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Abstract: We are witnessing a rise in the use of ground and aerial robots in first response missions.
These robots provide novel opportunities to support first responders and lower the risk to people’s
lives. As these robots become increasingly autonomous, researchers are seeking ways to enable
natural communication strategies between robots and first responders, such as using gestural interac-
tion. First response work often takes place in harsh environments, which hold unique challenges
for gesture sensing and recognition, including in low-visibility environments, making the gestural
interaction non-trivial. As such, an adequate choice of sensors and algorithms needs to be made to
support gestural recognition in harsh environments. In this work, we compare the performances
of three common types of remote sensors, namely RGB, depth, and thermal cameras, using various
algorithms, in simulated harsh environments. Our results show 90 to 96% recognition accuracy
(respectively with or without smoke) with the use of protective equipment. This work provides
future researchers with clear data points to support them in their choice of sensors and algorithms
for gestural interaction with robots in harsh environments.

Keywords: harsh environments; gesture recognition; first responders; firefighting; remote sensing;
HRI; drone; robot

1. Introduction

Mobile ground and aerial robots (also known as drones) offer unique potential to
support people in first response situations, such as in firefighting, search and rescue, police,
and military situations. These robots are now sent to explore areas, perform tasks with or
instead of humans, and thus reduce the risk to people’s lives. Recently, we have been seeing
a technological shift, with robots presenting increasing levels of autonomy [1–3], meaning
that they can now directly interact with first responders. Such technological advances
have led human–computer and human–robot interaction (HCI/HRI) researchers to explore
natural ways for first responders to communicate with these robots, with one of the most
prevalent ways being gestural interaction (e.g., using finger, hand, or full-body gestures to
command and instruct a robotic agent) [4–6]. However, the conditions experienced by first
responders in their missions present non-trivial challenges for gestural interaction sensing
and recognition, such as when working in low visibility (e.g., in smoke or darkness). These
situations are referred to as “harsh environments”, which further require first responders to
wear heavy protective equipment, presenting yet additional constraints for gesture sensing
and recognition.

While there is a large body of prior work on gestural interaction, including sensing
techniques and algorithms for recognition, the literature about gestural recognition in harsh
environments is sparse. Research is needed to understand which sensors and algorithms
are best suited to support gestural interaction in harsh environments. In this manuscript,
we build upon the preliminary work conducted by De Cillis et al. [7], which investigated
the use of a depth camera to sense three types of gestures that were then trained and tested
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with two people (one and one) in simulated harsh conditions. We take their approach
further and compare a depth camera with two different types of visual sensors: RGB and
thermal cameras. We also investigate a range of algorithms to enable gesture recognition
with each of the three sensors, using user-defined gestures that were specifically chosen
by operational firefighters for interacting with drones in firefighting missions. We trained
our system with 13 people and tested it with two people in several conditions, including
simulated harsh environments. This work provides a review of possible technological
solutions that can be embedded in ground robots and drones for gesture recognition in
harsh environments, including the advantages and drawbacks of the different sensors
and algorithms.

In this manuscript, we first present a literature review and then describe a set of
gestures adapted to human–drone interaction (HDI) in firefighting. We then present
our implementation of a gesture recognition system, based on a range of algorithms,
which are then tested with the three different types of sensors. We present the system’s
evaluation in laboratory settings, simulating different conditions of harsh environments.
Our results show major differences between the three types of sensors regarding the
recognition accuracy for different simulated environments. For example, we found that
while the overall recognition accuracy dropped under smokey conditions, the accuracy
stayed high for RGB and thermal cameras, while the depth sensor failed to recognize
gestures. Our results present opportunities for future research on remote sensing in
harsh environments and inform future HCI and HRI researchers and practitioners on the
human and technical aspects to consider when integrating gestural recognition systems
in emergency responses. This work contributes to a larger understanding of gestural
recognition in harsh environments, as well as a comparison between three common sensors
and various algorithms that can be used for remote sensing in harsh environments.

2. Related Work

In the following section, we review the related prior work, first on ground and aerial
robots, then on gestural recognition, and finally on remote sensors, all in harsh environments.

