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Abstract: In civil engineering, different machine learning algorithms have been adopted to process
the huge amount of data continuously acquired through sensor networks and solve inverse problems.
Challenging issues linked to structural health monitoring or load identification are currently related
to big data, consisting of structural vibration recordings shaped as a multivariate time series. Any
algorithm should therefore allow an effective dimensionality reduction, retaining the informative
content of data and inferring correlations within and across the time series. Within this framework,
we propose a time series AutoEncoder (AE) employing inception modules and residual learning for
the encoding and the decoding parts, and an extremely reduced latent representation specifically
tailored to tackle load identification tasks. We discuss the choice of the dimensionality of this latent
representation, considering the sources of variability in the recordings and the inverse-forward nature
of the AE. To help setting the aforementioned dimensionality, the false nearest neighbor heuristics
is also exploited. The reported numerical results, related to shear buildings excited by dynamic
loadings, highlight the signal reconstruction capacity of the proposed AE, and the capability to
accomplish the load identification task.

Keywords: load/system identification; deep learning; structural dynamics; autoencoder; false
nearest neighbor

1. Introduction

Modern sensor technology makes it possible to continuously monitor structures and
infrastructures and, thank to the use of deep learning (DL) techniques, also an effective
health management and structural prognostics [1]. The analysis of the vibrational response
of buildings, i.e., of displacement and/or acceleration recordings shaped as time series
(TS), is a popular approach to structural health monitoring (SHM) aiming to assess the
damage state of the structures [2]. The said vibrational response depends both on the
structural properties (mass and stiffness distribution, sources of damping, possible damage
pattern), and on the environmental and operational conditions [3]. The identification of
the loading conditions can improve the effectiveness of a SHM system allowing, e.g., the
setting of physics-based models matching the structural frequencies to be monitored and
not the harmonic components of the loading [4,5]. The importance of the topic has led,
in the past, to a series of approaches addressing modal identification for output-only
systems [6,7]. Due to the ill-posedness of the load identification problem, regularization
methods based on singular value decomposition were proposed in [8]: they require a
minimum tuning work to be applied, possibly within a multi-objective optimization
framework [9]. Deterministic regularization methods have been recently adopted to
quantify uncertainty as interval numbers [10], keeping the computational burden limited
with respect to probabilistic approaches.
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Similarly to what done by singular value decomposition-based methods, we exploit
a reduced representation of vibrational data to deal with the ill-posedness of the load
identification problem [11]. An AutoEncoder (AE) has been designed to perform the
dimensionaliy reduction; such an AE represents the feature extraction task of the SHM
approach [12]. An AE is a neural network (NN)-based architecture capable of performing
nonlinear dimensionality reduction of its input [13]. Due to the difficulty in reconstructing
the TS frequency content and peaks, AEs are normally employed after a pre-processing
stage. In the SHM field, an AE was employed in [14] to reduce the dimensionality of
measurements of vibrations induced by the vehicle-bridge interaction, preliminary trans-
formed into the frequency domain, and exploited to quantify and localise damage. In [15],
a sparse AE was used as regression model to identify the damage location in a seven-storey
steel frame structure, performing dimensionality reduction through modal identification.
Other paradigms were exploited for fault detection via signal reconstruction, e.g., through
auto-associative extreme learning machines [16].

The advantages of employing DL to construct a regression model, after a prelimi-
nary data dimensionality reduction, were explored in [17,18]. In [19], contractive AEs
were used to extract robust features and perform fault detection for a rotating machinery.
Here, we also aim at exploiting the knowledge of the dynamic behaviour of the structure
and its interaction with the loading conditions to highlight the connection between the
reconstruction capacity of the AE and the properties of the structure under study.

Compared to classic regularization techniques, an AE and, more generally speaking,
NNs require a training stage wherein the network is trained by means of a suitable dataset
(training dataset). Such training of the AE allows us to handle large uncertainty levels,
identifying hidden dependencies between the handled signals and the loading conditions.
Dimensionality reduction is therefore intended to perform a data mining task [20]. Instead
of applying a pre-processing stage before data dimensionality reduction, we directly
operate on multivariate time series (MTS) to achieve at least two advantages: avoiding any
feature engineering; obtaining a data reduced representation exploitable for different tasks.

A further aspect addressed in this paper is related to the optimal setting of the dimen-
sion of the latent representation; both the reconstruction capacity of the AE and the load
identification task are indeed affected by the number of latent variables. As this number
looks hard to establish a-priori, due to the highly nonlinear response of deep NNs, the false
nearest neighbour (FNN) technique has been exploited. We show how this critical feature
can be set a-posteriori, by looking at the activation of the latent variables.

Compared to the existing literature, the contributions of our work are manifold,
and deal with: (i) the application of a DL framework for data dimensionality reduction
and regression in view of load identification; (ii) the analysis of the impact of structural
dynamics on the statistical content of the signals, thereby helping to understand the
outcome of the AE training; (iii) the establishment of a criterion to set a suitably reduced
number of latent variables.

The remainder of the paper is organized as follows. In Section 2, the AE architecture
is described, with an eye on its use in the load identification task for structural dynamics.
In Section 3, the a-posteriori choice of the dimensionality of the reduced data representation
is addressed, showing how the FNN heuristics can be exploited (see also [21]). In Section 4,
extensive numerical results are presented, focusing on shear buildings: first, a deep in-
vestigation is reported for a two-storey case; next, the 39-storey Pirelli Tower in Milan is
considered to quantitatively assess the performance and the computational burden of the
proposed methodology. Finally, Section 5 gathers some concluding remarks, and suggests
future developments to ensure the applicability of the approach to other structural systems.
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2. Autoencoders for Input (Load) Identification
2.1. Autoencoder Paradigm

In a NN architecture, weights and biases, collected in Ω, are set during the training
stage by minimizing a loss function c(Ū, U), where: Ū ∈ RL×Nout

is the desired output,
which is known within a supervised learning framework; U = U(V, Ω) ∈ RL×Nout

is
the NN output; V is the NN input. The definition of c(U, Ū) depends on the task to be
accomplished by the NN. In this work, as we aim at load identification, the loss function is
given by the mean squared error (MSE):

c(Ū, U) =
L

∑
l=1

N

∑
n=1

(ūln − uln)
2, (1)

where uln is the (l, n)-th entry of U, and ūln is the corresponding entry of Ū. Loss mini-
mization during training usually relies on the back-propagation of the error c(Ū, U) (see,
e.g., [22]); to achieve it, Adam [23], namely a first-order stochastic gradient descent algo-
rithm, has been adopted.

Tailored to the mentioned load identification task, AEs are exploited to perform di-
mensionality reduction of the structural vibrations recorded by a sensor network. Within a
time window (0, T), each sensor provides a univariate TS, while the entire collection of
the recordings by the whole sensor network provides an MTS, that is a collection of syn-
chronized TS. From now on, we denote by V = [v1, . . . , vN ] ∈ RL×N the generic output of
a monitoring system employing N sensors, each of them consisting of L samples within
the considered time window.

Convolutional layers allow to detect both local correlations within a TS, and cor-
relations among different TS. This latter aspect is very important for the SHM of civil
infrastructures, as it provides a means to implicitly recognize the shape of the vibration
modes [24,25]. By stacking convolutional layers, more complex correlation problems in
time can be handled, allowing to detect the aforementioned modes of the structure, still
keeping the number of the weights in Ω rather limited.

