
sensors

Article

Vertical Jumping for Legged Robot Based on
Quadratic Programming

Dingkui Tian 1,2, Junyao Gao 1,2,*, Xuanyang Shi 1,2, Yizhou Lu 1,2 and Chuzhao Liu 1,2

����������
�������

Citation: Tian, D.; Gao, J.; Shi, X.; Lu,

Y.; Liu, C. Vertical Jumping for

Legged Robot Based on Quadratic

Programming. Sensors 2021, 21, 3679.

https://doi.org/10.3390/s21113679

Academic Editor: Salvatore Pirozzi

Received: 18 April 2021

Accepted: 19 May 2021

Published: 25 May 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 School of Mechatronical Engineering, Intelligent Robotics Institute, Beijing Institute of Technology,
Beijing 100081, China; tiandingkui@bit.edu.cn (D.T.); shixuanyang@bit.edu.cn (X.S.);
3120180169@bit.edu.cn (Y.L.); 3120150091@bit.edu.cn (C.L.)

2 Beijing Advanced Innovation Center for Intelligent Robots and Systems, Beijing 100081, China
* Correspondence: gaojunyao@bit.edu.cn

Abstract: The highly dynamic legged jumping motion is a challenging research topic because of the
lack of established control schemes that handle over-constrained control objectives well in the stance
phase, which are coupled and affect each other, and control robot’s posture in the flight phase, in
which the robot is underactuated owing to the foot leaving the ground. This paper introduces an
approach of realizing the cyclic vertical jumping motion of a planar simplified legged robot that
formulates the jump problem within a quadratic-programming (QP)-based framework. Unlike prior
works, which have added different weights in front of control tasks to express the relative hierarchy
of tasks, in our framework, the hierarchical quadratic programming (HQP) control strategy is used
to guarantee the strict prioritization of the center of mass (CoM) in the stance phase while split
dynamic equations are incorporated into the unified quadratic-programming framework to restrict
the robot’s posture to be near a desired constant value in the flight phase. The controller is tested
in two simulation environments with and without the flight phase controller, the results validate
the flight phase controller, with the HQP controller having a maximum error of the CoM in the x
direction and y direction of 0.47 and 0.82 cm and thus enabling the strict prioritization of the CoM.

Keywords: hierarchical quadratic programming; quadratic programming; vertical jumping;
full dynamic

1. Introduction

Due to the constraints of underactuation, high dimensionality, and the ground reaction
force in legged robots, it is remarkably challenging to control a highly dynamic legged
robot’s jumping motion. In the stance phase, the most common solution for jumping
is to reduce the full dynamics to a canonical spring-loaded inverted pendulum (SLIP),
which renders the control for legged robots computationally tractable and predicts the
energy wave and ground reaction force during the jumping motion in the stance phase [1].
A nonlinear controller is employed to synchronize the biped dynamics and SLIP [2–6],
which is an effective solution, but makes it difficult to introduce constraints, such as the
stability of the robot and acceleration of the joints, into the controller or to guarantee
strict prioritization in the overconstrained objective. Additionally, the majority of previous
approaches focus on reducing the angular momentum in the center of mass (CoM) at the
launch phase [7], and few studies have paid close attention to how to adjust the position
and attitude of the robot during the flight phase.

1.1. Related Work—Hierarchical Task Controllers

In overconstrained tasks for robots, controlling the hierarchies of the tasks is very
important. There are two main solutions to solving overconstrained problems: adding
weights to the control tasks and hierarchical task control.

Sensors 2021, 21, 3679. https://doi.org/10.3390/s21113679 https://www.mdpi.com/journal/sensors

https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://www.mdpi.com/article/10.3390/s21113679?type=check_update&version=1
https://doi.org/10.3390/s21113679
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/s21113679
https://www.mdpi.com/journal/sensors

Sensors 2021, 21, 3679 2 of 19

In dynamic stair climbing, Caron et al. extended walking stabilization using linear
inverted pendulum tracking with a QP-based wrench distribution and a whole-body admit-
tance controller [8]. Ott et al. presented a new balance control approach for regulating the
CoM position and trunk orientation of a bipedal robot in a compliant way in Ott et al. [9],
Feng et al. [10] described the method of full body humanoid control developed for the
DARPA in Feng et al. [10], and Lee and Goswami presented an approach for maintain-
ing the balance of humanoid robots using control momentum in Lee and Goswami [11].
Jiang et al. [12] showed the possibility for a bipedal robot driven by electric motors to
perform a high jump. Ahn et al. [13,14] described a method of generating an optimal
periodic hopping trajectory for legged robots and verified its performance in experiments.
Wan et al. [15] investigated an optimal jumping motion of a four-link legged robot that min-
imizes the necessary joint torques during the motion. Nguyen et al. [16] presented a novel
methodology for implementing optimized jumping behavior on quadruped robots, which
included efficient trajectory optimization, a precise high-frequency tracking controller and
a robust landing controller for stabilizing the robot body position and orientation after
impact. Ding and Park [17] introduced a novel method for actuator design that exploits
the electromagnetic motors’ torque and speed potential in jumping applications. Different
weights have been applied to different control objectives to reflect priority [8–17]. These
approaches are intuitive and easy to implement on a digital computer; however, they only
express relative priority and it is difficult to guarantee strict prioritization.

Hierarchical methods are based on pseudo-inverse techniques [18,19], but the iterative
null-space projection in Kim et al. [20] and Hutter et al. [21] is limited because inequality
constraints, such as joint acceleration limits or friction cone constraints, cannot be properly
handled. Instead of simplifying the robot model to decrease the computational overhead,
Herzog et al. [22,23] combined the approaches in Nguyen et al. [16] and Ding et al. [17]
to introduce a simplified method for real-time control using a reformulation of existing
algorithms in [24,25].

1.2. Related Work—Controllers in the Flight Phase

As the robot’s foot leaves the ground in the flight phase, keeping the position and
attitude of the robot near the desired values is challenging.

Barkan et al. [4,7] and Justin et al. [5] maintained the angular momentum with respect
to the CoM of the robot to track the desired value, ensuring that the angular momentum
of the robot is small enough before the robot’s foot leaves the ground, so that the leg only
needs to be swung to prepare for landing.

Aoustin and Formalskii in [26,27] introduced vertical upward jumping for a planar
biped with and without a foot, respectively. Xiong and Ames presented a design for control-
ling hopping in a three-dimensional (3-D) legged robot Cassie, whose leg models included
spring stiffness and damping to control hopping behaviors [28]. Tamaddoni et al. intro-
duced a nonlinear controller to synchronize the biped dynamics and spring-mass dynamics
to perform a stable locomotion corresponding to the SLIP model [29]. Vermeulen et al.
presented a real-time control algorithm for a one-legged planar hopping robot, which
was able to hop on irregular terrain by changing its objective locomotion parameters [2].
Scott et al. [30] described a collection of optimization algorithms for achieving the dynamic
planning, control, and state estimation of a bipedal robot designed to operate reliably
in complex environments. Miyadaira et al. [31] proposed two approaches of analyzing
the movement of a robot with an articulated leg (without a toe) having three degrees of
freedom. Schlossman et al. [32] formulated the trajectory optimization problem for a series
of elastic robots in a novel way adopting sequential linear programming. Zhang et al. [33]
presented the design of a jumping robot inspired by the jumping locomotion of locusts. All
these studies focused only on how the robot realizes jumping, little attention was paid to
the change in angular momentum in the launch phase and the control of the robot during
the flight phase.

Sensors 2021, 21, 3679 3 of 19

Nunez et al. introduced an approach based on a single mass point model to enable
humanoid robots to jump vertically. A sliding mode controller is used to ensure the robot’s
CoM tracks the desired value over the whole jump, including the flight phase [34,35].