2.1. Ground and Aerial Robots in Harsh Environments

“Harsh environment” is a broad term that can refer to “any environment that is
hazardous to agents (human or robot, etc.) within it. For example, they can be characterized
by high levels of radiation, high explosive risk, extreme temperatures or pressures, and
lack of oxygen” [8]. Harsh environments can also be defined as environments that are
“unknown, unstructured, dynamic, cluttered, hazardous and/or limited in resources (such
as the availability of communications, GPS and visibility)” [9]. These environments present
unique challenges for integrating robots, such as open fire sources, dynamic obstacles, and
faulty sensor readings [10]. In particular, harsh environments present many challenges for
the remote sensing community, with issues such as low visibility due to smoke or darkness,
which can disturb visual sensing, or noise, which can prevent audio sensing. Furthermore,
such environments present additional challenges for controlling robots and drones—for
example, when GPS signals might be unavailable—or even for a user to directly interact
with the robotic agent while under pressure, with a high workload, and while potentially
wearing heavy protective equipment.

The HCI and HRI communities have investigated and proposed technological so-
lutions for drones and robots to support first responders in their missions, in harsh en-
vironments, such as in firefighting [11], search and rescue [12], police [13] work, and in
the military [14]. In particular, in firefighting, drones and robots have been used for a
variety of applications, such as searching for victims and checking the environment and
surroundings in search and rescue missions [15], detecting and extinguishing fires [16,17],
and also in mapping and detecting gas in both indoor and outdoor environments [18,19]. A
recent report summarized the benefits of using drones for firefighting missions, including
visual access to low-visibility areas, increased safety for firefighters during emergency
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missions, optimized data gathering processes, time-saving, and reduction of human error
in inspections of a zone [20].

As autonomous drones and robots emerge [2,21], researchers are interested in the
transition of these robots from a tool to a teammate [22,23]. This paradigm shift drives the
need for collocated interaction strategies between robots and humans [24], with one of
the best strategies for such collocated interaction being gestures [25–27]. In this work, we
propose to explore remote sensing and algorithms for gestural interaction with robots in
harsh environments, using the example of firefighting missions given the amount of prior
supportive literature from the fields of HCI and HRI. The following subsection describes
the current state-of-the-art for gestural interaction in harsh environments.

2.2. Gestural Recognition in Harsh Environments

Gestural interaction in harsh environments holds major constraints for sensing visual
stimuli and making sense of the information. Indeed, low-visibility conditions (e.g., smoke,
darkness) can disturb the sensing. In addition, humans interacting with the system may be
wearing heavy protective equipment, so that finger, hand, and body tracking may not be
achieved with regular image segmentation (e.g., skeleton extraction). The existing body of
work on gestural recognition in harsh environments is sparse. After extensively surveying
the literature for first responders, we only found one prior work investigating supporting
firefighters with robots using gestures [7]. The work proposed using a depth camera to
sense three types of gestures (simple, medium to challenging, and hard gestures) that
were then tested in simulated harsh conditions in a lab (i.e., darkness and smoke, indoor
and with uniform). Unfortunately, while the work contributed a framework for gesture
recognition in HRI, the manuscript did not adequately report on the gestures that were
implemented, their suitability for firefighting, the conditions of the evaluation, or the exact
simulated environment. Therefore, further research is needed to investigate which sensors
and algorithms are most appropriate in harsh conditions and to propose adapted settings
for laboratory simulation of harsh environments.

To conduct this research, we further report on the large body of literature on gestural
recognition and remote sensing, focusing on the types of gestures and the recognition
algorithms. Gestural interaction can be based on various body parts, from full-body [28], to
arm [29], hand, and foot gestures [30], and even finger movements [31]. Escalera et al. [32]
created a taxonomy for the various components involved in conducting research in gesture
recognition and proposed that two categories of gestures can be distinguished: 1. Static
gestures that represent a still pose in a single image, and 2. Dynamic gestures are represented
by a sequence of images. Gestural interaction distinguishes between gestures that give
commands to an agent and gestures that are meant to initialize or terminate the interaction,
as is the case in our work. For example, prior work used the familiar arm-waving gesture
as a signal to attract a UAV’s attention [26,33]. In our work, we propose to use a set of
gestures that were elicited following a user-centered design process with firefighters [23].

In terms of interaction, many prior works investigated gestural interaction systems
with computers, robots, and drones [34–37]. The literature offers a variety of approaches
for gestural recognition, which are described in a recent survey [38], where the authors
categorized algorithms into three categories: hand-crafted motion features, deep learning-
based methods, and depth information-based methods. It is, however, clear from their
work that the different methods are not equivalent and hold advantages and drawbacks
based on the types of gestures to recognize, situations, and chosen sensors. As firefighting
scenes may have smoke and generally low visibility, they need special care with regard to
the choice of sensor. In the following section, we discuss sensors for remote gesture sensing
in harsh environments.