The designed AE stacks a first sequence of convolutional layers, which represent the
encoder function enc : V→ z, where z ∈ RP and P� (L× N). The vector z, which is the
latent representation of V, does not usually have a clear physical meaning, and requires a
supervised procedure to interpret its content. This procedure, generally consisting of the
recovery of the generative factors of the input dataset, can be accomplished only if few of
the generative factors are known in advance [26]; in the following Section 3, the generative
factors will be discussed in details.

The architecture of the adopted enc is depicted in Figure 1. It features two main
branches: the first one stacking a sequence of three inception modules, operating dimen-
sionality reduction [27]; the second one stacking nine one-dimensional convolutional layers,
featuring a scaled exponential linear unit (SELU) activation function [28]. The two branches
are preceded by a one-dimensional convolutional layer, and are followed by a concatena-
tion layer, a global average pooling (GAP) layer [27] and, finally, two fully connected (FC)
layers. Regarding these two final FC layers, the former employs a SELU activation function
while the latter does not exploit any activation. All the convolutional layers employ a stride
S = 1. The inception modules have been proved beneficial to improve the reconstruction
capacity of the AE, at variance with the residual learning paradigm (ResNet) [29] or the
squeeze-and-excitation modules (SENet) [30]. The described architecture has been obtained
after having explored several designs suited to pattern recognition.

We highlight that the reason behind the use of inception modules is the attempt of
approximating the sparse deep NN structure for the optimal representation (intended
as the capacity of inferring correlations) of the input dataset, see [31] for a theoretical
discussion of this topic. Despite the lack of a rigorous mathematical proof connecting the
peculiar design of the inception modules with the aforementioned theoretical evidences,
inception modules have been proven successful in many applications. The same idea of
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approximating a sparse NN architecture by exploiting dense operators available in libraries
like Tensorflow [32], here used with the Keras [33] API, has inspired the design of the
employed two-branch architecture.

Through the GAP, synthetic information collected in a one-dimensional array is
determined by computing an average value for each input channel. The last two FC
layers are finally used to give extra flexibility to the encoder, to combine the synthetic
descriptions of the channel contents extracted by the GAP and, as a result, to obtain z.
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Figure 1. Architecture of the encoder. Layers are schematically represented by boxes: rectangular boxes with rounded
corners depict single layer operations; rectangular boxes with sharp corners depict inception modules with dimensionality
reduction; the elliptic box depicts the encoder input, while the diamond box depicts the encoder output. Orange edges are
used for the layers that do not apply any activation function; for the other layers, the ReLU is used as activation function in
the inception module, while the SELU is employed elsewhere. Each inception module assembles three one-dimensional
convolutional (1D CONV.) layers and one concatenation layer, as shown in the grey box. In each box, the text in the first line
specifies the layer type; the text in the second and (possibly) the third lines specifies instead the number of channels of the
layer output and, for the convolutional layers, the kernel dimension.

A second sequence of layers provides the subsequent decoder part, whose correspond-
ing function is denoted by dec : z → Ū. Convolutional layers are also exploited for the
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decoder. The designed NN architecture of dec is depicted in Figure 2: first, a FC layer,
employing no activation functions, is used to expand z; second, the one-dimensional array
obtained with the FC layer, is reshaped as a two-dimensional array fashioned as an MTS;
next, three convolutional sets are used, each of which stacking seven dilated convolutional
layers; finally, three FC layers, the first two using a SELU activation function and the third
without any activation, are employed to provide U. A dilated convolutional layer [34],
with H setting the kernel of the convolution, operates by spacing its input with a dilation
rate J. By setting J = 1, a dilated convolution yields a standard convolution. The seven
dilated convolutional layers feature H = 2 and J doubled every layer up to J = 128.

input
z

FC
L · Nd

RESHAPE
Nd

1D CONV.
Nd, H = 2,

J = 2

1D CONV.
Nd, H = 2,

J = 4

1D CONV.
Nd, H = 2,

J = 8

1D CONV.
Nd, H = 2,

J = 16

1D CONV.
Nd, H = 2,

J = 32

1D CONV.
Nd, H = 2,

J = 64

1D CONV.
Nd, H = 2,

J = 128

dilated convolution stack

dilated convolution stack
Nd, H = 2, J = {2, 4, 8, 16, 32, 64, 128}

dilated convolution stack
Nd, H = 2, J = {2, 4, 8, 16, 32, 64, 128}

FC
16 · N

FC
4 · N

FC
N

output
U

Figure 2. Architecture of the decoder. Layers are schematically represented by boxes, with the
notation as detailed in the caption of Figure 1. Orange edges are used for the layers that do not apply
any activation function, while the SELU is employed elsewhere. Each stack of dilated convolutions is
formed by seven dilated convolutional layer, as shown in the grey box.

The use of three dilated convolution stacks have been inspired by [35]: there, it was
argued that a stack of dilated convolutions, with J doubled every layer, is equivalent to
apply a unique convolutional layer (with H = 256), but in a by far more efficient way
and involving much less parameters to tune. The intuition behind this architecture is
that convolutions featuring smaller values of J are responsible for reconstructing short-
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term patterns, while those featuring larger J values allow the reconstruction of long-term
patterns. Compared to [35], we have not employed causal connections, originally proposed
to avoid the violation of the ordering of the layer input data, given the stationary framework
of the present study. The last FC layers are used for combining the (possibly redundant)
information contained in the output of the convolution stacks, reducing its dimensionality
along the channel dimension.

If Ū has the same dimensions of V, the AE can accomplish the task of reconstructing
the input V by setting Ū = V in Equation (1): the resulting working principle of the AE is
sketched in Figure 3. The sought reduced representation z of the input V is thus obtained
by composing the encoder and the decoder as dec ◦ enc : V→ U, and setting U ≈ V.

input
V ∈ RL×N

latent
representation

z ∈ RP

output
U ∈ RL×N

minimise
c(V, U)

enc dec

Figure 3. Schematic representation of the AutoEncoder. The loss function c(V, U) is computed as in
Equation (1). For the enc and dec architectures, see Figures 1 and 2, respectively.

2.2. Solving Regression Problems

The latent representation obtained with the proposed AE can be exploited for regres-
sion tasks [17], like load identification. Starting from the MTS V, assumed to be recorded by
the deployed sensors, our goal is to determine the loadings applied to the structural system
within the time window of interest. To this aim, we describe the loading conditions through
a vector of parameters η ∈ RQ; suitable probability density functions (pdfs) Pq must be
then associated to the entries ηq, q = 1, . . . , Q. A similar approach was adopted in [36],
where random variables, referred to as probabilistic input data, were used to describe the
geometric properties and the parameters governing the carbonation process of a reinforced
concrete beam.

In the resulting problem, the independent regression variables are collected in V,
while the dependent ones are collected in η. Using V as regression input allows to establish
the dependence between η and the L × N variables in V or, in other words, to infer
some relevant parameters ruling thousands of measurements of the structural response,
without digging into the temporal correlation within each TS and the correlations among
different TS. In this latter case, the use of a NN to accomplish the inference task, would
require a large number of parameters in Ω to model η as η = η(V). For this reason, it would
be way better to use z as regression input, being z a synthetic and exhaustive description
of V, with P entries only. Figure 4 shows how the regression model r : z→ η is integrated
within the AE architecture.