1.3. Proposed Approach and Contribution

In this paper, we propose an online unified framework based on QP. Our scheme
consists of trajectory generation and an online unified framework, as shown in Figure 1.
Moreover, the trajectory generation in the launch phase is converted into an offline nonlin-
ear optimization problem and the trajectories of the actuated joints and CoM are described
by online quintic polynomial interpolation. The control problems can be successfully
unified into a framework based on QP optimization in real time.

Sensors 2021, 21, x FOR PEER REVIEW 3 of 20

Nunez et al. introduced an approach based on a single mass point model to enable
humanoid robots to jump vertically. A sliding mode controller is used to ensure the ro-
bot’s CoM tracks the desired value over the whole jump, including the flight phase [34,35].

1.3. Proposed Approach and Contribution
In this paper, we propose an online unified framework based on QP. Our scheme

consists of trajectory generation and an online unified framework, as shown in Figure 1.
Moreover, the trajectory generation in the launch phase is converted into an offline non-
linear optimization problem and the trajectories of the actuated joints and CoM are de-
scribed by online quintic polynomial interpolation. The control problems can be success-
fully unified into a framework based on QP optimization in real time.

The main contributions of this paper are as follows:
(1) The launch problem for a robot is essentially to maintain the CoM velocity and accel-

eration enough to overcome gravity, so tracking the desired CoM trajectory is the
highest priority. To strictly prioritize the CoM trajectory and decrease the computa-
tional overhead, we assume that the foot stays in contact with the ground to reduce
the degrees of freedom of the robot and simplify the dynamic equations. Moreover,
HQP control strategy is used instead of assigning multiplicative factors (i.e., weights)
to the control objectives to represent different priorities.

(2) In the flight phase, the dynamic equation is split into the actuated part and the un-
deractuated part. Based on the reformed dynamic equation, the overconstrained con-
trol problem is incorporated into the online unified QP framework to keep the robot’s
posture near a desired constant.

Figure 1. Overview of the online control algorithm.

2. Planar Biped and its Dynamical Model
In this section, the mathematical modeling for the biped jump is introduced, which

was used in the simulation and relies upon the different phases of the biped jump.

2.1. Biped
The generalized coordinates for robot jumping motion are depicted in the diagram

of a planar single-legged three-link jumping robot shown in Figure 2Error! Reference
source not found.. To simplify the research problem, we make two assumptions:
(1) The robot is generally arranged symmetrically in the sagittal plane.
(2) Only the hip, knee, and ankle joints of the robot can move. The other joints, such as

the shoulder and elbow joints, are fixed.
Hence, the jumping of the robot is constrained in the x − y plane and characterized

by a single-legged three-link model.

Figure 1. Overview of the online control algorithm.

The main contributions of this paper are as follows:

(1) The launch problem for a robot is essentially to maintain the CoM velocity and
acceleration enough to overcome gravity, so tracking the desired CoM trajectory
is the highest priority. To strictly prioritize the CoM trajectory and decrease the
computational overhead, we assume that the foot stays in contact with the ground
to reduce the degrees of freedom of the robot and simplify the dynamic equations.
Moreover, HQP control strategy is used instead of assigning multiplicative factors
(i.e., weights) to the control objectives to represent different priorities.

(2) In the flight phase, the dynamic equation is split into the actuated part and the
underactuated part. Based on the reformed dynamic equation, the overconstrained
control problem is incorporated into the online unified QP framework to keep the
robot’s posture near a desired constant.

2. Planar Biped and its Dynamical Model

In this section, the mathematical modeling for the biped jump is introduced, which
was used in the simulation and relies upon the different phases of the biped jump.

2.1. Biped

The generalized coordinates for robot jumping motion are depicted in the diagram of
a planar single-legged three-link jumping robot shown in Figure 2. To simplify the research
problem, we make two assumptions:

(1) The robot is generally arranged symmetrically in the sagittal plane.
(2) Only the hip, knee, and ankle joints of the robot can move. The other joints, such as

the shoulder and elbow joints, are fixed.

Sensors 2021, 21, 3679 4 of 19Sensors 2021, 21, x FOR PEER REVIEW 4 of 20

(a) (b)

Figure 2. Jumping models for the planar biped robot in simulations and its generalized coordinates.

(a) Jumping models in simulation. (b) Simplified configuration of the mechanical structure. { }G is

attached to the ground. The robot’s foot frame is denoted { }F , and homogeneous transformation

matrix G FT converts coordinates from { }G to { }F .

As shown in Figure 2, to control the full dynamical model, we introduce a floating
frame { }F in the jumping model, which is fixed to the intersection of the foot and shank
of the robot. We attached an inertial measurement unit (IMU) and accelerometer to the
CoM of the torso of the robot, and they are respectively used to measure the robot’s atti-
tude and position relative to the inertial frame system { }G . A six-axis universal
force/torque (F-T) is implemented between the foot and the ankle to detect the forces and
torques applied to the robot’s foot.

The torso, thigh, shank, and foot are connected to each other in sequence. The mass
of a human foot is much less than the mass of the thigh, shank, and torso, so we treat the
foot in this model as massless. However, the case of a massless foot is not equivalent to
the case of a point foot. Variables 1q , 2q and 3q are the angles of the ankle, knee, and
hip, respectively, and the positive direction is indicated in Figure 2 by a brown arrow.
Moreover, x and y are used to denote the horizontal and vertical positions, respec-

tively, and fq denotes the angle from the foot frame { }F with respect to the inertial

frame { }G .

Lengths 1L , 2L and 3L denote the length of the shank, thigh, and torso links, re-
spectively, and the distance from the CoM of each link of the robot to the proximal joint
frame is denoted as ciL . We denote by im the masses of these links and ciI the inertial

moment of these links. The total mass of the biped is expressed by tm . The torques acting

on the ankle, knee, and hip joints are denoted by 1τ , 2τ and 3τ , respectively. The iner-
tial parameters of the robot used in the simulation are listed in Table 1.

Figure 2. Jumping models for the planar biped robot in simulations and its generalized coordinates.
(a) Jumping models in simulation. (b) Simplified configuration of the mechanical structure. {G} is
attached to the ground. The robot’s foot frame is denoted {F}, and homogeneous transformation
matrix GTF converts coordinates from {G} to {F}.

Hence, the jumping of the robot is constrained in the x − y plane and characterized by
a single-legged three-link model.

As shown in Figure 2, to control the full dynamical model, we introduce a floating
frame {F} in the jumping model, which is fixed to the intersection of the foot and shank of
the robot. We attached an inertial measurement unit (IMU) and accelerometer to the CoM
of the torso of the robot, and they are respectively used to measure the robot’s attitude and
position relative to the inertial frame system {G}. A six-axis universal force/torque (F-T) is
implemented between the foot and the ankle to detect the forces and torques applied to the
robot’s foot.

The torso, thigh, shank, and foot are connected to each other in sequence. The mass
of a human foot is much less than the mass of the thigh, shank, and torso, so we treat
the foot in this model as massless. However, the case of a massless foot is not equivalent
to the case of a point foot. Variables q1, q2 and q3 are the angles of the ankle, knee, and
hip, respectively, and the positive direction is indicated in Figure 2 by a brown arrow.
Moreover, x and y are used to denote the horizontal and vertical positions, respectively,
and q f denotes the angle from the foot frame {F} with respect to the inertial frame {G}.

Lengths L1, L2 and L3 denote the length of the shank, thigh, and torso links, respec-
tively, and the distance from the CoM of each link of the robot to the proximal joint frame
is denoted as Lci. We denote by mi the masses of these links and Ici the inertial moment of
these links. The total mass of the biped is expressed by mt. The torques acting on the ankle,
knee, and hip joints are denoted by τ1, τ2 and τ3, respectively. The inertial parameters of
the robot used in the simulation are listed in Table 1.