2.3. Remote Sensing in Harsh Environments

Different types of visual sensors exist, each relying on different technologies, working
across a range of the light spectrum. As such, different sensor types will perform differently
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in harsh environments, some working in daylight, others in darkness, or even able to
sense the environmental temperature. In their work, Berman and Stern [39] created a
taxonomy for sensors for gesture recognition systems and showed that optical sensors are
traditionally used for recognizing gestures. Three main types of optical sensors are used in
the literature [32]: RGB [40], thermal [41], and depth [42] sensors. In harsh environments,
only a few works have compared sensors, such as Starr and Lattimer [43], who evaluated
seven different types of sensors in fire and smoke conditions—in terms of performance,
but not for gesture sensing. They divided their experiment into two categories of harsh
environments: 1. light smoke with high temperature, and 2. dense smoke with low
temperature. In the former, RGB and thermal sensors worked but the depth camera failed,
and in the latter, the RGB sensor failed below 1 m visibility and encountered attenuation
past 8 m visibility; the depth sensor showed poor results even with a visibility over 8 m,
while the thermal sensor was not affected by the conditions. These results suggest that
a thermal sensor may be the best choice for a gestural interaction system in firefighting,
where thick smoke and darkness can be expected, and that RGB and depth sensors will be
more likely to fail when smoke is present.

In our work, we propose to compare RGB, depth, and thermal sensors that can later be
embedded into a drone or robot, and to evaluate their performance for gesture recognition
in simulated firefighting conditions. We expect that the heavy protective equipment and
smoke conditions will decrease the recognition accuracy, compared to optimal conditions.
Furthermore, we will investigate how the simulated harsh environment conditions will
affect the various sensors and algorithms that we implement. The next section describes
the chosen set of gestures.

3. Gestures for Gestural Communication in Harsh Environments

In this section, we describe our choice of gestures to be implemented and evaluated.
We opted for gestures that were previously elicited in a user study with firefighters [23],
which focused on gestures for collocated interaction with a drone. We first describe the
tasks allocated to the drone, as identified by the firefighters, and their matching gestures
to instruct the drone. The four main drone tasks and associated user-defined gestures, as
described in [23], are presented below:

• Mapping. The firefighters envisioned sending the drone to map a floor or even an
entire building, finding out how many rooms are inside a building, what the structure
of the building looks like, and creating a map of it.

• Identifying Hazardous Materials. The firefighters proposed that the drone could
identify the type of hazardous material (such as gas or chemicals) and the source and
size of the leak, which is a scenario that they encounter in industrial buildings.

• Detecting Fires. The firefighters proposed that the drone could identify fire spots.
This is in line with current drone usage in the country.

• Finding Survivors. The firefighters suggested sending the drone to search for trapped
civilians or people otherwise in danger. They would like the drone to gather informa-
tion on the number of people as well as their condition and location. They proposed
that the drone could directly provide help to citizens who have fallen into holes or
deep tunnels. The firefighters further mentioned a situation that they referred to as
“fear for human life and aid to civilians”. This corresponds to situations where there
is a concern for civilians, who are locked in their homes and are not responding to
the door, who usually have not been seen by their relatives or neighbors, who called
the firefighters to break in. Participants mentioned that a drone could fly inside an
apartment through a window to help them to conclude on whether they need to break
into the apartment or not.

The drone tasks are summarized in Table 1, and the elicited gestures chosen for each
task (see Figure 1) include: Detecting Fire: lifting the left hand and rotating it clockwise
with two fingers up; Identifying hazardous materials: raising two hands and crossing them in
front of the face; Finding survivors: lifting the right hand and rotating it clockwise with two
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fingers up (same as Detecting Fire but with the right hand); Mapping: drawing a “frame”
in front of the body using both hands symmetrically with two fingers pointing up. The
firefighters chose gestures that are continuous and repeated, meaning that they will be
performed until the desired command is detected (i.e., when they receive feedback that the
gesture was properly understood).

Table 1. Drone tasks used as referents for the elicitation study. The corresponding user-defined gestures are presented in
Figure 1.

Task Description Chosen Gesture

Detecting Fire Detect number and location of fire spots (a)
Identifying Hazardous Materials Identify source and size of gas or chemical leak (b)

Finding Survivors Search for trapped citizens or people in danger and collect information on their number and location (c)
Mapping Create a map of the floor or building based on exploration (d)

(a) Detecting Fire (b) Identifying Hazardous Materials (c) Finding Survivors (d) Mapping

Figure 1. Set of four user-defined gestures used to support the following tasks: (a) detection of fire spots (their number and
location), (b) identification of gas/chemical leak source and size, (c) search for trapped citizens or people in danger and
collection of information on their number and location, (d) mapping of the floor or building. Image courtesy of [23].