The designed NN architecture of the regression model r is depicted in Figure 5: first,
six FC layers are stacked, each one featuring a SELU activation function and empowered by
skip connections [29] and batch normalization (BN) [37]; then, a FC layer with no activation
function provides the output ηr. Compared to the encoder and the decoder architectures,
only one-dimensional arrays are involved in the layer definitions. Each FC layer outputs Nr
channels, and Nr is therefore the only hyperparameter to tune in the proposed architecture.
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V ∈ RL×N

generative factors
η ∈ RQ

input
z ∈ RP U ∈ RL×N

Autoencoder for time series

output
ηr ∈ RQ

minimise
cr(η, ηr)

enc dec

r

Figure 4. Schematic representation of the regression between z and η, wherein the loss function
cr(η, ηr) is computed via Equation (2). For the enc and dec architectures, see again Figures 1 and 2.
For the r architecture, see Figure 5.

input
z

1st FC
Nr

BN

2nd FC
Nr

+

BN 3rd FC
Nr

+

BN4th FC
Nr

+

BN 5th FC
Nr

+

BN6th FC
Nr

+

BN 7th FC
Nr

output
ur

Figure 5. Architecture of the regression model; as for the notation, see the caption of Figure 1.
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Such a design has been inspired by the general trend to employ deeper and deeper
NNs to minimize the loss cr(η, ηr), defined as:

cr(η, ηr) =
Q

∑
q=1

(
ηq − ηrq

)2, (2)

where η is the target output and ηr ∈ RQ is the output of the regression model.
Skip connections are employed to address the degradation problem usually suffered

by deep NNs [38]. Denoting as w : yi−1 → yi the transformation operated by the i-th FC
layer, skip connections allow to obtain w̃ : yi−1 → (yi + yi−1), by summing yi−1 (the i-th
layer input) to yi (the i-th layer output). As discussed in [29], this usually enhances the
training procedure, since it acts as a useful preconditioning of the mapping, so that the
error can be more easily back-propagated through the whole NN. BN finally addresses
the additional issue of the vanishing/exploding gradient problem, by zero-centering and
normalizing the input.

We underline that the two training stages featured by this architecture are run sep-
arately: first, dec ◦ enc is trained by minimizing c(V, U); then, r is trained by minimizing
the relevant cost function cr(η, ηr). A combined minimization of the two loss functions
would make the training more complex, without enhancing the performance of the load
identification task.

3. Choice of the Latent Dimension
3.1. Generative Factors

For the present study, if the mass and stiffness properties of the structural systems
are assumed to be known, the structural frequencies and vibration modes are also set.
The latent variables of the AE have to describe the time variability of the applied loads
and, as a result, the structural response; the dimension P of z thus seems to be linked
to η only, as this vector is responsible for the variability of the output and collects the
generative factors. However, as it will be shown in the results Section, setting P according
to this rationale does not prove to be a satisfactory option: to minimize the reconstruction
error of the AE and to effectively solve the regression problem starting from the latent
representation z, P must be increased. To understand how to set P, we first try to analyse
separately how enc and dec work. Compared to other dimensionality reduction techniques,
like principal component analysis, the AE implicitly requires to solve an inverse problem.
More precisely, enc solves an inverse problem (find the latent factors z enabling the genera-
tion of the input V), while dec solves the specular forward problem, (reconstruct V from
z). As seen previously, the inverse and forward problems are jointly solved by minimising
the loss function c(V, U); it is thus necessary to train the NN in an unsupervised manner,
without knowing a-priori z [17]. The solution of this problem may justify the need of
adopting P greater than the least possible number of generative factors that one could
assume just by considering the input dataset.

Indeed, as inverse problems are often ill-posed, a one-to-one correspondence between
inputs in V and outputs in z usually does not exist.

3.2. False Nearest Neighbour Heuristics

From the discussion above, it seems hard to set a-priori the optimal number of latent
variables, even when the number of generative factors for the dataset at hand is known.
On one side, a too small value of P could have an impact on the decoder capability of
reproducing V; on the other side, a too large value of P would introduce redundancy in the
latent representation, that could ultimately spoil the minimization of c(V, U), making the
understanding of the correlation between the latent variables and the model response even
harder. It would be therefore useful to design a method to automatically set the optimal
value of P.
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Promising results in this regard come from the use of the FNN heuristics. Initially
adopted for setting the appropriate embedding dimension of dynamic systems with the
method of lags [39], the FNN heuristics has been recently proposed in [21] as activity
regulariser for any NN employing hidden layers. The idea is to add a regularization term
$(z) to the AE loss function c(V, U), according to:

cFNN(V, U, z) = c(V, U) + γL$(z), (3)

so that unnecessary activations of the latent variables are penalized. In Equation (3), γ > 0
is an hyperparameter that sets the strength of the regularization term, while L is again the
number of samples in each input TS.

If the variance of the activation values assumed by a latent variable becomes small,
that variable will marginally affect the signal reconstruction, as if it were partially turned
off. Therefore, once the AE is trained, the optimal number of latent variables is determined
by looking at the latent variables featuring large activation variances for the dataset at hand.
The crux is moved to the setting of a proper value for γ, an issue discussed in Section 4 and
that we aim to further address in the future.

Coming to the regularization term, $(z) is computed by counting the false nearest
neighbors observed for different dimensions P ≤ Pmax of the latent space, where Pmax is
the maximum allowed dimension. The aforementioned counting is carried out by looking
at the latent representation of each MTS V as a point in the space RP, and evaluating if
overlapping points in RP are well separated in RP+1. If this is the case, these points are
false neighbors in span{z} ∈ RP, and thus increase $(z). A variational formulation of
the FNN algorithm, originally proposed in [39], was developed in [21] to be compatible
with the training of the NN via gradient descent-based techniques, and has been used in
this work.

To clearly report the entire methodology here proposed, Figure 6 provides a recap of
what discussed so far, addressing also the offline part of the procedure, namely the steps
that must be taken before the use as a monitoring system.

offline part

Goal:
• Train the AE dec ◦ enc.
• Train the regression model r.

Required input:

• Dataset of vibration recordings V.
• Corresponding parameters η describing the load.

Procedure steps:

• Set the optimal number P of latent variables of
the AE.

• Train the AE.
Input: V; target output: V.

• Train r.
Input: enc(V); target output: η.

online part

Input
vibration

recordings V

Compute
r(enc(V))

Output
load describing
parameters ηr

Figure 6. Proposed load identification strategy.

4. Numerical Results

Two case studies are considered in the following, with the purpose of assessing the
capability of the proposed approach to identify the parameters ruling the space and time
variability of the loading applied to a structural system.

The first one deals with a two-storey shear building with lateral loads acting at each
storey; it can be considered as the simplest possible structure of this type. Due to the limited
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need of computational resources to run the relevant structural model, a deep investigation
is reported regarding the effect of the latent representation on the accuracy of the inverse
problem solution, allowing also for the FNN heuristics.