Table 1. Inertial robot parameters used in the simulation.

Link (i) mi (kg) Ici (kg×m2) Li (m) Lci (m)

Shank (1) 5.04 0.0718 0.3 0.15
Thigh (2) 14.26 0.396 0.3 0.15
Torso (3) 16.38 0.8169 0.6 0.2186

2.2. Planar Dynamic Model

According to whether the foot is in contact with the ground and a generalized force
from the ground acts on the foot, we divide the dynamics model of the robot into a ground
phase and a flight phase.

Sensors 2021, 21, 3679 5 of 19

Let us introduce vectors qc = [x, y]T and qj =
[
q f , q1, q2, q3

]T
(T denotes transposition).

We define q =
[
qc, qj

]T . As only the hip, knee, and ankle joints are actuated joints and
the others are underactuated joints, we define τ = [τ1, τ2, τ3]

T . Using the Newton–Euler
method, the dynamic equation for a jumping motion can be obtained in the following
compact matrix form:

M(q)
..
q + V

(
q,

.
q
)
+ G(q) = Bτ + JT Fext (1)

where M(q) is the inertial matrix; V
(
q,

.
q
)
+ G(q) is the sum of gravitational, centrifugal,

and Coriolis forces; B is the torque selection matrix; Fext is the external force; J is the
corresponding Jacobian matrix.

2.3. Time Sequence of Vertical Jumping

As shown in Figure 3, the whole jumping process of the robot can be simply divided
into two parts: the stance phase, when the robot foot is in contact with the ground, which
provides thrust against gravity, and the flight phase, when the foot leaves the ground and
there is no interaction between them. The stance phase consists of two subphases: the
launch phase when the robot starts to jump but its foot is still in contact with the ground
and the landing phase, when the foot contacts the ground again after the flight phase and
the robot prepares for the next jump.

Sensors 2021, 21, x FOR PEER REVIEW 5 of 20

Table 1. Inertial robot parameters used in the simulation.

Link (i) ()im Kg ()2ciI Kg m× ()iL m ()ciL m

Shank (1) 5.04 0.0718 0.3 0.15
Thigh (2) 14.26 0.396 0.3 0.15
Torso (3) 16.38 0.8169 0.6 0.2186

2.2. Planar Dynamic Model
According to whether the foot is in contact with the ground and a generalized force

from the ground acts on the foot, we divide the dynamics model of the robot into a ground
phase and a flight phase.

Let us introduce vectors [], T
cq x y= and 1 2 3, , ,

T

j fq q q q q =   (T denotes trans-

position). We define ,
T

c jq q q =   . As only the hip, knee, and ankle joints are actuated

joints and the others are underactuated joints, we define []1 2 3, ,τ τ τ τ= T
. Using the New-

ton–Euler method, the dynamic equation for a jumping motion can be obtained in the
following compact matrix form:

() () (), T
extM q q V q q G q B J Fτ+ + = +  (1)

where ()M q is the inertial matrix; () (),V q q G q+ is the sum of gravitational, cen-

trifugal, and Coriolis forces; B is the torque selection matrix; extF is the external force;
J is the corresponding Jacobian matrix.

2.3. Time Sequence of Vertical Jumping
As shown in Figure 3, the whole jumping process of the robot can be simply divided

into two parts: the stance phase, when the robot foot is in contact with the ground, which
provides thrust against gravity, and the flight phase, when the foot leaves the ground and
there is no interaction between them. The stance phase consists of two subphases: the
launch phase when the robot starts to jump but its foot is still in contact with the ground
and the landing phase, when the foot contacts the ground again after the flight phase and
the robot prepares for the next jump.

Figure 3. Time sequence of the vertical jumping motion. Figure 3. Time sequence of the vertical jumping motion.

2.4. Simplification of the Full Dynamics

A hierarchical full dynamic controller based on HQP is a very promising approach
for controlling the strict hierarchies of tasks, however, HQP substantially increases the
computational overhead of online calculation, which may prevent the controller from
operating in real time, so it is necessary to decrease the computational overhead. Reducing
the number of variables is a straightforward and sufficiently effective method. The full
dynamics in equation should thus be simplified to reduce the size of the problem.

2.4.1. Simplification in the Stance Phase

To simplify the jumping problem during the stance phase, we assume that the robot’s
foot remains in contact with the ground; no sliding or rotation between the foot and the
ground is allowed. As shown in Figure 4a, the full dynamic model for the jump problem
reduces to a degenerative dynamic model, which consists of only three actuated joints,
the hip, knee, and ankle joints, and we define joint vectors qs = [q1, q2, q3]

T and actuated

Sensors 2021, 21, 3679 6 of 19

torques τs ∈ Rns . The motion of the robot in the stance phase, with the foot on the ground,
is governed by

M(qs)
..
qs + V

(
qs,

.
qs
)
+ G(qs) = τs (2)

Sensors 2021, 21, x FOR PEER REVIEW 6 of 20

2.4. Simplification of the Full Dynamics
A hierarchical full dynamic controller based on HQP is a very promising approach

for controlling the strict hierarchies of tasks, however, HQP substantially increases the
computational overhead of online calculation, which may prevent the controller from op-
erating in real time, so it is necessary to decrease the computational overhead. Reducing
the number of variables is a straightforward and sufficiently effective method. The full
dynamics in equation should thus be simplified to reduce the size of the problem.

2.4.1. Simplification in the Stance Phase
To simplify the jumping problem during the stance phase, we assume that the robot’s

foot remains in contact with the ground; no sliding or rotation between the foot and the
ground is allowed. As shown in Figure 4a, the full dynamic model for the jump problem
reduces to a degenerative dynamic model, which consists of only three actuated joints, the

hip, knee, and ankle joints, and we define joint vectors []1 2 3, , T
sq q q q= and actuated

torques τ ∈ sn
s . The motion of the robot in the stance phase, with the foot on the

ground, is governed by

() () (),s s s s s sM q q V q q G q τ+ + =  (2)

(a) (b)

Figure 4. Dynamic model (a) in the stance phase and (b) in the flight phase.

2.4.2. Simplification in the Flight Phase
As depicted in Figure 4b, in the flight phase, because the massless foot of the robot

leaves the ground and no external force from the ground is able to act on the foot, the
ankle joint degenerates to an underactuated joint. The full dynamic model reduces to a
degenerative dynamic model that consists of five joints and two actuated joints, i.e., the

knee and hip joints. We define vector []1 2 3, , , , T
flq x y q q q= and actuated torques

[]2 3, T
flτ τ τ= . The movement of the robot in the flight phase is characterized by

() () (),fl fl fl fl fl fl flM q q V q q G q B τ+ + =  (3)

3. Trajectory Generation

Figure 4. Dynamic model (a) in the stance phase and (b) in the flight phase.

2.4.2. Simplification in the Flight Phase

As depicted in Figure 4b, in the flight phase, because the massless foot of the robot
leaves the ground and no external force from the ground is able to act on the foot, the
ankle joint degenerates to an underactuated joint. The full dynamic model reduces to
a degenerative dynamic model that consists of five joints and two actuated joints, i.e.,
the knee and hip joints. We define vector q f l = [x, y, q1, q2, q3]

T and actuated torques
τf l = [τ2, τ3]

T . The movement of the robot in the flight phase is characterized by

M
(

q f l

) ..
q f l + V

(
q f l ,

.
q f l

)
+ G

(
q f l

)
= B f lτf l (3)

3. Trajectory Generation

Trajectory generation for vertical jumping consists of two parts: offline optimization
in the stance phase and online interpolation in the landing phase. From the degenerative
dynamic equation of the robot in the stance phase, we know that input torques τ only
depend on the actuated joint information. Therefore, the problem of searching for the
desired reference trajectory is transformed into a problem of seeking the Bèzier polynomial
parameters through an offline nonlinear optimization. To generate the trajectory for the
landing phase, the joint information of the initial landing phase can be obtained by online
sensors and using the initial position, velocity, and acceleration of the actuated joints in
the launch phase as the terminal values of the landing phase. Hence, quintic polynomial
interpolation is employed to describe the trajectories of the actuated joints, and the CoM
trajectory can be calculated from the known joint information.