Based on the physical load of the equipment that firefighters carry, one could expect the
resulting gestures to be one-handed, small, and fast, saving firefighters from any additional
physical and cognitive efforts to communicate with the drone. However, Alon et al. [23]
revealed that, regardless of the constraints, the firefighters preferred large, noticeable, and con-
tinuous gestures, some of them two-handed. They further highlighted that these gestures are
consistent with those of other first responders and military environments [44,45]. We are thus
confident that these chosen gestures are representative of wider first response environments.

4. Gesture Recognition System Prototyping

We designed and implemented a gesture recognition system prototype for the user-
defined gestures shown in Figure 1. In addition to the set of gestures, we trained the system
to recognize if a person is present in front of the camera and whether they are walking
or standing still. Our goal was to survey which technology is best suited for gesture
recognition in harsh conditions. In this section, we first present the implemented sensors
and algorithms that were used in our experiment. We then describe the data collection and
training of the system, and finally, we describe the evaluation process.

4.1. Visual Sensors

In terms of hardware for image acquisition, we compared three types of sensors,
namely RGB, depth, and thermal cameras, as these are the most widespread sensors in
the gestural recognition literature (e.g., RGB [46], depth [42], and thermal [47]). We used
an Intel Realsense D435 [48] camera for RGB (frame rate: 30 Hz, resolution: 1920 × 1080,
field of view: 69° × 42° (H × V)) and depth (frame rate: 90 Hz, resolution: 1280 × 720,
field of view: 87° × 58° (H × V)) images, and a Therm-App HZ [49] for the thermal image
(frame rate: 25 Hz, resolution: 384 × 288, field of view: 55° × 41° (H × V)). Figure 2 shows
resulting frames from the depth and thermal sensors.
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(a) Depth Image (b) Thermal Image
Figure 2. Example of images acquired in the evaluation phase. (a) Depth image of a person wearing a normal outfit.
(b) Thermal image of a person wearing a firefighter’s protective equipment.

4.2. Algorithms

Before a system can be implemented in a robot or a drone, it needs to be validated
in static conditions [37,50]. We apply this strategy to our work and present the system
in static conditions. We empirically determined that the longest duration for a gesture
took an average of 3 s to perform (see Section 4.3), and as such, we sampled data at a rate
of 20 frames every 3 s (i.e., 6.7 Hz). The prediction was based upon the changes within
the series of frames extracted in the 3 s window. We then implemented three algorithms,
which we further describe below. The first one is based on skeleton extraction and the
second one on a histogram of oriented gradient (HOG). Both algorithms use support vector
machine (SVM) for the classification as this supervised learning model is widely used in
the gesture recognition literature, both with skeleton features [51] and with HOG [52], and
as it is suitable for high-dimensional representation. For the SVM, we used the scikit-learn
API in Python, with linear kernel and C (regularization parameter) equal to 10. The third
algorithm consists of a bespoke algorithm, “Frame Vote”, that we developed, and which
can use either HOG and SVM or convolutional neural networks (CNN). Our intention
was to compare several approaches to the traditional classification method of HOG + SVM
often used in UAVs [53].

• Skeleton Extraction. Key points of the person are extracted using the Realsense
SDK (Cubemos), which provides a vector of 18 (x,y) coordinates for each frame.
Each gesture consists of 20 frames which form a vector of 720 values (20 frames ×
18 coordinates × 2 (x,y) values). Skeleton extraction is a known approach in the
literature for extracting features for body gesture recognition (e.g., [54]) and it can be
implemented with various APIs, such as OpenPose [55]. Compared to other feature
extraction techniques, such as using 3D CNNs, which are time-consuming and may
be difficult to train, the features of the human skeleton are concise and are based on a
pre-trained CNN [54].

• Histogram of oriented gradient (HOG). Each frame is represented by a HOG [56], so
that each gesture forms a vector of 20 concatenated HOG vectors. We used scikit-image
for extracting the HOG features with the number of pixels per cell = 10 × 10 (size of a
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cell (in pixels)), number of orientation bins = 9, number of cells in each block = 2 × 2, and
using the L2 block normalization method [57]. To improve the accuracy, we used back-
ground subtraction using motion analysis by applying BackgroundSubtractorMOG2 [58]
(OpenCV) prior to the HOG extraction. The following parameters were used: his-
tory = 150 (number of last frames that affect the background model), varThreshold = 40
(variance threshold for the pixel-model match), and detectShadows = False.

