059243 −40.851959 −39.456734 −34.472345
32 −98.948131 −99.012691 −99.046828 −41.484072 −39.915501 −35.497824
36 −98.942413 −99.008685 −99.039732 −41.862561 −40.141429 −35.856707
40 −98.937226 −99.004562 −99.039085 −42.18118 −40.524649 −36.136539
44 −98.932066 −98.996273 −99.037422 −42.540685 −41.006276 −35.888463
48 −98.92917 −99.000517 −99.034159 −42.713349 −40.941182 −35.891383
52 −98.926749 −98.990882 −99.03173 −42.974712 −41.265832 −36.465998
56 −98.926221 −98.99509 −99.026921 −43.069367 −41.361922 −36.529031
60 −98.92157 −98.990063 −99.032116 −43.239617 −41.513125 −36.632594

Average −98.9801992 −99.0413918 −99.07871113 −38.96427873 −36.994351 −31.43285807

Table 5. Bjontegaard percentage rate savings for the proposed compression scheme with respect to Ahmad et al. and HEVC
codec (negative values represent gains) on Stone-Pillars Outside data.

Ahmad et al. HEVC
Rank Y U V Y U V

4 −99.456179 −99.465611 −99.464082 12.433281 16.684821 28.649503
8 −99.341767 −99.380922 −99.406866 −11.673143 −2.061917 18.073502
12 −99.262494 −99.290023 −99.322609 −22.699987 −19.492942 1.333068
16 −99.218085 −99.251555 −99.280718 −27.726039 −24.244093 −5.509125
20 −99.18522 −99.227969 −99.248049 −30.848873 −26.809427 −10.780161
24 −99.157964 −99.202939 −99.225599 −33.281782 −29.211062 −13.569113
28 −99.139248 −99.18847 −99.20702 −35.037932 −30.350017 −16.196362
32 −99.120267 −99.171885 −99.193537 −36.513559 −31.837999 −17.08197
36 −99.103079 −99.162032 −99.179835 −37.675867 −33.229377 −19.124177
40 −99.093228 −99.152927 −99.171138 −38.506503 −33.604077 −19.682844
44 −99.083238 −99.151691 −99.165229 −39.251178 −33.54724 −20.452764
48 −99.075932 −99.138257 −99.157717 −39.744394 −34.621605 −20.963765
52 −99.068293 −99.140571 −99.155556 −40.293038 −34.355048 −21.187093
56 −99.065237 −99.131556 −99.152072 −40.583026 −35.087053 −21.289896
60 −99.058314 −99.128089 −99.146575 −40.991487 −35.288201 −22.048587

Average −99.161903 −99.2122998 −99.23177347 −30.82623513 −25.80368247 −10.65531893

Table 6. Comparison of computation speed in BLOCK II of proposed scheme with (ML(3)) and without (AV(169)) multi-
plicative layers. Experiment evaluated on Bikes light field for BK-SVD ranks 20 and 60.

Computation Time (s)
Input Rank BKSVD HEVC QP2 HEVC QP6 HEVC QP10 HEVC QP14 HEVC QP20 HEVC QP26 HEVC QP38

ML(3) 20 1.399 38.892 37.087 33.936 31.876 28.261 23.874 15.643
AV(169) 20 37.117 2592.1 3450.8 3806.8 2327.6 1360.4 1010.6 659.835
ML(3) 60 1.711 38.937 37.136 34.644 32.183 28.355 23.811 16.101

AV(169) 60 47.22 3068.9 2552.1 2261.8 1925.15 1460.3 1074.9 680.548
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Table 7. Comparison of bytes written to file during compression using proposed scheme with (ML(3))
and without (AV(169)) multiplicative layers. Experiment evaluated on Bikes light field for BK-SVD
ranks 20 and 60.

ML(3) AV(169) ML(3) AV(169)

QP Rank 20 Rank 20 Rank 60 Rank 60
2 589,749 21,281,614 626,699 26,428,959
6 454,163 14,426,779 493,319 19,099,470

10 335,791 9,712,428 373,835 13,117,452
14 254,629 6,287,936 282,329 8,594,436
20 165,537 3,070,874 185,288 4,197,244
26 96,011 1,235,911 107,238 1,651,635
38 23,855 209,829 27,562 266,666

Table 8. Bjontegaard percentage rate savings for the proposed compression scheme with respect to Liu et al., HEVC codec,
and Ahmad et al. on Bikes data with (ML(3)) and without (AV(169)) multiplicative layers for ranks 20 and 60 (negative
values represent gain over anchor).