3.1. Trajectory Optimization in the Launch Phase
3.1.1. Transformation of Trajectory Generation in the Launch Phase

From Equation (2), torques τ depend on qs,
.
qs and

..
qs. In other words, τ can be

represented in terms of function qs(t). An optimization procedure for seeking the actuated
joint trajectories is proposed to determine feasible solutions for the parameters of three

Sensors 2021, 21, 3679 7 of 19

smooth 15th-order Bèzier polynomials, which are used to represent actuated joint angles.
A typical Bèzier polynomial θ(t) is in the form of

θ(t) =
m

∑
i=0

m!
i!(m− i)!

ti
(

1− t
t0

)m−i
·xi (4)

where m is the order of the polynomial, t0 is the time of the Bèzier polynomial, and
xi is the control point. The Bèzier polynomials of the actuated joints can generally be
parameterized as

qi
s = HiL(t) (i = 1, 2, 3) (5)

where qi
s is the trajectory function for the i-th actuated joint, Hi is the control point matrix

of the associated Bèzier polynomial, L(t) is constituted by the t corresponding to Hi.
Therefore, the problem of searching for the optimal trajectories of the actuated joints and
CoM in the stance phase becomes a problem of seeking feasible parameters Hi for the
Bèzier polynomials.

3.1.2. Cost Function of Nonlinear Optimization

In a DC motor, torque is proportional to the actuated current of the motor, and
electric power is proportional to the square of the current. Due to the limited actuation
capacities of the joints in an actual robot, it is prudent to minimize the actuated energy
and joint accelerations while limiting the upper and lower bounds of the joint torques and
accelerations. The torques and accelerations are penalized as follows:

Jτq =
N

∑
k=1
‖τs_k‖wτ

+ ‖ ..
qs_k‖wq

(6)

where, τs_k and
..
qs_k are the joint torque and acceleration at time step k, respectively. Fur-

thermore, wτ and wq are matrices of weights for τs_k and
..
qs_k, respectively.

To avoid high frequency oscillation, we penalize changes in τ and
..
q with

Jch =
N

∑
k=1
‖τs_k − τs_k−1‖wτch

+ ‖ ..
qs_k −

..
qs_k−1‖wqch

(7)

where, wτch and wqch are the weight matrices for the change in torques and accelera-
tions, respectively.

Therefore, the cost function of the trajectory optimization problem in the launch phase
is formulated as follows:

J =
N

∑
k=1

[
‖τs_k‖wτ

+ ‖ ..
qs_k‖wq

+ ‖τs_k − τs_k−1‖wτch
++‖ ..

qs_k −
..
qs_k−1‖wqch

]
(8)

3.1.3. Constraints for Achieving a Stable Launch

(1) Limits of the joint angles, velocities, and accelerations

In practical robot applications, joint angles, velocities, and accelerations must remain
within their physical ranges and cannot exceed their bounds; otherwise, it is easy to damage
a joint’s mechanical configuration. Hence, the physical ranges of the joints are represented
as follows: 

q ≤ qs_k ≤ q
.
q ≤ .

qs_k ≤
.
q

..
q ≤ ..

qs_k ≤
..
q

(9)

Sensors 2021, 21, 3679 8 of 19

where q and q are the upper and lower boundary matrices for the angles;
.
q and

.
q are the

upper and lower boundary matrices for the velocities;
..
q and

..
q are the upper and lower

boundary matrices for the accelerations, respectively.

(2) Limits of the joint torques

With regard to the capacity of the motor and gearbox, it is important to limit the
output torques of the robot’s joints; therefore, the following torque constraints are imposed:

τ ≤ τs_k ≤ τ (10)

where, τ and τ are the upper and lower boundaries of the torques.

(3) Constraints of the CoM trajectory

As this study focuses on vertical jumps, the horizontal component of the CoM trajec-
tory is always zero, which is formulated as follows:

xCoM = 0
.
xCoM = 0
..
xCoM = 0

(11)

where, xCoM,
.
xCoM and

..
xCoM, respectively, denote the position, velocity, and acceleration

of the horizontal CoM trajectory component.
The robot should continuously expand its body to increase the CoM position in the

launch phase. Therefore, the vertical position of the CoM at each time step should be higher
than the previous one, as follows:

yCoM_s_k−1 ≤ yCoM_s_k (12)

where yCoM_s_k−1 and yCoM_s_k denote the vertical position of the CoM at time steps k − 1
and k, respectively.

(4) Ground reaction force constraints

In the launch phase, the vertical force fs_y acting on the robot is always vertical with
respect to the ground, and the horizontal force fs_x is always opposite to the direction of
motion and parallel with the ground, as follows:{

fs_x = mt
..
xCoM = 0

fs_y = mt
(..
yCoM + g

) (13)

where
..
yCoM is acceleration of the CoM in the vertical component. Equation (11) results

in fs_x = 0. Based on the physical meaning of the foot in contact with the ground and
Equation (13), we can conclude that fs_y is non-negative.

Sliding is assumed not to occur between the foot and the ground, so the friction cone
constraint can be formed as follows:

‖ fs_x‖ ≤ us fs_y (14)

where us is the coefficient of friction. The CoM position is zero in the horizontal direction,
which means that Equation (14) always holds.

To protect the robot’s mechanical structure, the ground reaction force applied to the
robot cannot exceed the maximum force fmax.√

f 2
x + f 2

y ≤ fmax → fy ≤ fmax (15)

(5) Initial body configuration

Sensors 2021, 21, 3679 9 of 19

The initial posture of the robot is defined by
qs_i = qs_i,d.
qs_i =

.
qs_i,d..

qs_i =
..
qs_i,d

i = 0, N (16)

where qs_i,d,
.
qs_i,d and

..
qs_i,d are given joint angle, velocity, and acceleration vectors at time

step 0 and N (the launch moment), respectively.

(6) Stability constraints

To ensure that the foot will not tip over and cause the robot to fall down, the zero
moment point (ZMP) should be kept inside the support polygon of the foot, which can be
expressed as follows:

Lmin ≤ ZMPx ≤ Lmax (17)

where Lmin and Lmax are the minimum and maximum values of the foot in the horizon-
tal direction.

Finally, the optimization problem can be cast as

min
H

(
N
∑

k=1

[
‖τs_k‖wτ

+ ‖ ..
qs_k‖wq

+ ‖τs_k − τs_k−1‖wτch
++‖ ..

qs_k −
..
qs_k−1‖wqch

])
s.t. Equations (9) ∼ (13) and (15) ∼ (17)

(18)

where H is vector constituted by the control points of the associated polynomial. s.t.
represent subject to.

As shown in Figure 5, we first specify the initial joint information (angles, velocities,
and accelerations) according to the initial configuration of the robot. The terminal joint
information is obtained from the configuration and the launch velocity of the CoM. Next,
we set the duration of the launch phase to 0.2 s according to the physiological laws of
humans and animals as well as the research results of robots in [36–39], and describe the
joints using Bèzier polynomials. Next, the joints are discretized at each sampling time.
Finally, the problem of generating the trajectory in the launch phase is converted into a
nonlinear optimization problem and the standard discrete nonlinear optimization problem
is solved numerically by the function fmincon in the MATLAB Optimization Toolbox.