The second one is the Pirelli tower in Milano, already studied, e.g., in [40–42], a cast-in-
placed reinforced concrete building featuring 39 storeys for a total height of 130 m. Through
this numerical case study, we show the feasibility of the proposed approach to deal with the
difficulties arising from a real life high-rise building, still considering horizontal excitations
only. The identification of the parameters ruling load amplitude and time variability has
been performed in this case by exploiting the insights gained from the first case study.

4.1. Two-Storey Shear Building
4.1.1. Shear Building Model

Shear building models are widely used in civil engineering for the vibration analysis
of structures subject to lateral loads. Despite their simplicity, these models are very effective
in characterizing the dynamic behavior of buildings whose floors have large out-of-plane
stiffness. Their use in seismic analysis is encouraged by design codes like Eurocode 8 [43],
that allow their adoption whenever requirements related to the aforementioned out-of-
plane stiffness are satisfied, e.g., in terms of minimum slab thickness. To further simplify the
analysis, we assume that the distribution of masses and stiffnesses are such that torsional
effects can be neglected. Accordingly, the effects of lateral forces are decoupled along
the two in-plan directions and the structural response of the building can be obtained by
running two separate analysis, one for each lateral direction, by employing just one degree-
of-freedom (dof) per floor. Damping effects have been disregarded, since they are usually
not relevant in the identification of continuously excited systems [5,44]. A schematic
representation of the considered two-storeys shear building model is reported in Figure 7.
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Figure 7: Two-storey shear building model. The horizontal, or lateral displacements are assumed to be
recorded by the SHM system.

The time dependent lateral loads F (t) ∈ RL×N are applied to the floors, with a linearly
increasing amplitude along the height of the building and a sinusoidal variation in time,
namely

Fn (t) =
n

N
αsin (2πφt) n = 1, . . . , N, (7)

where: t is time; N is the number of floors (here N = 2); α is the load amplitude factor,
and φ is the load frequency. The resulting parameter vector is thus η = {α, φ}, with Q = 2
to fully describe each loading condition. To define the load, we have taken inspiration from
the lateral force method described in [47], which can be adopted whenever the structural
response is mainly related to the first mode of vibration of the building. The lateral force
method can be adopted to define the peak actions in structural members through an equiv-
alent static analysis under earthquake excitation; in our dynamic analyses, we have used the
same variation of the load amplitude along the vertical direction. The sinusoidal variation in
time has been instead adopted by considering that any dynamic loading can be decomposed
into the sum of sinusoidal components through a Fourier series.

By assuming that the loading parameters α and φ, the floor masses and the inter-storey
stiffnesses are constant in time, the building response is stationary within the time window
of interest. If within each MTS the building always features the same mass and stiffness
properties, long-term degradation effects like concrete carbonation and rebars rusting, chlo-
ride and sulphate attacks for reinforced concrete are disregarded. A discussion on how to
cope with the effects of the mentioned degradation processes within a SHM procedure like
the one here proposed, is beyond the scope of this work. Anyhow, it is worth stressing that
our procedure will be, in principle, able to address this issue by including in the generative
factors the stiffness reduction of the structural members, hence by modelling the effect of
damage on the building response [31, 32, 49].

To identify the loads applied on a two-storey shear building, the dynamic response of
the structure is numerically simulated and pseudo-experimental sensor recordings, shaped
as MTS to form the input dataset, are represented by the storey lateral displacements.

5.0.1. Signal reconstruction

The AE has been first employed to reduce the dimensionality of the pseudo-experimental
vibrational recordings. Each MTS V ∈ R250×2 is made of two TS reporting the sampled time
evolution of the lateral floor displacements for T = 5 s, with a sampling rate of ∆t = 0.02 s.
Each V is associated to a load condition, whose governing parameters α and φ are sampled
from two uniform pdfs Uα

(
0.625 · 103, 6.25 · 103

)
N and Uφ (1, 15) Hz. Two different building

27

Figure 7. Two-storey shear building model. The horizontal, or lateral displacements are assumed to
be recorded by the SHM system.

The time dependent lateral loads F(t) ∈ RL×N are applied to the floors, with a
linearly increasing amplitude along the height of the building and a sinusoidal variation in
time, namely

Fn(t) =
n
N

αsin(2πφt) n = 1, . . . , N, (4)

where t is time; N is the number of floors (here N = 2); α is the load amplitude factor,
and φ is the load frequency. The resulting parameter vector is thus η = {α, φ}, with Q = 2
to fully describe each loading condition. To define the load, we have taken inspiration from
the lateral force method described in [43], which can be adopted whenever the structural
response is mainly related to the first mode of vibration of the building. The lateral force
method can be adopted to define the peak actions in structural members through an
equivalent static analysis under earthquake excitation; in our dynamic analyses, we have
used the same variation of the load amplitude along the vertical direction. The sinusoidal
variation in time has been instead adopted by considering that any dynamic loading can
be decomposed into the sum of sinusoidal components through a Fourier series.

By assuming that the loading parameters α and φ, the floor masses and the inter-storey
stiffnesses are constant in time, the building response is stationary within the time window
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of interest. If within each MTS the building always features the same mass and stiffness
properties, long-term degradation effects like concrete carbonation and rebars rusting,
chloride and sulphate attacks for reinforced concrete are disregarded. A discussion on how
to cope with the effects of the mentioned degradation processes within a SHM procedure
like the one here proposed, is beyond the scope of this work. Anyhow, it is worth stressing
that our procedure will be, in principle, able to address this issue by including in the
generative factors the stiffness reduction of the structural members, hence by modelling
the effect of damage on the building response [24,25,45].

To identify the loads applied on a two-storey shear building, the dynamic response of
the structure is numerically simulated and pseudo-experimental sensor recordings, shaped
as MTS to form the input dataset, are represented by the storey lateral displacements.

4.1.2. Signal Reconstruction

The AE has been first employed to reduce the dimensionality of the pseudo-
experimental vibrational recordings. Each MTS V ∈ R250×2 consists of two TS report-
ing the sampled time evolution of the lateral floor displacements for T = 5 s, with a
sampling rate of ∆t = 0.02 s. Each V is associated to a loading condition, whose governing
parameters α and φ are sampled from two uniform pdfs Uα

(
0.625× 103, 6.25× 103) N and

Uφ(1, 15) Hz. Two different building configurations, termed A and B and characterized by
different vibration frequencies, have been considered to assess the effects of the interaction
between the mentioned structural vibration frequencies and the accuracy of the results of
the AE-based identification procedure. In Table 1, the data related to the two configura-
tions are collected; note that the chosen sampling frequency for the pseudo-experimental
measurements avoids signal aliasing to occur.

Table 1. Two-storey shear building model: data relevant to configurations A and B, see Figure 7.

Configuration A Configuration B

m1, m2 (ton) 625, 625 625, 1250
k1, k2 ( kN

m ) 106, 106 106, 3× 106

f1, f2 (Hz) 3.93, 10.3 3.41, 14.5

To train the AE, 16,000 MTS have been generated for both the configurations: 75% of
these samples have been used to train the AE and back-propagate the error; the remaining
25% have been employed as validation set. Based on the loss c(V, U) computed on the
validation set, an early-stopping strategy may be exploited. The training of the AE has
been started from scratch for both configurations A and B, hence without relying on
transfer learning.