Liu et al. HEVC Ahmad et al.
Input Rank Y U V Y U V Y U V

ML(3) 20 −80.145 −83.14 −81.17 −40.6 −41.39 −41.34 −98.89 −98.94 −98.99
AV(169) 20 −36.78 −50.35 −48.36 64.76 56.71 53.86 −99.5 −99.49 −99.49
ML(3) 60 −82.93 −85.33 −83.6 −48.13 −47.79 −47.62 −98.77 −98.83 −98.88

AV(169) 60 −59.46 −69.2 −67.49 11.08 6.145 5.98 −99.28 −99.29 −99.3

To evaluate the decoding module of the proposed scheme (BLOCK III), we used the
SSIM metric to compare decoded views of experiment AV(169) and ML(3). Mean SSIM
over the decoded views was calculated for each QP result and each rank of Bikes. These
SSIM comparison graphs are illustrated in Figure 14. The proposed scheme with three
multiplicative layers performs better perceptually, as well, since the matrix constructed to
perform BK-SVD in case of AV(169) is larger in size. The approximation quality deteriorates
when all 13 × 13 views are simultaneously considered.

Figure 14. Mean SSIM scores over each QP of decoded views in BLOCK III of proposed scheme with (ML(3)) and without (AV(169))
multiplicative layers. Experiment evaluated on Bikes light field for BK-SVD ranks 20 and 60.

3.5. Advantages of Using CNN over Analytical Methods in BLOCK I

In the first component of the proposed coding scheme, the multiplicative layered
representation of the light field is generated. This can be done analytically one layer at a
time, with repetition until the solution of Equation (2) converges, or by using a CNN [14].
We experimented with the 5 × 5 Bunnies dataset [49] to compare the performance of the
CNN and analytical optimization method to obtain three optimal multiplicative layers.
The analytical method was evaluated for 10, 25, 50, 75, 100, 125, and 150 iterations. The
CNN used was trained with 20 2-D convolutional layers for 20 epochs at a learning rate of
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0.0001 and a batch size of 15. Figure 15 illustrates the PSNR versus computation time plot
of this experiment.

Figure 15. Computation time and accuracy of reproduced light fields using analytical and CNN-based
optimization of multiplicative layers.

In case of the analytical approach, accuracy gradually increases with computation
time. The inference time for the CNN in Figure 15 is marginally slower than that of
the analytical method for the same PSNR performance in our experiment. Nevertheless,
Maruyama et al. [14] have demonstrated that, with better GPUs and more training data,
CNN inference can be performed much faster than the analytical method for the same
reconstruction quality.

We have also shown view 19 of the BLOCK I reproduced Bunnies light field using
analytical and CNN methods, along with their error images, in Figure 16. The CNN results
are better in this case in terms of PSNR and SSIM scores, as well. Thus, we prefer the CNN
over the analytical method in BLOCK I of the proposed coding scheme as it strikes a better
balance between computation speed and accuracy.

(a) (b)
Figure 16. View 19 of Bunnies reproduced using analytical (ANA) and CNN-based (CNN) optimization of multiplicative
layers, with corresponding difference images. (a) ANA: Reproduced view and error, PSNR: 19.94 dB, SSIM: 0.895; (b) CNN:
Reproduced view and error, PSNR: 22.18 dB, SSIM: 0.918.

4. Conclusions

We proposed an efficient representation and novel lossy compression scheme for
layered light-field displays with light-ray operations regulated using multiplicative layers
and a CNN-based method. A single CNN model is employed to learn the optimized
multiplicative layer patterns. A light field is compactly (compressed) represented on a
Krylov subspace, considering the transmittance patterns of such a few layers and approxi-
mation derived by Block Krylov SVD. Factorization derived from BK-SVD exploits spatial
correlation in multiplicative layer patterns with varying low ranks. Further, encoding
with HEVC eliminates the inter-layer and intra-layer redundancies in the low-rank ap-
proximated representation. By choosing varying ranks and quantization parameters, the
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scheme is flexible to adjust the bit rates in the layered representation with a single CNN.
Consequently, it realizes the goal of covering a range of multiple bitrates within a single
trained CNN model. The experiments with benchmark light field datasets exhibit very
competitive results.