Sensors 2021, 21, x FOR PEER REVIEW 10 of 20

_ _ _ _ 1 _ _ 1
1

min + +
τ τ

τ τ τ − −
=

  + − + −    
   

q ch qch

N

s k s k s k s k s k s kw w w wH k
q q q

s.t. Equation (9) (13) and (15) (17)

(18)

where H is vector constituted by the control points of the associated polynomial. s.t.
represent subject to.

As shown in Figure 5, we first specify the initial joint information (angles, velocities,
and accelerations) according to the initial configuration of the robot. The terminal joint
information is obtained from the configuration and the launch velocity of the CoM. Next,
we set the duration of the launch phase to 0.2 s according to the physiological laws of
humans and animals as well as the research results of robots in [36–39], and describe the
joints using Bèzier polynomials. Next, the joints are discretized at each sampling time.
Finally, the problem of generating the trajectory in the launch phase is converted into a
nonlinear optimization problem and the standard discrete nonlinear optimization prob-
lem is solved numerically by the function fmincon in the MATLAB Optimization Toolbox.

Figure 5. Optimization procedure.

The weights and parameters of the nonlinear optimization for the launch phase are
listed in Figure 6. They are identical to the geometric dimensions and the inertial proper-
ties of the robot in the simulation.

Table 2. Parameter vector and weights in the optimization for trajectory generation.

q q q τw τchw

[−1.14, 0, −1.57] [−160, −360, −200] −[360, 560, 500] Diag ([0.6, 0.6, 0.6]) Diag ([0.0006, 0.0006, 0.0006])

q q q qw qchw

[0, 2.28, 0] [300, 300, 300] [600, 600, 600] Diag ([1, 1, 1]) Diag ([0.001, 0.001, 0.001])

As shown in Error! Reference source not found., the actuated joints extend to push
the CoM until the robot’s vertical component of acceleration is completely capable of over-
coming gravity under various constraints, which is intuitively satisfactory for achieving
human-like launch motion.

Figure 5. Optimization procedure.

Sensors 2021, 21, 3679 10 of 19

The weights and parameters of the nonlinear optimization for the launch phase are
listed in Table 2. They are identical to the geometric dimensions and the inertial properties
of the robot in the simulation.

Table 2. Parameter vector and weights in the optimization for trajectory generation.

q
.
q

..
q wτ wτch

[−1.14, 0, −1.57] [−160, −360, −200] −[360, 560, 500] Diag ([0.6, 0.6, 0.6]) Diag ([0.0006, 0.0006, 0.0006])

q .
q

..
q wq wqch

[0, 2.28, 0] [300, 300, 300] [600, 600, 600] Diag ([1, 1, 1]) Diag ([0.001, 0.001, 0.001])

As shown in Figure 6, the actuated joints extend to push the CoM until the robot’s ver-
tical component of acceleration is completely capable of overcoming gravity under various
constraints, which is intuitively satisfactory for achieving human-like launch motion.

Sensors 2021, 21, x FOR PEER REVIEW 11 of 20

Figure 6. Trajectory of the actuated joints and CoM in the vertical component.

3.2. Trajectory Generation in the Landing Phase
The robot’s joint information at the moment of landing cannot be obtained in advance

but can be achieved by online sensors. Therefore, we are only able to employ online inter-
polation to characterize the trajectories in the landing phase. To achieve periodic jumping,
the robot at the terminal moment in the landing phase should return to the initial config-
uration in the launch phase, so we select the initial position, velocity, and acceleration of
the actuated joints and CoM in the launch phase as the information for the terminal mo-
ment of the landing phase. In other words, the initial and final information is known, so
we choose quintic polynomial interpolation to describe the trajectories of the actuated
joints, and the CoM’s trajectory can be calculated from the quintic polynomial interpola-
tion of the joints.

4. Control Algorithm
The algorithm for the vertical jumping motion is composed of two parts, the stance

phase and the flight phase, as determined by the ground reaction force. In the stance
phase, the degenerative model is adopted to substantially decrease the computational
overhead to achieve HQP control. In the flight phase, the dynamic model with a massless
foot is employed to keep the robot near the desired posture to prepare for landing.

4.1. Control in the Landing Phase
The essence of the jumping problem is to push the mass of the robot to a desired

height and velocity so that the robot can fly in the air and realize the desired kinematic
performance of an inverted pendulum.

4.1.1. Problem Formulation
(1) Cost function formulation

The acceleration of the CoM in the horizontal and vertical components can be ex-
pressed as follows:

 = +


= +

  
  

CoM x s x s

CoM y s y s

x J q J q
y J q J q

 (19)

where xJ and yJ are the Jacobian vectors of the CoM in the horizontal and vertical
components, respectively.

So that the CoM follows the desired trajectory, the input is designed as follows:

Figure 6. Trajectory of the actuated joints and CoM in the vertical component.

3.2. Trajectory Generation in the Landing Phase

The robot’s joint information at the moment of landing cannot be obtained in advance
but can be achieved by online sensors. Therefore, we are only able to employ online
interpolation to characterize the trajectories in the landing phase. To achieve periodic
jumping, the robot at the terminal moment in the landing phase should return to the initial
configuration in the launch phase, so we select the initial position, velocity, and acceleration
of the actuated joints and CoM in the launch phase as the information for the terminal
moment of the landing phase. In other words, the initial and final information is known,
so we choose quintic polynomial interpolation to describe the trajectories of the actuated
joints, and the CoM’s trajectory can be calculated from the quintic polynomial interpolation
of the joints.

4. Control Algorithm

The algorithm for the vertical jumping motion is composed of two parts, the stance
phase and the flight phase, as determined by the ground reaction force. In the stance phase,
the degenerative model is adopted to substantially decrease the computational overhead
to achieve HQP control. In the flight phase, the dynamic model with a massless foot is
employed to keep the robot near the desired posture to prepare for landing.

4.1. Control in the Landing Phase

The essence of the jumping problem is to push the mass of the robot to a desired
height and velocity so that the robot can fly in the air and realize the desired kinematic
performance of an inverted pendulum.

Sensors 2021, 21, 3679 11 of 19

4.1.1. Problem Formulation

(1) Cost function formulation

The acceleration of the CoM in the horizontal and vertical components can be ex-
pressed as follows: { ..

xCoM =
.
Jx

.
qs + Jx

..
qs..

yCoM =
.
Jy

.
qs + Jy

..
qs

(19)

where Jx and Jy are the Jacobian vectors of the CoM in the horizontal and vertical compo-
nents, respectively.

So that the CoM follows the desired trajectory, the input is designed as follows:{ ..
xin

CoM = kpx(xd
CoM − xCoM) + kdx(

.
xd

CoM −
.
xCoM)

..
yin

CoM = kpy(yd
CoM − yCoM) + kdy(

.
yd

CoM −
.
yCoM)

(20)

where xd
CoM and

.
xd

CoM are, respectively, the desired position and velocity of the CoM in the

horizontal direction; yd
CoM and

.
yd

CoM are, respectively, the desired position and velocity of
the CoM in the vertical direction.

The joints are expected to track the planned joint trajectory. Input
..
qin

s can be calculated
as follows:

..
qin

s = kpq(qd
s − qs) + kdq(

.
qd

s −
.
qs) (21)

While tracking the desired CoM and actuated joint trajectories, changes in the joint
accelerations should be penalized to avoid high frequency oscillation in the actuated joints.

(2) Constraint formulation

Assuming that the foot does not rotate in the stance phase, the ZMP should remain
inside the support polygon. Following the argument in [40], the ZMP can be formulated
as follows:

ZMPx =
xCoMg + xCoM

..
yCoM −

..
xCoMyCoM

..
yCoM + g

(22)

where the front and length of foot are Lmin and Lmax, respectively, so Lmin ≤ ZMPx ≤ Lmax
is guaranteed.