• Frame Vote. We designed this algorithm to analyze each frame individually, using a
different paradigm compared to the previous two algorithms. For each frame, we run
a machine learning algorithm (HOG + SVM or CNN) that classifies the gesture. After
20 frames, the predicted gestures are compared and the one with the most occurrences
is selected (majority vote). The algorithm is illustrated in Figure 3. The advantage of
this method is that it does not take into account the sequence of the gesture, and thus
may hold better if the sensing continuity is not entirely reliable, as may be the case in
harsh environments. This is also a good fit for the continuous and repeated gestures
elicited in the previous study, as the order in which the gestures are performed has
less importance.

Figure 3. Description of the bespoke “Frame Vote” algorithm. Each frame is classified as one of
the possible gestures. The final classification is made by comparing which gesture was most often
classified within 20 frames. In this example, two out of four frames have been classified as “Mapping”,
so the algorithm chooses that gesture over the other two.

The algorithm works as follows: a label (i.e., gesture) is predicted for each frame ŷi.
Denoting by ni the number of frames labeled ŷi, we then assign the label ŷ = ŷargmaxi ni to
the gesture. The HOG and SVM configurations are as described above. For CNN, we used
the ResNet50V2 architecture from Keras API [59,60], as it provides a good trade-off between
computation time and accuracy [45,61]. We loaded weights pre-trained on ImageNet [62].
The last layer of the model is with Softmax activation and 7 outputs (corresponding to 7
situations described in Section 4.3). The model is compiled using Keras with TensorFlow
backend. We used categorical cross-entropy loss function and Stochastic Gradient Descent
(SGD) optimizer with the default learning rate of 0.01. We split the overall amount of
training data into 80% training and 20% validation, and trained the network with 10 epochs
and with a batch size of 8. Training and validation loss decreased quickly and remained
close to 0 after 10 epochs (respectively, 0.0028 and 0.0236) (see Figure 4). Training and
validation accuracy reached 98.48% and 99.11%, respectively, after two epochs only, and
after 10 epochs, training accuracy remained over 99.9%, while validation accuracy stayed
stable at around 99.4% (see Figure 5).
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Figure 4. Training (blue) and validation (orange) loss through epochs for the CNN.

Figure 5. Training (blue) and validation (green) accuracy through epochs for the CNN.

4.3. Data Collection and Training

We collected data from 13 people (5 f, 8 m) from the research lab, who performed the
four user-defined gestures. Each person was also asked to both walk and stand at various
distances in front of the camera from a distance of 1.5 m to a distance of 5 m. Participants
performed omrieach gestures in front of the sensors and the data collection was conducted
across four different indoor locations. Lighting conditions for the four locations ranged
between 100 and 700 lux. The distance from the participants to the background ranged
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between 0.2 and 4 m. The temperature for all locations was an ambient temperature of
25 °C to 28 °C.

We gathered and trained the system to recognize when there was no person in front
of it, so that it could differentiate this situation from the others. We gathered data points
as follows for each sensor: 13 people × 7 situations (4 user-defined gestures + walking +
standing + no person) × 15 trials × 20 frames = 27,300 frames, which were then used to train
the algorithms. As part of the data collection process, we measured the average completion
time for the user-defined gestures across participants (for one repetition, in seconds): the
longest duration is “Mapping” (µ = 3.05, SD = 0.65), followed by “Identifying Hazardous
Materials” (µ = 2.26, SD = 0.7), “Finding Survivors” (µ = 1.13, SD = 0.27), and “Detecting
Fire” (µ = 1.04, SD = 0.26).

Note that these data were collected under the baseline conditions (i.e., without fire-
fighting equipment and without added smoke). Our idea was to train the system under
regular conditions and then determine if, and to what extent, a system trained under
regular conditions would perform over different types of harsh conditions.

4.4. Evaluation

The aim of the evaluation phase was to evaluate how the sensors and algorithms would
perform under different harsh conditions in real-time gesture recognition. The system
was evaluated with two people (2 m) from the research lab who did not participate in the
training phase. Each of them performed 6 situations (4 user-defined gestures + walk + stand)
in front of the sensors. Each participant performed a total of 50 repetitions of the 6 situations
in a random order (the ratio of situations tested was balanced). We further evaluated the
system when no person was standing in front of the visual sensor. The evaluation was
conducted under the following three conditions: 1. with the person wearing firefighting
protective equipment, 2. with the person wearing firefighting protective equipment and
with smoke in the room (Figure 6b), and 3. without equipment or smoke (i.e., baseline).
The smoke was cold, dense smoke generated by a dedicated smoke machine in an indoor
environment (derived from [7]), and all tests were run in controlled laboratory settings.
Figure 7 illustrates the evaluation setup. Each of the 3 laboratory conditions was evaluated
with all 3 sensors and the following algorithms: RGB (skeleton extraction + SVM), Depth
(“Frame Vote” (HOG + SVM), “Frame Vote” (CNN), HOG + SVM), Thermal (“Frame Vote”
(HOG + SVM), “Frame Vote” (CNN), HOG + SVM, skeleton extraction + SVM), resulting
in a total of 24 settings.