For testing the trained AE, a further test set of 512 MTS has been generated. The re-
construction capacity of the AE is assessed not only qualitatively but also quantitatively,
by computing for each MTS the two error measures reported in Table 2, and the relevant
mean values and scattering around it over the whole training, validation and test sets.

Table 2. Adopted error measures, where σ(vn) is the standard deviation of the TS vn.

standardized L2 norm ||un−vn ||2
σ(vn)

standardized L∞ norm ||un−vn ||∞
σ(vn)

Results in the following refer to AE hyperparameters gathered in Table 3: training
has been repeated for different sets of hyperparameters, and the one adopted led to the
minimum loss c(V, U) and has been finally selected for the analyses. As for the kernels
of the convolutional layers, their dimensions have been set to cope with the fundamental
period of structural vibrations, so as to exploit the capacity of convolutional layers to detect
a correlation within a TS. Alternatives to this trial-and-error procedure are represented
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by the Bayesian methods [46] or by multi-objective optimization [47], which are anyway
computationally infeasible in practical situations of interest for our study. The drawbacks
of both approaches may be mitigated by their combination, as suggested in [48].

Table 3. Two-storey shear building model: AE hyperparameters.

Encoder Decoder[
Ninc1

e , Ninc2
e , Ninc3

e

]
[3N, 3N, 6N] Nd 48N[

Hinc1
e , Hinc2

e , Hinc3
e

]
[13, 8, 5]

N2
e 6N[

H1
e , H2

e , H3
e
]

[8, 5, 3]

Regarding the impact of P on the reconstruction capacity of the AE, it has been assessed
by means of its effects on mimicking the structural response in the frequency domain,
starting from the reduced representation. As previously discussed, a lower bound on P can
be assumed to be equal to 2, i.e., equal to the number of generative factors in η. Given the
ill-posedness of the inverse problem, by adopting P > 2 we expect to have beneficial effects
on the AE performance; therefore, we have tested the cases P = {2, 3, 4, 5, 6}. As shown in
Figures 8−11, the reconstruction error gets progressively reduced by increasing P for both
the considered configurations, but unevenly and showing different correlations with the
load frequency φ. This behavior is due to the stochastic nature of the training algorithm
and also to the strong nonlinearity of c(V, U). More specifically: Figures 8 and 9 report
the error, via the standardized L2 norm, in reconstructing the displacement v1 of the first
floor as a function of φ, when the input signals, respectively, belong to the training and
validation sets; Figures 10 and 11 report instead the error, via the standardized L∞ norm,
in reconstructing the displacement v2 of the second floor, when the input signals belong
to the test set only. For comparison with these plots, Figures 12 and 13 further provide,
for configurations A and B, a sketch of the reconstruction capacity for the training and
validation sets via the standardized L∞ norm, and a sketch of the reconstruction capacity
for the test set via the standardized L2 norm, both for P = 4. Similar results have been
obtained for the other values of P, but are not reported here for the sake of brevity. Such
results are shown since, if the reconstruction capacity for the training and validation sets
were greater than the one related to the test set, overfitting would have probably spoiled
the AE performance: the NN would not acquire any generalization capacity, being limited
to reproduce the instances seen during the training.

The investigated reconstruction capacity is less affected by the load amplitude α,
as shown in Figure 14, due to the linearity of the structural behavior. Indeed, when the
standardized L∞ norm is considered, as it measures the inaccuracy in the peak recon-
struction, larger errors are found for values of α smaller than 2000 N. In spite of the data
normalization procedure preceding training, the structural displacements under excitations
featuring small values of α have small peaks too, and their incorrect reconstruction results
less penalized during the training.

The link between the reconstruction error and the load frequency φ varies with
P, and depends on the adopted error measure. Figures 8 and 9 have shown that the
standardized L2 error is larger when φ gets closer to the structural vibration frequencies f1
and f2, that is when the load induces a resonant response of the structure. This outcome
is somehow expected, as the relevant beats in the displacement recordings are signal
characteristics hard to catch by the AE. The larger error found for φ ≈ f1 results as
a consequence of the dec difficulty of reproducing the long-range temporal correlation
characterizing the first vibration mode.

Figures 10 and 11 have shown instead that the standardized L∞ error is still large
when φ gets close to the second structural vibration frequency, while becomes rather small,
roughly by ten times, for φ ≈ f1. An analysis of the dynamics of the two configurations
suggests the reason behind this result. During training, the loss function allows modifying
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more largely the weights Ω, when the AE fails to reconstruct the vibration mode that
has a larger impact on the dynamic response of the structure. The excitation frequency φ
is sampled from Uφ and the mentioned modes can have a different impact for different
instances. To compute the impact that the vibration modes ψs, s = 1, 2, have on the solution,
we first solve a non-standard eigenvalue problem in the form [49]:[

K− (2π fs)
2M
]
ψs = 0 (5)

the stiffness and mass matrices of the structure being:

K =

[
k1 + k2 −k2
−k2 k2

]
M =

[
m1 0
0 m2

]
,

and enforce ψT
s Mψs = 1 as normalization rule.

The equations governing the dynamics of the structure read:

Mv̈(t) + Kv(t) = F(t), (6)

where: v̈(t) ∈ R2 and v(t) ∈ R2 are the vectors of storey accelerations and displacements,
respectively; F(t) is the vector of the external loads. For each load case, by sampling v(t) at
the two floors, we obtain v1, v2 ∈ R250 and the instance V = [v1, v2].

Due to the linear behavior of the structure, through modal superposition Equation (6)
is decoupled as follows:

ψT
s Mψs ẍs(t) + ψT

s Kψsxs(t) = ψT
s F(t), (7)

with:
v(t) = ψ1x1(t) + ψ2x2(t). (8)

Since ψT
s Mψs = 1, ψT

s Kψs = (2π fs)
2 and we obtain:

ẍs(t) + (2π fs)
2xs(t) = ψT

s F(t). (9)

If the structure is initially at rest and if the entries of the load vector F are defined
according to Equation (4), the time history of xs(t) is given by:

xs(t) =
α

(2π fs)
2 − (2πφ)2

(
− φ

fs
sin(2π fst) + sin(2πφt)

)
Γs, (10)

where:

Γs = ψT
s

[
0.5
1

]
(11)

actually depends on the structural dynamics (through ψs) and on the spatial distribution
of loads.

At a specific time instant t̄, the modal response becomes xs(t̄) = x̄s, whose expected
value E

[
X̄s
]

can be computed as:

E
[
X̄s
]
=
∫ αM

αm

∫ φM

φm

{
α

(2π fs)
2 − (2πφ)2

(
− φ

fs
sin(2π fs t̄) + sin(2πφt̄)

)
Γs UαUφ

}
dα dφ. (12)

where we have accounted for that α and φ, respectively, vary in the ranges (αm, αM) and
(φm, φM). Computing the integrals, we obtain:

E
[
X̄s
]
=

{
αM − αm

2

(
sin(2π fs t̄)

8π2 fs
ln

f 2
s − φ2

M
f 2
s − φ2

m
+ I

)}
Γs, (13)
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where:

I =
∫ φM

φm

sin(2πφt̄)
4π2( f 2

s − φ2)
dφ.

The term within curly brackets in Equation (13) provides the dependence of E
[
X̄s
]

on
α and φ.