To avoid slippage, the friction cone should be approximated by

‖ ..
xCoM‖ ≤ us

(..
yCoM + g

)
(23)

where us is the friction coefficient.
With regard to the capacity of the motor and gearbox, the output torques and accelera-

tions of the joints should be added to the constraints as

..
q ≤ ..

qs ≤
..
q (24)

At every control cycle, control objective and constraints can be expressed as a linear
combination of

..
qs, which are the optimization variables of our problem. Tasks with the

same priorities can be stacked into the following form:{
Ax + a ≤ 0
Bx + b = 0

(25)

where input x =
..
qs, A ∈ R(2+2ns)×ns , a ∈ R(2+2ns), B ∈ R(2+2ns)×ns and b ∈ R(2+2ns),

where ns is the number of actuated joints in the robot.

4.1.2. HQP Solver

The jumping control problem in (25) does not have a common solution because it
has so many objective and constraints that trade-off against each other. For example, the

Sensors 2021, 21, 3679 12 of 19

objective that the CoM should track the desired trajectory might conflict with the objectives
of the joints. The final jumping control can be expressed as a QP optimization problem
as follows:

min
x
‖Bx + b‖+ ‖ε‖

s.t. Ax + a ≤ ε
(26)

where ε is the regularization term, and B and b are divided into [B1, B2]
T and [b1, b2]

T

according to priority.
As the control objectives can be in a trade-off relationship with each other, as noted

in (26), strict priority cannot be guaranteed. It is common to add different weights to the
control objectives to reflect distinct priorities, which does not guarantee strict prioritization.
Therefore, HQP is used in the proposed method. Given one solution x∗r with priority r, the
solution for all remaining lower priority x∗r+1 can be expressed as follows:{

x∗r+1 = x∗r + Zr+1ur+1

[B1, B2, · · · , Br]
TZr+1 = 0

(27)

The optimization at priority r + 1 can be expressed as

min‖Br+1x∗r+1 + br+1‖+ ‖ε‖
s.t. Ax∗r+1 + a ≤ ε

(28)

Finally, the optimization problem of jumping in Equation (26) is solved in order from
high priority to low priority. In essence, the solution for objectives with low priority is
searched for in the null space of the high priority solutions.

In Table 3, I ∈ Rns×ns is the identity matrix and
..
qN

s is the output joint’s acceleration in
the last time step.

Table 3. Vectors in the optimization of trajectory planning.

Priority Description Bi bi

1 CoM
[

Jx
Jy

]  .
Jx

.
qs −

..
xin

CoM
.
Jy

.
qs −

..
yin

CoM


2 Joints, changes

[
I
I

] [..
qin

s
..
qN

s

]

4.2. Control in the Flight Phase

During the flight phase, the robot possesses five degrees of freedom, three of which
are underactuated and two of which are actuated, i.e., the knee and hip joints. Therefore,
the dynamics equation in Equation (3) can be split into two parts, which can be expressed
as follows: {

M11
..
qu_ f l + M12

..
qa_ f l + V1 + G1 = 0

M21
..
qu_ f l + M22

..
qa_ f l + V2 + G2 = τf l

(29)

in which M11 ∈ R3×3, M12 ∈ R3×2, M21 ∈ R2×3 and M22 ∈ R2×2 constitute the matrix
M. Moreover, V1 ∈ R3×1 and V2 ∈ R2×1 constitute vector V, and G1 ∈ R3×1 and G2 ∈
R2×1 constitute vector G.

..
qu_ f l = [x, y, q1]

T and
..
qa_ f l = [q2, q3]

T are, respectively, the
underactuated joints and actuated joints.

Hence, because matrix M11 is full rank, the accelerations of the underactuated joints
can be formulated as follows:

..
qu_ f l = −M−1

11 M12
..
qa_ f l −M−1

11 (V1 + G1) (30)

Sensors 2021, 21, 3679 13 of 19

To avoid allowing the robot’s joints to deviate far from the desired value and constrain
the robot to approximate the desired attitude in the flight phase, the robot’s attitude is
controlled. Hence, the input of underactuated joints can be computed by

..
qin

u_ f l = kpu

(
qd

u_ f l − qu_ f l

)
+ kdu

(.
qd

u_ f l −
.
qu_ f l

)
(31)

where kpu ∈ R3×3 and kdu ∈ R3×3 are diagonal matrices.
The actuated joint inputs can be computed by

..
qin

a_ f l = kpa

(
qd

a_ f l − qa_ f l

)
+ kda

(.
qd

a_ f l −
.
qa_ f l

)
(32)

where kpa ∈ R2×2 and kda ∈ R2×2 are diagonal matrices.
The control objective is to restrict the robot’s attitude so that it is close to the desired

value, not to track the desired trajectories to prepare for landing, so strict prioritization does
not need to be guaranteed. Therefore, instead of using HQP, we added different weights
to different control targets to describe the priority. Hence, the control for the robot in the
flight phase can be formulated as a QP optimization problem. The unified QP optimization
problem can be cast as follows:

min
x
‖Bx + b‖w + ‖ε‖

s.t. Ax + a ≤ ε
(33)

where A =

[
I
−I

]
, a =

[
−x
x

]
, B =

[
I

−M−1
11 M12

]
, b = −

[..
qin

a_ f l

M−1
11 (V1 + G1) +

..
qin

u_ f l

]
.

Furthermore, w is the corresponding weight, and x and x are the upper and lower bound-
aries of the joint accelerations.

5. Simulation and Results

The proposed controller was implemented on MATLAB/Simulink with a fixed sample
cycle (4 ms) to achieve repeatable vertical jumping cycles for a planar three-link robot.
In the flight phase, we want to control the robot’s hips, knees, and ankles so that they
remain near the desired position, but this is an overconstrained problem. The angles of
the ankle and hip are particularly important for the landing posture, so we chose large
weights for ankle and hip and very small weights for the other joints. The final weight
values w = diag(0.0001, 0.0001, 1, 0.01, 0.6) were used.

As depicted in Figure 7, the robot experienced both a failed landing and a successful
landing. To verify the effectiveness of the flight phase controller, we chose the same con-
troller for the two scenarios in the stance phase without controlling the angular momentum
in the launch phase, which caused the angular momentum to exceed 30 N·m·s after the
robot’s foot left the ground. When the robot foot left the ground, we locked the actuated
joints to keep the angles of actuated joints stationary in the jump shown in Figure 7a and
used the flight phase controller described in Section 4.2 for the jump shown in Figure 7b.

As shown in Figure 7a, when the actuated joints are locked, the robot rotates around
the CoM because of the conservation of angular momentum, which causes the posture to
deviate far from the desired value and causes the robot to fail to land.

In Figure 7b, the rotation of actuated joints compensate for the rotation of the robot
caused by the conservation of angular momentum, which maintained the robot’s posture
near the desired value, so the robot was able to land successfully.

Sensors 2021, 21, 3679 14 of 19

Sensors 2021, 21, x FOR PEER REVIEW 15 of 20

As shown in Figure 7a, when the actuated joints are locked, the robot rotates around
the CoM because of the conservation of angular momentum, which causes the posture to
deviate far from the desired value and causes the robot to fail to land.

In Figure 7b, the rotation of actuated joints compensate for the rotation of the robot
caused by the conservation of angular momentum, which maintained the robot’s posture
near the desired value, so the robot was able to land successfully.

Figure 7. Demonstration of different jump cases with different controllers in the flight phase. (a) A
failed jump and (b) a successful jump.