This critical characteristic of the proposed scheme sets it apart from other existing
light field coding methods which train a system (or network) to support only specific
bitrates during the compression. Moreover, current solutions are not specifically designed
to target layered displays. Broadly, compression approaches are classified to work for
lenslet-based formats or sub-aperture images based pseudo-sequence representation. Our
proposed scheme could flexibly work with different light-ray operations (multiplication
and addition) and analytical or data-driven CNN-based methods, targeting multi-layered
displays. It is adaptable for a variety of multi-view/light field displays. In addition, it
can complement existing light-field coding schemes, which employ different networks to
encode light field images at different bit rates. This would enable deploying the concept of
layered displays on different auto-stereoscopic platforms. One can optimize the bandwidth
for a given target bit-rate and deliver the 3D contents with limited hardware resources to
best meet the viewers’ preferences.

Our future work span in several directions. We will further extend the proposed idea
to light field displays, such as ones with more than three light attenuating layers, projection-
based, and holographic displays with optical elements constructed using additive layers.
Proof-of-concept experiments with our scheme pave way to form a deeper understanding in
the rank-analysis of a light field using other mathematically valid tensor-based models and
efficient layered representations for 3D displays. Another interesting direction is to extend
the proposed mathematical formulation for coded mask cameras useful in compression
of dynamic light field contents or a focal stack instead of processing multi-view images
in layered displays. We aim to verify our scheme with not only computer simulations,
but with a physical light field display hardware. In addition, we will consider the aspect
of human perception by performing a subjective analysis of perceptual quality on a light
field display. The proposed algorithm uses RGB space in which all channels are equally
important. For image perception, there are better color spaces, like HSV/HSL or Lab.
Analyzing other color spaces would be worth considering in further work.
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HLRA Homography-based low-rank approximation
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References
1. Surman, P.; Sun, X.W. Towards the reality of 3D imaging and display. In Proceedings of the 2014 3DTV-Conference: The True

Vision-Capture, Transmission and Display of 3D Video (3DTV-CON), Budapest, Hungary, 2–4 July 2014; pp. 1–4.
2. Li, T.; Huang, Q.; Alfaro, S.; Supikov, A.; Ratcliff, J.; Grover, G.; Azuma, R. Light-Field Displays: A View-Dependent Approach. In

Proceedings of the ACM SIGGRAPH 2020 Emerging Technologies, Online, 17–28 August 2020; pp. 1–2.
3. Watanabe, H.; Okaichi, N.; Omura, T.; Kano, M.; Sasaki, H.; Kawakita, M. Aktina Vision: Full-parallax three-dimensional display

with 100 million light rays. Sci. Rep. 2019, 9, 17688. [CrossRef]
4. Geng, J. Three-dimensional display technologies. Adv. Opt. Photonics 2013, 5, 456–535. [CrossRef] [PubMed]
5. Wetzstein, G.; Lanman, D.R.; Hirsch, M.W.; Raskar, R. Tensor Displays: Compressive Light Field Synthesis Using Multilayer

Displays with Directional Backlighting. ACM Trans. Graph. 2012, 31, 80. [CrossRef]
6. Sharma, M.; Chaudhury, S.; Lall, B. A novel hybrid kinect-variety-based high-quality multiview rendering scheme for glass-free

3D displays. IEEE Trans. Circuits Syst. Video Technol. 2016, 27, 2098–2117. [CrossRef]
7. Sharma, M.; Chaudhury, S.; Lall, B.; Venkatesh, M. A flexible architecture for multi-view 3DTV based on uncalibrated cameras. J.