At the same time instant, the expected value of the storey displacement v̄n = vn(t̄),
n = 1, 2, thought of as sampled from the corresponding pdf V̄n, is obtained by exploiting
Equation (8) and the linearity of the expectation rule [50]:

E
[
V̄n
]
= ψ1nE

[
X̄1
]
+ ψ2nE

[
X̄2
]
. (14)

The contribution to E
[
V̄n
]

of each mode depends linearly on E
[
X̄1
]

and E
[
X̄2
]
,

and therefore on Γ1 and Γ2. For the case at hand, the ratio between Γ1 and Γ2 is equal to 9.67
for configuration A, and to 7.33 for configuration B. Accordingly, the error provided by the
AE in reconstructing the contribution of the first vibration mode is, on average, roughly ten
times larger than the error linked to the second vibration mode. The loss function c(U, V)
leads to the setting of the NN weights in the same way. Due to this rationale, the AE is
driven to learn better the first vibration mode.

In such a discussion, we have disregarded the temporal dependence of v(t); this has
an impact on the AE capacity of accounting for each mode of vibration. In the comment
to Figures 8 and 9, we have already addressed that the tendency to learn better the first
mode of vibration is counterbalanced by the long range temporal correlation featured by
the first mode. The adopted error measures have been introduced with the purpose of
investigating these issues, and seem to adequately address them.

(a) P = 2 (b) P = 3

(c) P = 4 (d) P = 5

Figure 8. Cont.
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(e) P = 6

Figure 8. Two-storey shear building, configuration A. Reconstruction error for floor displacement
v1 via the standardized L2 norm, as a function of the load frequency φ and for a varying value of P.
In the charts, black dots refer to the training set, while orange dots refer to the validation set.

(a) P = 2 (b) P = 3

(c) P = 4 (d) P = 5

(e) P = 6

Figure 9. Two-storey shear building, configuration B. Reconstruction error for floor displacement
v1 via the standardized L2 norm, as a function of the load frequency φ and for a varying value of P.
In the charts, black dots refer to the training set, while orange dots refer to the validation set.
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(e) P = 6

Figure 10. Two-storey shear building, configuration A. Reconstruction error for floor displacement
v2 via the standardized L∞ norm, as a function of the load frequency φ and for a varying value of P.
In the charts, the dots refer to the test set.
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(b) P = 3

Figure 11. Cont.
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(e) P = 6

Figure 11. Two-storey shear building, configuration B. Reconstruction error for floor displacement
v2 via the standardized L∞ norm, as a function of the load frequency φ and for a varying value of P.
In the charts, the dots refer to the test set.
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(a) (b)

Figure 12. Two-storey shear building, configuration A, P = 4. Reconstruction errors as a function
of the load frequency φ: (a) standardized L2 norm relevant to the floor displacement v1 for the test
set; (b) standardized L∞ norm relevant to the floor displacement v2 for the training (black dots) and
validation (orange dots) sets.
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Figure 13. Two-storey shear building, configuration B, P = 4. Reconstruction errors as a function
of the load frequency φ: (a) standardized L2 norm relevant to the floor displacement v1 for the test
set; (b) standardized L∞ norm relevant to the floor displacement v2 for the training (black dots) and
validation (orange dots) sets.
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(b)

Figure 14. Two-storey shear building, configuration A, P = 4. Reconstruction errors as a function of
the load amplitude α, relevant to the floor displacement v2 for the training (black dots) and validation
(orange dots) sets: (a) standardized L2 norm; (b) standardized L∞ norm.

Figure 15 shows a comparison of the reconstructed u1 and the input v1 signals taken
from the validation set, either for φ ≈ f1 or φ ≈ f2 of configuration B and for P = 6,
to further get insights into what the two error norms provide. In spite of the rather large
reconstruction error measured by the standardized L2 norm and shown by Figure 9e for
the first resonant frequency, u1 and of v1 in Figure 15a are almost perfectly superposed.
This comparison confirms that both error measures bring meaningful information, with the
standardized L2 norm measuring inaccuracies in the reproduction of the frequency content
of the input signal, while the standardized L∞ norm highlighting the inability to catch
peaks in the same input signal.

To better assess the impact of P on the reconstruction capacity of the AE, box plots
depicting the mean and the scattering around it for the two adopted error norms are
reported in Figures 16 and 17 for configurations A and B, respectively. In the charts, errors
are given for both the training and test sets, to evaluate the generalization capacity of
the AE. As a general rule, the values of the load configuration-dependent reconstruction
error evaluated for the test set is more scattered than the one evaluated for the training set,
while the relevant median values are quite similar; the said difference is larger if measured
through the standardized L2 norm.
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(a) α = 2339 N, φ = 3.54 Hz
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(b) α = 4048 N, φ = 14.52 Hz

Figure 15. Two-storey shear building, configuration B, P = 6. Comparison between input (black)
and reconstructed (orange) time histories of the first floor displacement for two cases belonging to
the validation set and for load frequencies (a) φ ≈ f1 and (b) φ ≈ f2.

According to Figure 16, the optimal number of latent variables for configuration A
results to be P = 4 when looking at the standardized L2 norm, and P = 3 when looking at
the standardized L∞ norm if outliers are also allowed for. By increasing P and, therefore,
the redundancy in the latent representation, an improvement of the AE reconstruction
capacity is not achieved. As shown in Figure 17, also for configuration B an increase of
the value P does not lead to a monotonic reduction of the reconstruction error. Even if the
best AE accuracy has been obtained for P = 6, good performances have been attained with
P = 4 too, with a slight deterioration for P = 5.
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Figure 16. Two-storey shear building, configuration A. Effect of P on the statistics of the recon-
struction errors relevant to the floor displacement v2, represented through box plots: (top row)
standardized L2 norm, and (bottom row) standardized L∞ norm; data taken from (left column)
training set, and (right column) test set.
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Figure 17. Two-storey shear building, configuration B. Effect of P on the statistics of the reconstruction
errors relevant to the floor displacement v2, represented through box plots: (top row) standardized
L2 norm, and (bottom row) standardized L∞ norm; data taken from (left column) training set,
and (right column) test set.

Moving deeper into the assessment of the AE performances, a comparison is reported
in Figure 18 between the reconstruction errors for both configurations A and B. For the
standardized L2 norm, the variation relevant to the error values for configuration B is
slightly smaller than that relevant to configuration A. A similar trend can be recognized
also for the standardized L∞ norm. This outcome can be linked to the smaller gap between
the resonance frequencies f1 and f2 featured by configuration A; it is worth mentioning
that a similar difficulty was already observed with methods like indipendent component
analysis or second order blind identification, when the identification of closely spaced
modes is involved [51].

(a) (b)

Figure 18. Two-storey shear building, effect of P on the statistics of the reconstruction errors relevant
to the floor displacement v2, represented through box plots, for data taken from the test set and both
structural configurations A and B: (a) standardized L2 norm; (b) standardized L∞ norm.
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4.1.3. False Nearest Neighbour Heuristics

If the FNN heuristics is included in the AE loss function formulation, a regularization
term $(z) is added to c(V, U) in accordance with Equation (3). As an outcome, Figure 19
reports the variance σ

(
zp
)
, with p = 1, . . . , Pmax = 6, of each latent variable for the training

set of configuration A, at varying value of the regularization parameter γ in the added term
$(z). Except the case γ = 10−3, for which the regularization term appears to be too small,
cFNN(V, U, z) allows to automatically turn off some of the latent variables. Increasing
values of γ are not associated to a clear trend in the number of deactivated latent variables.
Indeed, the way in which the plain AE loss function c(V, U) and the regularization term
γ$(z) affect the solution is made practically unpredictable by the strong nonlinear behavior
of cFNN(V, U, z).