In Figure 8, foot trajectories are plotted along the x-axis (bottom) and y-axis (top).
The red circles indicate the position of the foot when the robot lands. A cyclic position for
the foot in both the x and y directions indicates that the robot realizes a cyclic jump. Dur-
ing the stance phase, the foot remains stationary on the ground except at the landing mo-
ment, and the sliding and oscillation of the robot along the x-axis and y-axis due to the
impact force is small enough to be considered negligible. The foot trajectories along the x-
axis in Figure 8 show that the actuated joints compensate for the rolling of the robot in the
flight phase, which causes the position of the foot in the landing position to deviate peri-
odically from the launch position.

Figure 8. Foot trajectories in the x and y directions.

Figure 7. Demonstration of different jump cases with different controllers in the flight phase. (a) A failed jump and (b) a
successful jump.

In Figure 8, foot trajectories are plotted along the x-axis (bottom) and y-axis (top). The
red circles indicate the position of the foot when the robot lands. A cyclic position for the
foot in both the x and y directions indicates that the robot realizes a cyclic jump. During
the stance phase, the foot remains stationary on the ground except at the landing moment,
and the sliding and oscillation of the robot along the x-axis and y-axis due to the impact
force is small enough to be considered negligible. The foot trajectories along the x-axis in
Figure 8 show that the actuated joints compensate for the rolling of the robot in the flight
phase, which causes the position of the foot in the landing position to deviate periodically
from the launch position.

Sensors 2021, 21, x FOR PEER REVIEW 15 of 20

As shown in Figure 7a, when the actuated joints are locked, the robot rotates around
the CoM because of the conservation of angular momentum, which causes the posture to
deviate far from the desired value and causes the robot to fail to land.

In Figure 7b, the rotation of actuated joints compensate for the rotation of the robot
caused by the conservation of angular momentum, which maintained the robot’s posture
near the desired value, so the robot was able to land successfully.

Figure 7. Demonstration of different jump cases with different controllers in the flight phase. (a) A
failed jump and (b) a successful jump.

In Figure 8, foot trajectories are plotted along the x-axis (bottom) and y-axis (top).
The red circles indicate the position of the foot when the robot lands. A cyclic position for
the foot in both the x and y directions indicates that the robot realizes a cyclic jump. Dur-
ing the stance phase, the foot remains stationary on the ground except at the landing mo-
ment, and the sliding and oscillation of the robot along the x-axis and y-axis due to the
impact force is small enough to be considered negligible. The foot trajectories along the x-
axis in Figure 8 show that the actuated joints compensate for the rolling of the robot in the
flight phase, which causes the position of the foot in the landing position to deviate peri-
odically from the launch position.

Figure 8. Foot trajectories in the x and y directions. Figure 8. Foot trajectories in the x and y directions.

In Figure 9, the periodically occurring zero ground reaction force indicates that the
robot’s foot successfully achieves periodic flight. When the foot touches the ground after
the flight phase, the touch-down impact can be observed. The touch-down impact acting
on the foot is very large because of the position of the input joints.

Sensors 2021, 21, 3679 15 of 19

Sensors 2021, 21, x FOR PEER REVIEW 16 of 20

In Figure 9, the periodically occurring zero ground reaction force indicates that the
robot’s foot successfully achieves periodic flight. When the foot touches the ground after
the flight phase, the touch-down impact can be observed. The touch-down impact acting
on the foot is very large because of the position of the input joints.

Figure 9. Ground reaction force.

Foot boundaries (red dotted line) and the ZMP along the x-axis (blue solid line) are
presented in Figure 10. The results show that the ZMP response is always within the sup-
porting polygon except at touch-down because of the touch-down impact, which reveals
that the robot is stable in the stance phase and the controller for stabilizing the simplified
robot model is effective.

Figure 10. Foot ZMP in the x-axis.

The trajectory of the CoM and the corresponding error are presented in Figure 11. As
the CoM is not controlled during the flight phase, the CoM error disappears during the
flight phase. The trajectory of the CoM shows that the robot tracks the reference trajecto-
ries in both x and y directions well. In the stance phase, the HQP controller maintains the
error of the CoM of the robot at the millimeter scale, instead of the centimeter scale as
reported in [40]; the maximum errors of the CoM in the x and y directions are, respectively,
0.0047 and 0.0082 m in the present study and 0.0761 and 0.0392 m in [40]. The maximum
errors in the x and y directions in [40] are thus 16.19 and 4.78 times those in the present

Figure 9. Ground reaction force.

Foot boundaries (red dotted line) and the ZMP along the x-axis (blue solid line) are
presented in Figure 10. The results show that the ZMP response is always within the
supporting polygon except at touch-down because of the touch-down impact, which
reveals that the robot is stable in the stance phase and the controller for stabilizing the
simplified robot model is effective.

Sensors 2021, 21, x FOR PEER REVIEW 16 of 20

In Figure 9, the periodically occurring zero ground reaction force indicates that the
robot’s foot successfully achieves periodic flight. When the foot touches the ground after
the flight phase, the touch-down impact can be observed. The touch-down impact acting
on the foot is very large because of the position of the input joints.

Figure 9. Ground reaction force.

Foot boundaries (red dotted line) and the ZMP along the x-axis (blue solid line) are
presented in Figure 10. The results show that the ZMP response is always within the sup-
porting polygon except at touch-down because of the touch-down impact, which reveals
that the robot is stable in the stance phase and the controller for stabilizing the simplified
robot model is effective.

Figure 10. Foot ZMP in the x-axis.

The trajectory of the CoM and the corresponding error are presented in Figure 11. As
the CoM is not controlled during the flight phase, the CoM error disappears during the
flight phase. The trajectory of the CoM shows that the robot tracks the reference trajecto-
ries in both x and y directions well. In the stance phase, the HQP controller maintains the
error of the CoM of the robot at the millimeter scale, instead of the centimeter scale as
reported in [40]; the maximum errors of the CoM in the x and y directions are, respectively,
0.0047 and 0.0082 m in the present study and 0.0761 and 0.0392 m in [40]. The maximum
errors in the x and y directions in [40] are thus 16.19 and 4.78 times those in the present

Figure 10. Foot ZMP in the x-axis.

The trajectory of the CoM and the corresponding error are presented in Figure 11. As
the CoM is not controlled during the flight phase, the CoM error disappears during the
flight phase. The trajectory of the CoM shows that the robot tracks the reference trajectories
in both x and y directions well. In the stance phase, the HQP controller maintains the
error of the CoM of the robot at the millimeter scale, instead of the centimeter scale as
reported in [40]; the maximum errors of the CoM in the x and y directions are, respectively,
0.0047 and 0.0082 m in the present study and 0.0761 and 0.0392 m in [40]. The maximum
errors in the x and y directions in [40] are thus 16.19 and 4.78 times those in the present
paper, respectively, demonstrating that the HQP controller ensures strict prioritization in
the overconstrained control problem.

Sensors 2021, 21, 3679 16 of 19

Sensors 2021, 21, x FOR PEER REVIEW 17 of 20

paper, respectively, demonstrating that the HQP controller ensures strict prioritization in
the overconstrained control problem.

Figure 11. Trajectory of the CoM and its error.

Figure 12 displays the joint trajectories (blue solid lines), reference values in the flight
phase (red dotted lines), and touch-down times (solid red circles).

Figure 12. Joint trajectories in simulation.

In the stance phase, the joint trajectories are all within the joint limitations and
smooth except at the touch-down time owing to the touch-down impact. Due to the
greater impact acting on the ankle joint, the velocity of the ankle joint changes abruptly.
The knee and hip joints are less affected, and the changes in velocities can be negligible.

During the flight phase, the controller is able to successfully restrict the robot’s pos-
ture to be near the desired constant value to prepare for a successful landing. The larger
weight of the ankle joint means that the deviations from the desired angle for the ankle
are much less than those for the knee and hip.