Vis. Commun. Image Represent. 2014, 25, 599–621. [CrossRef]
8. Sharma, M. Uncalibrated Camera Based Content Generation for 3D Multi-View Displays. Ph.D. Thesis, Indian Institute of

Technology Delhi, New Delhi, India, 2017.
9. Hirsch, M.; Wetzstein, G.; Raskar, R. A compressive light field projection system. ACM Trans. Graph. 2014, 33, 1–12. [CrossRef]
10. Balogh, T.; Kovács, P.T.; Barsi, A. Holovizio 3D display system. In Proceedings of the 2007 3DTV Conference, Kos, Greece,

7–9 May 2007; pp. 1–4.
11. Takahashi, K.; Saito, T.; Tehrani, M.P.; Fujii, T. Rank analysis of a light field for dual-layer 3D displays. In Proceedings of the 2015

IEEE International Conference on Image Processing (ICIP), Quebec City, QC, Canada, 27–30 September 2015; pp. 4634–4638.
12. Saito, T.; Kobayashi, Y.; Takahashi, K.; Fujii, T. Displaying real-world light fields with stacked multiplicative layers: requirement

and data conversion for input multiview images. J. Disp. Technol. 2016, 12, 1290–1300. [CrossRef]
13. Kobayashi, Y.; Takahashi, K.; Fujii, T. From focal stacks to tensor display: A method for light field visualization without

multi-view images. In Proceedings of the 2017 IEEE International Conference on Acoustics, Speech and Signal Processing
(ICASSP), New Orleans, LA, USA, 5–9 March 2017; pp. 2007–2011.

14. Maruyama, K.; Takahashi, K.; Fujii, T. Comparison of Layer Operations and Optimization Methods for Light Field Display. IEEE
Access 2020, 8, 38767–38775. [CrossRef]

15. Kobayashi, Y.; Kondo, S.; Takahashi, K.; Fujii, T. A 3-D display pipeline: Capture, factorize, and display the light field of a real
3-D scene. ITE Trans. Media Technol. Appl. 2017, 5, 88–95. [CrossRef]

16. Takahashi, K.; Kobayashi, Y.; Fujii, T. From focal stack to tensor light-field display. IEEE Trans. Image Process. 2018, 27, 4571–4584.
[CrossRef]

17. Maruyama, K.; Inagaki, Y.; Takahashi, K.; Fujii, T.; Nagahara, H. A 3-D display pipeline from coded-aperture camera to tensor
light-field display through CNN. In Proceedings of the 2019 IEEE International Conference on Image Processing (ICIP), Taipei,
Taiwan, 22–25 September 2019; pp. 1064–1068.

18. Lee, S.; Jang, C.; Moon, S.; Cho, J.; Lee, B. Additive light field displays: realization of augmented reality with holographic optical
elements. ACM Trans. Graph. 2016, 35, 1–13. [CrossRef]

19. Thumuluri, V.; Sharma, M. A Unified Deep Learning Approach for Foveated Rendering & Novel View Synthesis from Sparse
RGB-D Light Fields. In Proceedings of the 2020 International Conference on 3D Immersion (IC3D 2020), Brussels, Belgium, 15
December 2020.

20. Heide, F.; Lanman, D.; Reddy, D.; Kautz, J.; Pulli, K.; Luebke, D. Cascaded displays: Spatiotemporal superresolution using offset
pixel layers. ACM Trans. Graph. 2014, 33, 1–11. [CrossRef]

21. Hung, F.C. The Light Field Stereoscope: Immersive Computer Graphics via Factored Near-Eye Light Field Displays with Focus
Cues. ACM Trans. Graph. 2015, 34, 60. [CrossRef]

22. Maruyama, K.; Kojima, H.; Takahashi, K.; Fujii, T. Implementation of Table-Top Light-Field Display. In Proceedings of the
International Display Workshops (IDW 2018), Nagoya, Japan, 12–14 December 2018.

23. Liu, D.; Wang, L.; Li, L.; Xiong, Z.; Wu, F.; Zeng, W. Pseudo-sequence-based light field image compression. In Proceedings of the
2016 IEEE International Conference on Multimedia & Expo Workshops (ICMEW), Seattle, WA, USA, 11–15 July 2016; pp. 1–4.