Figure 19. Two-storey shear building, configuration A. Effect of the regularization parameter γ on
the value of the variance of each latent variable in z, evaluated on both the training and test sets for
Pmax = 6.

Even the reconstruction capacity of the AE does not show a clear trend at varying γ,
as highlighted in Figure 20 in terms of the results obtained for the training and test sets
relevant to configuration A. Though a non-monotonic variation of the AE performance is
obtained, the FNN heuristics can be exploited to set the value of γ for which the mean value
of the reconstruction error and the variation around it, are minimized. For configuration
A, the minimum is obtained for γ ≈ 10−1, irrespective of the handled standardized norm
and the dataset. For cases featuring such values of γ, the number of active latent variables
is P = 3, the same found as optimal using the standardized L∞ error norm. Even though
they are not shown here for the sake of brevity, results relevant to configuration B are
characterized by a slightly more regular effect of γ on the number of active variables in z,
with a sub-optimal solution attained with the same range of values for the regularization
term, endowed with P = 4. In this case, the FNN heuristics has been able to attain a
sub-optimal solution, but not the optimal one, featuring instead P = 6.

(a) (b)

Figure 20. Cont.
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(c) (d)

Figure 20. Two-storey shear building, configuration A. Effect of γ on the statistics of the reconstruction
errors relevant to the floor displacement v2, represented through box plots: (top row) standardized
L2 norm, and (bottom row) standardized L∞ norm; data taken from (left column) training set,
and (right column) test set.

The regularization of the loss function based on the FNN heuristics thus allows
to basically achieve the same optimal AE settings already found. The strength of the
regularization term seems to have a non negligible impact on the results. For this reason,
the use of cFNN(V, U, z) leads to marginal advantages for the proposed cases study, given
that the tuning of P is substituted by the tuning of γ. On the other hand, this approach can
be considered useful if there is no a clear understanding on the number of generative factors.

4.1.4. Load Identification

As already pointed out, the latent representation z can be exploited to reduce the
computational cost of solving inverse problems. For the present case, the identification
of the loading parameters η on the basis of the relevant observations in V, has been
approached by first exploiting the encoder function enc, to obtain z, and then by applying
the regression model r. Main results are collected in Figure 21, where the effects of P on
the identification of α and φ are reported for configuration A. In the graphs, the predicted
values are reported along the vertical axis and are displayed against the corresponding
ground-truth data reported along the horizontal axis: the perfectly identified values in
each chart are therefore those aligned with the line αr = α or φr = φ. The accuracy of the
regression model r is further assessed through Table 4, reporting the root mean square error
(RMSE) between the predicted and the actual values, and the Pearson correlation coefficient
R2: when R2 = 1, an exact linear correlation between predicted and ground-truth data is
found, indicating the perfect alignment with the line αr = α or φr = φ.

The reconstruction accuracy of the AE has a direct impact on the regression accuracy,
which is accordingly higher for P = 4 and lower for P = 2. A non monotonic dependence
of the AE accuracy on the latent space size P is shown by the values of the RMSE (the
lower, the better) and R2 (the higher, the better) when both α and φ are targeted. Both
indicators improve moving from P = 2 to P = 4, deteriorate for P = 5, get better for P = 6
but still without reaching the performance for P = 4. These results are in agreement with
the box plots in Figure 16 and, partially, with the indications of FNN heuristics, pointing
out P = 4 as the optimal dimension for the latent representation. Regarding the load
frequency φ, the regressor r faces some difficulties in the frequency range within which also
the reconstruction capacity of the AE has been shown to be detrimentally affected. Indeed,
by comparing Figures 10e and 21f, the scattering in the prediction for φ > f2 corresponds
to the high error measured via the standardized L∞ norm.
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Figure 21. Two-storey shear building, configuration A, test set. Parity plots showing the regression
outcomes for the load amplitude α (left column) and the load frequency φ (right column), at varying
dimension P of the latent representation, against the ground-truth data.

Table 4. Two storey shear building, configuration A, test set. RMSE and correlation coefficient R2 of
the regression outcomes for the load amplitude α and the load frequency φ, at varying dimension P.

P α φ

RMSE [N] R2 [-] RMSE [Hz] R2 [-]

2 1263 0.654 1.74 0.912
3 1243 0.717 1.11 0.963
4 552 0.941 0.69 0.987
5 1004 0.803 1.16 0.960
6 769 0.897 1.28 0.966
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4.2. Pirelli Tower

A real-life case is now considered, to get more insights regarding the capability of
the proposed approach: the Pirelli Tower in Milan (see Figure 22a). This tower is a
39 storey building, 35 of which out of ground, having a total height of 130 m. A schematic
representation of the standard floor, whose dimensions are approximately 70× 20 m, is
reported in Figure 22b. Due to its constant plan geometry, a shear building model was
proven to describe well the dynamic response of the tower under horizontal actions: the
floors behave like rigid diaphragms, connected through compliant columns modelling
the lateral load resisting system. The soil-structure interaction at its basement has been
modeled via a lumped-parameter approach: additional details were thoroughly reported
in [40].

(a) (b)

Figure 22. The Pirelli Tower in Milan. (a) Picture taken from Piazza Duca D’Aosta, and (b) schematic
plan of a standard floor.

To slightly simplify the analysis, torsional effects due to the small eccentricity of the
center of stiffness with respect to the center of mass along the ξ2 axis, as induced by the
asymmetric central core, have been disregarded. The lateral loads given by Equation (4)
have been applied along the ξ1 direction; the amplitude α has been sampled from the
uniform pdf Uα

(
2× 103, 20× 103) N; the load frequency φ has been instead sampled from

three uniform pdfs U 1
φ(1, 6) Hz, U 2

φ(1, 9) Hz, and U 3
φ(1, 15) Hz, respectively, defined as

load cases 1, 2 and 3. The load case 3 features the same frequency range used for the
two-storey building; load cases 1 and 2 have been instead designed aiming to ease the load
identification task, as can be ascertained by comparing the relevant frequency ranges with
the fundamental vibration ones of the building, gathered in Table 5.

A pseudo-experimental monitoring frame has been adopted, assuming that the lateral
displacements at the 20th and at the 39th floors are recorded for T = 5 s, with a sampling
frequency of 50 Hz to avoid aliasing in relation to the first 13 vibration modes of the
structure. An optimal placement of the sensors to monitor the health of this building was
discussed in [42], by exploiting a Bayesian experimental design that requires a detailed
description of the parameter uncertainties. An optimization of sensor placement based
on non-probabilistic interval analysis may be instead preferable when such a description
of the uncertainties can not be fully provided [47]. To train the AE 32,000 MTS have been
generated, still keeping 75% of the samples for training and 25% of them for validation.
The number of instances have been doubled with respect to the two-storey case, due to the
greater complexity of the present model. Regarding computational costs and resources,
an RTX 2080 Ti (GPU) has been exploited for both the training and the testing stages.
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For the case at hand, the training of the AE has lasted 1 h and 50 min, while the training of
the regressor r has lasted about 10 min. The testing has resulted instead almost inexpensive,
since each instance is processed in about 0.05 s.