The evaluation was conducted in conditions similar to the training phase. Lighting
conditions were 500 lux, the distance between the participants and the sensors was 1.5 to
5 m, the distance from participants to the background ranged between 0.2 and 2 m, the
participants performed the gestures in front of the sensors, and the ambient temperature
was between 25 °C and 28 °C.

4.5. Results and Interpretation

We calculated the recognition accuracy as the ratio between the number of gestures
correctly recognized over the total number of trials. These results are reported in Table 2.
The accuracy was the highest overall with the skeleton extraction algorithm. When tested
in baseline conditions (no smoke or equipment), we achieved, on the best algorithm,
high accuracy for each sensor: 98% for RGB, 92% for depth, and 94% for thermal. With
firefighting equipment on, the recognition accuracy remained high for RGB and thermal,
with 96%, and lowered for depth, with 84%. When smoke was added, the recognition
reached up to 90% with RGB and 88% with thermal but the depth sensor did not work
in this condition. Although RGB performed slightly better than thermal, we know from
the literature that its performance will degrade in darkness or under thicker smoke. We
find that these results are consistent with the literature about the effect of smoke on the
three sensors, and that they hold in gesture recognition applications [43].
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(a) (b)
Figure 6. (a) Firefighting equipment including helmet, jacket, trousers, and gloves and (b) experiment conducted to evaluate
the system’s accuracy with full equipment and smoke.

Table 2. Recognition accuracy results for each sensor and algorithm evaluated (see Section 4.4).

Recognition Accuracy

Sensor Algorithm without Smoke
without Equipment

without Smoke
with Equipment

with Smoke
with Equipment

“Frame Vote” (HOG + SVM) 78% 70% N/A
“Frame Vote” (CNN) 81% 72% N/ADepth

HOG + SVM 92% 84% N/A
RGB skeleton extraction + SVM 98% 96% 90%

“Frame Vote” (HOG + SVM) 90% 86% 70%
“Frame Vote” (CNN) 90% 84% 71%

HOG + SVM 86% 86% 56%
Thermal

skeleton extraction + SVM 94% 96% 88%

In terms of algorithms, while the HOG + SVM technique achieved better accuracy
than Frame Vote when tested without equipment and smoke, Frame Vote achieved better
accuracy than HOG + SVM in smoke. Regarding the use of protective gear, the depth sensor
was the most affected, but the other sensors’ recognition was not significantly affected. The
skeleton extraction + SVM algorithm appeared the most robust to protective gear, with
only a 2% decrease for the RGB sensor, and with an increase of 2% in accuracy for the
thermal sensor. In addition, we have shown that skeleton extraction of key points can be
done with thermal images, although the API was built for RGB data.

Figures 8–10 present confusion matrices corresponding to 3 evaluated conditions out
of the 24. We present the following three settings: RGB sensor with skeleton extraction,
without smoke, and without equipment (Figure 8); depth sensor with HOG + SVM, with-
out smoke, and without equipment (as in Figure 9); and thermal sensor with skeleton
extraction + SVM, without smoke, and without equipment (as in Figure 10). The confusion
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matrices are used to demonstrate the recognition accuracy of each gesture and to describe
the type of error made by the system.

(a)

(b)
Figure 7. Examples of the setup used in the evaluation of our system. The person is wearing
protective firefighting equipment and smoke is starting to be generated. (a) The Realsense camera
feed is shown on the laptop. (b) The raw thermal sensor feed is shown on the left side of the laptop’s
screen and, on the right side of the laptop’s screen, the feed is shown after background subtraction.

Figure 8. Confusion matrix for the RGB sensor with skeleton extraction + SVM, without smoke, and
without equipment.
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Figure 8 presents the confusion matrix from the RGB sensor with skeleton extraction,
without smoke, and without equipment, which shows an overall measured accuracy of
98%. We found that 3 out of 7 situations are recognized perfectly: “No Person”, “Detecting
Fire”, and “Finding Survivors”. “Stand” was accurately recognized 96% of the time and
was confused with “Walk” 4% of the time and “Walk” was accurately recognized 94%
of the time and was confused with “Stand” 6% of the time. “Mapping” was accurately
recognized 99% of the time and was confused with either “Stand” or “Detecting Fire” (<1%
each). Finally, “Identifying Hazardous Materials” was accurately recognized 99% of the
time and was confused with “Finding Survivors” (<1%).