24. Li, L.; Li, Z.; Li, B.; Liu, D.; Li, H. Pseudo-sequence-based 2-D hierarchical coding structure for light-field image compression.
IEEE J. Sel. Top. Signal Process. 2017, 11, 1107–1119. [CrossRef]

http://doi.org/10.1038/s41598-019-54243-6
http://dx.doi.org/10.1364/AOP.5.000456
http://www.ncbi.nlm.nih.gov/pubmed/25530827
http://dx.doi.org/10.1145/2185520.2185576
http://dx.doi.org/10.1109/TCSVT.2016.2564798
http://dx.doi.org/10.1016/j.jvcir.2013.07.012
http://dx.doi.org/10.1145/2601097.2601144
http://dx.doi.org/10.1109/JDT.2016.2594804
http://dx.doi.org/10.1109/ACCESS.2020.2975209
http://dx.doi.org/10.3169/mta.5.88
http://dx.doi.org/10.1109/TIP.2018.2839263
http://dx.doi.org/10.1145/2897824.2925971
http://dx.doi.org/10.1145/2601097.2601120
http://dx.doi.org/10.1145/2766922
http://dx.doi.org/10.1109/JSTSP.2017.2725198


Sensors 2021, 21, 4574 23 of 24

25. Ahmad, W.; Olsson, R.; Sjöström, M. Interpreting plenoptic images as multi-view sequences for improved compression. In
Proceedings of the 2017 IEEE International Conference on Image Processing (ICIP), Beijing, China, 17–20 September 2017;
pp. 4557–4561.

26. Ahmad, W.; Ghafoor, M.; Tariq, S.A.; Hassan, A.; Sjöström, M.; Olsson, R. Computationally efficient light field image compression
using a multiview HEVC framework. IEEE Access 2019, 7, 143002–143014. [CrossRef]

27. Gu, J.; Guo, B.; Wen, J. High efficiency light field compression via virtual reference and hierarchical MV-HEVC. In Proceedings of
the 2019 IEEE International Conference on Multimedia and Expo (ICME), Shanghai, China, 8–12 July 2019; pp. 344–349.

28. Sharma, M.; Ragavan, G. A Novel Randomize Hierarchical Extension of MV-HEVC for Improved Light Field Compression. In
Proceedings of the 2019 International Conference on 3D Immersion (IC3D), Brussels, Belgium, 11 December 2019; pp. 1–8.

29. Sullivan, G.J.; Ohm, J.R.; Han, W.J.; Wiegand, T. Overview of the high efficiency video coding (HEVC) standard. IEEE Trans.
Circuits Syst. Video Technol. 2012, 22, 1649–1668. [CrossRef]

30. Senoh, T.; Yamamoto, K.; Tetsutani, N.; Yasuda, H. Efficient light field image coding with depth estimation and view synthesis. In
Proceedings of the 2018 26th European Signal Processing Conference (EUSIPCO), Rome, Italy, 3–7 September 2018; pp. 1840–1844.

31. Huang, X.; An, P.; Shan, L.; Ma, R.; Shen, L. View synthesis for light field coding using depth estimation. In Proceedings of the
2018 IEEE International Conference on Multimedia and Expo (ICME), San Diego, CA, USA, 23–27 July 2018; pp. 1–6.

32. Huang, X.; An, P.; Cao, F.; Liu, D.; Wu, Q. Light-field compression using a pair of steps and depth estimation. Opt. Express 2019,
27, 3557–3573. [CrossRef] [PubMed]

33. Hériard-Dubreuil, B.; Viola, I.; Ebrahimi, T. Light field compression using translation-assisted view estimation. In Proceedings of
the 2019 Picture Coding Symposium (PCS), Ningbo, China, 12–15 November 2019; pp. 1–5.

34. Bakir, N.; Hamidouche, W.; Déforges, O.; Samrouth, K.; Khalil, M. Light field image compression based on convolutional neural
networks and linear approximation. In Proceedings of the 2018 25th IEEE International Conference on Image Processing (ICIP),
Athens, Greece, 7–10 October 2018; pp. 1128–1132.

35. Zhao, Z.; Wang, S.; Jia, C.; Zhang, X.; Ma, S.; Yang, J. Light field image compression based on deep learning. In Proceedings of
the 2018 IEEE International Conference on Multimedia and Expo (ICME), San Diego, CA, USA, 23–27 July 2018; pp. 1–6.