Table 5. Fundamental vibration frequencies of the Pirelli tower.

Vibration Mode Frequency f (Hz)

1 0.25
2 1.08
3 2.60
4 4.71
5 7.06
6 8.79
7 9.56
8 9.91
9 11.38
10 13.36
11 14.64
12 18.30
13 22.14

To qualitatively assess the reconstruction capacity of the AE when test instances
are considered, results are reported in Figure 23 in terms of the histories of the 20th
floor displacement for a couple of solutions related to each load case. For each case,
the reconstructed signal has resulted close to the input one for low excitation frequencies,
but the accuracy seems to get reduced by larger values of φ. This outcome is again related
to what discussed in Section 4.1.2 regarding the mode factors Γs, computed similarly to
Equation (11) for s = 1, . . . , 39, which are larger for the low-order vibration modes.

Regarding load identification, outcomes are reported in Figure 24 and in Table 6.
As shown for the two-storey shear building, the reconstruction accuracy of the AE has an
impact on the performance of the regressor r. For φ > 5 Hz, the regression outcomes of the
load cases 1 and 2 get slightly deteriorated, with an increased scattering of the values of φr
for load case 2 as assessed by the relevant values of the RMSE (passing from 0.144 Hz to
0.417 Hz) and of the Pearson correlation coefficient R2 (moving down from 0.998 to 0.984).
For those two load cases, the load amplitude has been always well predicted, with errors
bounded independently of α. Hence, the AE reconstruction capacity is only marginally
affected by the load amplitude.

A different type of outcomes has been obtained for the load case 3. Focusing on φr,
the regression task fails if φ > 9 Hz. The Pearson correlation coefficient R2 falls from
almost unitary values for the load case 1 and 2 to 0.808 for the load case 3 when the
identification of α is addressed, and from 0.984 for load case 2 to 0.679 when φ is targeted.
A way to explain this behavior is again linked to the small values of Γs associated to higher
vibration modes; accordingly, the critical part of the procedure is still assumed to be due to
signal reconstruction. Moreover, in comparison to the load cases 1 and 2, the regression
performance gets spoiled in the frequency range 5.5 Hz < φ < 9 Hz. The predicted
values exhibit a sort of cut-off around 8 Hz, above which it becomes impossible to obtain
reasonable predictions. The complexity of the AE loss c(V, U) hence forces the training
algorithm to converge to a local minimum that worsens the regression performance, not
only within the previously mentioned range but also for all the values larger than 6 Hz.
A reduced performance has been also shown regarding the load amplitude α, even if a
cut-off has not been reported. Overall, the regressor tends to systematically underestimate
α, except for the instances featuring φ < 5 Hz which are instead caught correctly.
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(b) Load case 1: α = 18, 895 N, φ = 4.63 Hz
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(c) Load case 2: α = 15, 930 N, φ = 1.30 Hz
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(d) Load case 2: α = 8125 N, φ = 7.22 Hz
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(e) Load case 3: α = 15, 930 N, φ = 1.52 Hz
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(f) Load case 3: α = 4594 N, φ = 14.07 Hz

Figure 23. Pirelli Tower. Comparison between input (black lines) and reconstructed (orange lines)
time histories of the 20-th floor displacement for six cases belonging to the test set.
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Figure 24. Pirelli Tower. Parity plots showing the regression outcomes for the load amplitude α

(left column) and the load frequency φ (right column) for the three considered load cases.

Table 6. Pirelli tower. RMSE and correlation coefficient R2 of the regression outcomes for the load
amplitude α and the load frequency φ for the three considered load cases.

Load α φ

Case RMSE [N] R2 [-] RMSE [Hz] R2 [-]

1 469 0.996 0.144 0.998
2 439 0.997 0.417 0.984
3 3852 0.808 3.758 0.679

To address the above discussed issues, we report in Figures 25 and 26 the latent
variables z for the validation sets of load cases 1 and 3. The focus is only on the out-of-
diagonal dispersion plots in this matrix-like representation of the results, wherein each
chart shows the values taken by pairs of latent variables. A color code is used in all the
plots, to visualize how the generative factors α and φ affect the encoding distribution in
the latent space. These results confirm that the load identification issues are due to the
encoding procedure: looking at Figure 26b, it is clearly shown that when φ is larger than
the cut-off-value discussed in relation to Figure 24f, the encoded values are not spread
anymore in the sub-space spanned by the said pairs of latent variables. For a frequency in
the range 5 Hz < φ < 8 Hz, the encoded states start to show a tendency towards collapsing
into lower-dimensional loci, though a small scattering is still present and the regressor
can predict load frequencies in this range. We can thus state that the greater the scattering
of the latent variables, the more effective the encoded representation in terms of signal
reconstruction and load identification. This is confirmed by looking at the results related to
load case 1: the best reconstructed instances are obtained for the most scattered encodings,
characterized by small values of φ. When the encodings become less scattered, they also
become less informative for the signal reconstruction. By looking at Figure 25, it can be
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also noticed that the instances featuring both larger values of α (reported in yellow in the
plots) and smaller values of φ (reported in violet in the plots) are those farthest from the
collapsed loci.

,

,

,

z1 z2 z3 z4

z 1
z 2

z 3
z 4

(a)

z1 z2 z3 z4

z 1
z 2

z 3
z 4

(b)

Figure 25. Pirelli Tower, load case 1. Scattered latent representation z determined by enc for the
validation set, with coding set by (a) the load amplitude α or by (b) the load frequency φ.
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Figure 26. Pirelli Tower, load case 3. Scattered latent representation z determined by enc for the
validation set, with coding set by (a) the load amplitude α or by (b) the load frequency φ.

5. Conclusions

A time series AE has been designed and adopted to solve a regression task linked to
load identification, which plays a crucial role in the assessment of the health of a structure
if operational variability is allowed for, or in case of an output-only architecture of the
monitoring system. The role of the latent representation provided by the AE has been
extensively discussed, allowing for the sources of output variability of the tackled problem
and the inverse-forward nature beyond the autoencoding paradigm.

For a two-storey shear building model, the reconstruction capacity of the AE has been
quantitatively assessed by using two error norms, and by investigating the effect on it of
the structural vibration frequencies and modes. Physically-sound links with the dynamics
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of the system have been shown, pinpointing how the excited structural vibrations can play
a key role in setting the AE outcomes. The false nearest neighbor heuristics has been also
allowed for to automatically set the dimension of the latent representation. The results
obtained for the two-storey shear building have been then taken into account to approach
load identification for a digital twin of a high-rise building, the Pirelli Tower in Milan.
Promising outcomes have been reported, to foresee future applications of the proposed
methodology to real-life situations.

The next steps will be to further empower the setting procedure for the AE hy-
perparameters, by combining the here adopted trial and error procedure with Bayesian
methods [48]. Optimization methods for the deployment of the sensors of the monitoring
system will be also proposed, in order to maximize the information content of the latent
representation and, at the same time, minimize the number of sensors to deploy and avoid
issues linked to big data (see, e.g., [52]).
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