Figure 9. Confusion matrix for the depth sensor with HOG + SVM, without smoke, and without
equipment.

Figure 10. Confusion matrix for the thermal sensor with skeleton extraction + SVM, without smoke,
and without equipment.
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Figure 9 presents the confusion matrix from the depth sensor with HOG + SVM,
without smoke, and without equipment, which shows an overall measured accuracy of
92%. We found that 2 out of 7 situations are recognized perfectly: “Walk” and “Detecting
Fire”. “No Person” was accurately recognized 67% of the time and was confused with
“Stand” 33% of the time, while “Stand” was accurately recognized 79% of the time and was
confused with “Walk” and “Identifying Hazardous Materials” (approximately 11% each).
The major difference in the accuracy of these 2 situations, between this setting and RGB
with skeleton extraction + SVM, can be explained by the fact that we used background
subtraction based on motion analysis (see Section 4.2). When the participant is standing
still, it appears as if there is no person in the scene after applying background subtraction.
As such, this configuration introduced a confusion between the 2 situations, which further
reveals a clear disadvantage of applying this background subtraction to static gestures.
“Finding Survivors” was accurately recognized 94% of the time and was confused with
“Mapping” 6% of the time. “Mapping” was accurately recognized 94% of the time and was
confused with “Stand” 6% of the time. Finally, “Identifying Hazardous Materials” was
accurately recognized 88% of the time and was confused with “Stand” 12% of the time.

Figure 10 presents the confusion matrix of the thermal sensor with skeleton extraction +
SVM, without smoke, and without equipment, which shows an overall measured accuracy
of 94%. In this condition, 5 situations out of 7 are recognized perfectly: “No person”,
“Stand”, “Detecting Fire”, “Finding Survivors”, and “Mapping”. “Walk” was accurately
recognized 89% of the time and was confused with “Stand” 11% of the time. This is not
surprising given that standing corresponds to a subset of frames of walking. “Identifying
Hazardous Materials” was the least recognized situation, with 76% accuracy, and was
mainly confused with “Mapping” (12%) but also with “Detecting Fire” and “Walk” (5.9%
each). When inspecting the user-defined gestures, we found similarities between the
“Identifying Hazardous Materials” and “Mapping” gestures that present overlapping
frames (when both hands are either in front of the face or moving from the side of the body
to the face), which may explain the confusion between the two gestures.

Comparing these 3 confusion matrices, which all represent one laboratory setting
(without smoke and without equipment), enables us to better understand some of the
advantages and drawbacks of the algorithms or to identify differences and similarities in
the gestures. For example, our findings suggest that the “Mapping”, “Detecting Fire”, and
“Finding Survivors” gestures were overall successfully recognized and differentiated from
the other gestures, with 94% to 100% accuracy in the presented settings. However, the
“Identifying Hazardous Materials” gesture was recognized, with lower accuracy (76% to
99% in the presented settings), which suggests that this gesture might not be appropriate
in the first response context, which is not tolerant to mistakes. It is important to note
that when these gestures were elicited with firefighters, no algorithmic perspective was
considered. However, as first responders are trained personnel, they can be taught specific
gestures, and the “Identifying Hazardous Materials” could be modified in an iterative
process with the firefighters to reduce its overlap with other gestures. In addition, we
see that skeleton extraction + SVM achieved higher accuracy for the gesture “Identifying
Hazardous Materials” with the RGB sensor (99%) than with the thermal sensor (76%),
which can be explained by the fact that the API was trained with RGB data only. These
findings highlight the need to train the skeleton extraction approach with additional types
of sensor data for a wider range of needs.

5. Discussion

In this work, we compared how different remote visual sensors and algorithms
perform under different conditions related to harsh environments. In terms of sensors,
our results showed that the RGB camera performs relatively well in a smoky environment,
although prior work showed that it is expected to fail in dense smoke when visibility
decreases below 1 m. Depth sensors, on the contrary, which are designed to work well in
darkness, did not allow for gesture recognition in smokey conditions, even with light smoke.
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The thermal sensor, which also performs well in darkness, maintained high accuracy in
our experiment, even under smoky conditions and with the use of firefighting equipment.
Based on our findings, and combined with the fact that thermal sensors can effectively
detect fires [63], we propose that thermal sensors would be the best compromise for gestural
recognition in harsh conditions. Nonetheless, we envision that future robotic systems will
be required to perform well in both regular and harsh conditions, and in both daylight
and darkness. As such, we propose that having multiple sensors and using sensor fusion
algorithms would be a safer solution. While this solution should be easily adaptable on
ground robots, weight limitations on aerial robots will probably still constrain researchers
to a limited amount of sensors and computing power, for which we suggest that thermal
sensors are most suitable.