36. Wang, B.; Peng, Q.; Wang, E.; Han, K.; Xiang, W. Region-of-interest compression and view synthesis for light field video streaming.
IEEE Access 2019, 7, 41183–41192. [CrossRef]

37. Schiopu, I.; Munteanu, A. Deep-Learning-Based Macro-Pixel Synthesis and Lossless Coding of Light Field Images; APSIPA Trans-
actions on Signal and Information Processing; Cambridge University Press: Cambridge, UK, 2019; Volume 8, p. e20. Avail-
able online: https://www.cambridge.org/core/journals/apsipa-transactions-on-signal-and-information-processing/article/
deeplearningbased-macropixel-synthesis-and-lossless-coding-of-light-field-images/42FD961A4566AB4609604204B6B517CD (ac-
cessed on 7 March 2021).

38. Jia, C.; Zhang, X.; Wang, S.; Wang, S.; Ma, S. Light field image compression using generative adversarial network-based view
synthesis. IEEE J. Emerg. Sel. Top. Circuits Syst. 2018, 9, 177–189. [CrossRef]

39. Liu, D.; Huang, X.; Zhan, W.; Ai, L.; Zheng, X.; Cheng, S. View synthesis-based light field image compression using a generative
adversarial network. Inf. Sci. 2021, 545, 118–131. [CrossRef]

40. Jiang, X.; Le Pendu, M.; Farrugia, R.A.; Guillemot, C. Light field compression with homography-based low-rank approximation.
IEEE J. Sel. Top. Signal Process. 2017, 11, 1132–1145. [CrossRef]

41. Dib, E.; Le Pendu, M.; Jiang, X.; Guillemot, C. Local low rank approximation with a parametric disparity model for light field
compression. IEEE Trans. Image Process. 2020, 29, 9641–9653. [CrossRef]

42. Vagharshakyan, S.; Bregovic, R.; Gotchev, A. Light field reconstruction using shearlet transform. IEEE Trans. Pattern Anal. Mach.
Intell. 2017, 40, 133–147. [CrossRef]

43. Ahmad, W.; Vagharshakyan, S.; Sjöström, M.; Gotchev, A.; Bregovic, R.; Olsson, R. Shearlet transform-based light field
compression under low bitrates. IEEE Trans. Image Process. 2020, 29, 4269–4280. [CrossRef]

44. Chen, Y.; An, P.; Huang, X.; Yang, C.; Liu, D.; Wu, Q. Light Field Compression Using Global Multiplane Representation and
Two-Step Prediction. IEEE Signal Process. Lett. 2020, 27, 1135–1139. [CrossRef]

45. Liu, D.; An, P.; Ma, R.; Zhan, W.; Huang, X.; Yahya, A.A. Content-based light field image compression method with Gaussian
process regression. IEEE Trans. Multimed. 2019, 22, 846–859. [CrossRef]

46. Hu, X.; Shan, J.; Liu, Y.; Zhang, L.; Shirmohammadi, S. An adaptive two-layer light field compression scheme using GNN-based
reconstruction. Acm Trans. Multimed. Comput. Commun. Appl. TOMM 2020, 16, 1–23. [CrossRef]

47. Levoy, M.; Hanrahan, P. Light field rendering. In Proceedings of the 23rd Annual Conference on Computer Graphics and
Interactive Techniques, New Orleans, LA, USA, 4–9 August 1996; pp. 31–42.

48. Gortler, S.J.; Grzeszczuk, R.; Szeliski, R.; Cohen, M.F. The lumigraph. In Proceedings of the 23rd Annual Conference on Computer
Graphics and Interactive Techniques, New Orleans, LA, USA, 4–9 August 1996; pp. 43–54.

49. Wetzstein, G. Synthetic Light Field Archive-MIT Media Lab. Available online: https://web.media.mit.edu/~gordonw/
SyntheticLightFields/ (accessed on 7 March 2021).