However, thermal sensors also present limitations, such as high costs (over RGB and
depth sensors). They are also less prevalent than RGB and depth cameras in existing
robotic systems. Furthermore, RGB cameras typically provide higher-resolution images,
while depth cameras provide the additional advantage that they can measure the distance
between the robot and its environment, so that they can offer multiple usages. We therefore
suggest that the decision regarding which sensor to embed on a robotic system shall take a
holistic perspective in terms of the actual system’s needs.

In terms of algorithms for gestural recognition in harsh environments, we found that
the skeleton extraction + SVM approach provided good results (with up to 98% accuracy
in baseline conditions and 90% accuracy in smoke and with equipment), even though
the system was not trained in harsh environment settings. Since there are no publicly
available relevant datasets with gestures adapted to the firefighting context, we propose to
compare our results to prior work using similar settings. For example, when comparing
the results from the RGB sensor with skeleton extraction + SVM, without equipment, and
without smoke, to recent results from Liu and Szirányi [54] in similar settings with skeleton
extraction (OpenPose) + DNN, we find that our results are on par with the state-of-the-
art. Indeed, their model can recognize 10 body gestures at 99.8% accuracy using their
test set, against 98% in our system. While they achieved 1.8% higher accuracy, only 2 of
their 10 gestures were dynamic, the rest being static. This may then explain the small
difference in accuracy; however, further research should specifically compare static vs.
dynamic gestures.

One of the goals of our experiment was to verify the effect of the three harsh envi-
ronmental conditions on the sensors and algorithms’ performances. We have shown that,
although the system was trained in normal conditions (i.e., without smoke and equipment),
the presence of protective equipment on the person did not affect the RGB and thermal
sensors’ recognition rates, and that the skeleton extraction + SVM was the least affected
method. Moreover, when smoke was added, all three sensors suffered from a decrease in
accuracy, with skeleton extraction + SVM being, once again, the least affected method.

6. Limitations and Future Work

This work investigated the performance of three common sensors for gesture recogni-
tion in simulated harsh environments. While we found interesting differences between the
sensors, future work should consider additional sensors operating at different wavelengths
or using different technology, as recent work compared LIDAR perfomance in smoke to
six other sensors [43]. Our evaluation considered different harsh environments simulated
in an indoor controlled laboratory setup. In one setting, we generated cold and dense
smoke with a dedicated machine. Future research could vary the density and temperature
of the smoke (e.g., light smoke with a high temperature [43]) and consider smoke generated
from various burning materials. Future research could further expand to other algorithms,
such as by using RNN or LSTM for the classification of gestures, or by expanding the
“Frame Vote” algorithm by introducing weights to the frames.

In our work, we chose to test the gesture recognition system using a fixed setup, before
embedding the sensor and computation on a robot or a drone, as per prior work [37,50]. As
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such, future work will investigate additional constraints related to embedding the system
and testing it in real-world conditions that will affect the recognition accuracy. These
include environmental factors such as various types of lighting (indoors or outdoors),
different orientations and angles between people and sensor, managing jitter, evaluating
the effect of occlusion due to objects such as debris, and considering various heat sources
in the scene, since the performance of thermal sensors will be affected by them (e.g., open
fire) [64].

We further expect that when training the system with data collected in additional
environmental settings, we will see a lesser decrease in the accuracy between the baseline
(i.e., no equipment or smoke) and harsh conditions (e.g., equipment and smoke). Finally,
future research should implement the provided methods and conduct empirical research
with first responders in simulated or real harsh conditions.

7. Conclusions

This manuscript presented research into gestural recognition in harsh environments
tailored for first responders. In particular, we investigated appropriate sensors and algo-
rithms for the remote sensing of body gestures from ground or aerial robot. We designed
and prototyped a gestural interaction system using three types of sensors, namely RGB,
depth, and thermal, and a series of algorithms and feature extraction techniques. We
trained the system (N = 13) and evaluated it (N = 2) in three simulated harsh environ-
ments. Our results highlight differences between sensors and algorithms that can inform
future researchers and practitioners on the human and technical aspects to consider when
integrating gestural recognition systems in harsh environments.
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