50. Halko, N.; Martinsson, P.G.; Tropp, J.A. Finding structure with randomness: Probabilistic algorithms for constructing approximate
matrix decompositions. SIAM Rev. 2011, 53, 217–288. [CrossRef]

51. Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.; Thirion, B.; Grisel, O.; Blondel, M.; Prettenhofer, P.; Weiss, R.; Dubourg, V.;
et al. Scikit-learn: Machine learning in Python. J. Mach. Learn. Res. 2011, 12, 2825–2830.

http://dx.doi.org/10.1109/ACCESS.2019.2944765
http://dx.doi.org/10.1109/TCSVT.2012.2221191
http://dx.doi.org/10.1364/OE.27.003557
http://www.ncbi.nlm.nih.gov/pubmed/30732373
http://dx.doi.org/10.1109/ACCESS.2019.2907572
https://www.cambridge.org/core/journals/apsipa-transactions-on-signal-and-information-processing/article/deeplearningbased-macropixel-synthesis-and-lossless-coding-of-light-field-images/42FD961A4566AB4609604204B6B517CD
https://www.cambridge.org/core/journals/apsipa-transactions-on-signal-and-information-processing/article/deeplearningbased-macropixel-synthesis-and-lossless-coding-of-light-field-images/42FD961A4566AB4609604204B6B517CD
http://dx.doi.org/10.1109/JETCAS.2018.2886642
http://dx.doi.org/10.1016/j.ins.2020.07.073
http://dx.doi.org/10.1109/JSTSP.2017.2747078
http://dx.doi.org/10.1109/TIP.2020.3029655
http://dx.doi.org/10.1109/TPAMI.2017.2653101
http://dx.doi.org/10.1109/TIP.2020.2969087
http://dx.doi.org/10.1109/LSP.2020.3003533
http://dx.doi.org/10.1109/TMM.2019.2934426
http://dx.doi.org/10.1145/3395620
https://web.media.mit.edu/~gordonw/SyntheticLightFields/
https://web.media.mit.edu/~gordonw/SyntheticLightFields/
http://dx.doi.org/10.1137/090771806


Sensors 2021, 21, 4574 24 of 24

52. Musco, C.; Musco, C. Randomized block krylov methods for stronger and faster approximate singular value decomposition.
arXiv 2015, arXiv:1504.05477 .

53. Cullum, J.; Donath, W.E. A block Lanczos algorithm for computing the q algebraically largest eigenvalues and a corresponding
eigenspace of large, sparse, real symmetric matrices. In Proceedings of the 1974 IEEE Conference on Decision and Control
Including the 13th Symposium on Adaptive Processes, Phoenix, AZ, USA, 20–22 November 1974; pp. 505–509.

54. Golub, G.H.; Underwood, R. The block Lanczos method for computing eigenvalues. In Proceedings of the Symposium Conducted
by the Mathematics Research Center, the University of Wisconsin, Madison, WI, USA, 28–30 March 1977; pp. 361–377.

55. Gu, M.; Eisenstat, S.C. Efficient algorithms for computing a strong rank-revealing QR factorization. Siam J. Sci. Comput. 1996,
17, 848–869. [CrossRef]

56. Rerabek, M.; Ebrahimi, T. New light field image dataset. In Proceedings of the 8th International Conference on Quality of
Multimedia Experience (QoMEX), Lisbon, Portugal, 6–8 June 2016.

57. Dansereau, D.G.; Pizarro, O.; Williams, S.B. Decoding, calibration and rectification for lenselet-based plenoptic cameras. In
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Portland, OR, USA, 23–28 June 2013; pp.
1027–1034.

58. Pennebaker, W.B.; Mitchell, J.L. JPEG: Still Image Data Compression Standard; Kluwer Academic Publishers: Norwell, MA, USA,
1993.

59. Bjontegaard, G. Calculation of Average PSNR Differences between RD-Curves; Document VCEG-M33, ITU-T VCEG Meeting,
2001. Available online: https://www.itu.int/wftp3/av-arch/video-site/0104_Aus/VCEG-M33.doc (accessed on 7 March 2021).

http://dx.doi.org/10.1137/0917055
https://www.itu.int/wftp3/av-arch/video-site/0104_Aus/VCEG-M33.doc

	Introduction
	Proposed Coding Scheme for Multi-Layered Displays
	Light Field Views to Stacked Multiplicative Layers
	Low Rank Representation and Coding of Stacked Multiplicative Layers on Krylov Subspace
	The Encoding of Rank-Approximated Layers
	The Decoding and Reconstruction of the Light Field

	Results and Analysis
	Experimental Settings of CNN
	Implementation Details of Proposed Scheme 
	Results and Comparative Analysis
	Advantages of Using Multiplicative Layers
	Advantages of Using CNN over Analytical Methods in BLOCK I

	Conclusions
	References