6. Discussion
Previous studies have adopted various approaches to realize a robot’s jumping mo-

tion. In overconstrained tasks for robots, adding different weights to the control tasks can
only represent relative priority and it is difficult to guarantee strict prioritization; pseudo-
inverse-based hierarchical methods cannot deal with the inequality constraints. In the

Figure 11. Trajectory of the CoM and its error.

Figure 12 displays the joint trajectories (blue solid lines), reference values in the flight
phase (red dotted lines), and touch-down times (solid red circles).

Sensors 2021, 21, x FOR PEER REVIEW 17 of 20

paper, respectively, demonstrating that the HQP controller ensures strict prioritization in
the overconstrained control problem.

Figure 11. Trajectory of the CoM and its error.

Figure 12 displays the joint trajectories (blue solid lines), reference values in the flight
phase (red dotted lines), and touch-down times (solid red circles).

Figure 12. Joint trajectories in simulation.

In the stance phase, the joint trajectories are all within the joint limitations and
smooth except at the touch-down time owing to the touch-down impact. Due to the
greater impact acting on the ankle joint, the velocity of the ankle joint changes abruptly.
The knee and hip joints are less affected, and the changes in velocities can be negligible.

During the flight phase, the controller is able to successfully restrict the robot’s pos-
ture to be near the desired constant value to prepare for a successful landing. The larger
weight of the ankle joint means that the deviations from the desired angle for the ankle
are much less than those for the knee and hip.

6. Discussion
Previous studies have adopted various approaches to realize a robot’s jumping mo-

tion. In overconstrained tasks for robots, adding different weights to the control tasks can
only represent relative priority and it is difficult to guarantee strict prioritization; pseudo-
inverse-based hierarchical methods cannot deal with the inequality constraints. In the

Figure 12. Joint trajectories in simulation.

In the stance phase, the joint trajectories are all within the joint limitations and smooth
except at the touch-down time owing to the touch-down impact. Due to the greater impact
acting on the ankle joint, the velocity of the ankle joint changes abruptly. The knee and hip
joints are less affected, and the changes in velocities can be negligible.

During the flight phase, the controller is able to successfully restrict the robot’s posture
to be near the desired constant value to prepare for a successful landing. The larger weight
of the ankle joint means that the deviations from the desired angle for the ankle are much
less than those for the knee and hip.

6. Discussion

Previous studies have adopted various approaches to realize a robot’s jumping motion.
In overconstrained tasks for robots, adding different weights to the control tasks can only
represent relative priority and it is difficult to guarantee strict prioritization; pseudo-
inverse-based hierarchical methods cannot deal with the inequality constraints. In the
flight phase, none of these methods allow the controller to keep the position and attitude
of the robot near the desired values.

Sensors 2021, 21, 3679 17 of 19

We proposed a method that incorporates the vertical jumping problem of the robot
into a QP-based framework. In the stance phase, the HQP controller for a degenerative
mass point model is used to consider the constraints and guarantee strict prioritization.
During the flight phase, the split dynamic equation is unified into a QP controller to keep
the robot’s posture near a desired position.

In the stance phase, the maximum errors of the CoM are, respectively, 0.0047 and
0.0082 m in the x direction and y direction, whereas they are 0.0761 and 0.0392 m in [40].
In [40], the priorities of tasks are expressed by adding different weights to different tasks,
which only guarantees relative priorities and not strict prioritization, and the CoM tracking
task cannot be accurately executed and is coupled with other less important tasks, reducing
the accuracy of the CoM task. Therefore, the maximum errors in the x direction and y
direction in [40] are 16.19 and 4.78 times those in this paper, respectively.

In the flight phase, the rotations of actuated joints compensate for the rotation of the
robot due to the conservation of angular momentum, which maintains the robot’s posture
near the desired value, so the robot lands successfully.

We validated the effectiveness of the controller by comparing simulation results.

7. Conclusions

This paper proposed an online optimal control method that incorporates the vertical
jumping problem of a robot into a QP-based framework. During the stance phase, the
HQP controller for a degenerative mass point model is introduced to consider constraints
and guarantee strict prioritization in the overconstraint tasks. In the flight phase, the
split dynamic equation is unified into a QP controller to keep the robot’s posture near a
desired position.

Through simulation, we demonstrated the QP-based framework. First, the HQP
controller in the stance phase reduces the maximum errors of the CoM in the x direction
and y direction by factors of 16.19 and 4.78, respectively, compared with previous work,
which demonstrates that the HQP controller can accurately execute the CoM tracking task
and guarantee strict CoM prioritization. Second, the use of different controllers in the
flight phase leads to different landing cases, which validates the use of the QP controller to
maintain the robot’s posture near a desired constant value in the flight phase.

In future work, we will extend this method to a 3D case for the full dynamic model, in
which sagittal and lateral motion can occur. To this end, a substantial amount of work must
be carried out; for instance, the control of the degenerative model in the jumping motion
should be extended to the control of a full dynamics model. Owing to the compatibility
and scalability of the online unified framework based on QP, the extension of the 3D jump
control problem can be successfully incorporated into this unified framework.

Author Contributions: Conceptualization, D.T. and J.G.; formal analysis, D.T., X.S. and Y.L.; funding
acquisition, J.G.; methodology C.L. and X.S.; resources, J.G. and C.L.; software, D.T.; writing—
original draft, D.T.; writing—review and editing, Y.L. and J.G. All authors have read and agreed to
the published version of the manuscript.

Funding: This work was supported in part by the National Natural Science Foundation of China
under Grant 91748202 and Grant 61973039 and the Beijing Municipal Science and Technology Project
under Grant Z191100008019003.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Data sharing not applicable.

Acknowledgments: The authors appreciate the guidance from Xuechao Chen and Qiang Huang as
well as help from other colleagues at the Beijing Advanced Innovation Center for Intelligent Robots
and Systems.

Conflicts of Interest: The authors declare no conflict of interest.

Sensors 2021, 21, 3679 18 of 19

References
1. Blickhan, R. The Spring-Mass Model for Running and Hopping. J. Biomech. 1989, 22, 1217–1227. [CrossRef]
2. Vermeulen, J.; Lefeber, D.; Verrelst, B. Control of Foot Placement, Forward Velocity and Body Orientation of a One-Legged

Hopping Robot. Robotica 2003, 21, 45–57. [CrossRef]
3. Ugurlu, B.; Kawamura, A. Real-Time Jumping Trajectory Generation for a One Legged Jumping Robot. In Proceedings of the

2008 34th Annual Conference of IEEE Industrial Electronics, Orlando, FL, USA, 10–13 November 2008; pp. 1668–1673.
4. Ugurlu, B.; Kawamura, A. Eulerian ZMP Resolution: Real-Time Jogging and Jumping Trajectory Planning for Bipedal Robots. In

Proceedings of the 2009 IEEE/ASME International Conference on Advanced Intelligent Mechatronics, Singapore, 14–17 July 2009;
pp. 150–155.

5. Yim, J.K.; Singh, B.R.P.; Wang, E.K.; Featherstone, R.; Fearing, R.S. Precision Robotic Leaping and Landing Using Stance-Phase
Balance. IEEE Robot. Autom. Lett. 2020, 5, 3422–3429. [CrossRef]

6. Hodgins, J.K.; Raibert, M.N. Adjusting Step Length for Rough Terrain Locomotion. IEEE Trans. Robot. Automat. 1991, 7, 289–298.
[CrossRef]

7. Ugurlu, B. ZMP-Based Online Jumping Pattern Generation for a One-Legged Robot. IEEE Trans. Ind. Electron. 2010, 57, 1701–1709.
[CrossRef]

8. Caron, S.; Kheddar, A.; Tempier, O. Stair Climbing Stabilization of the HRP-4 Humanoid Robot Using Whole-Body Admittance
Control. In Proceedings of the 2019 International Conference on Robotics and Automation (ICRA), Montreal, QC, Canada, 20–24
May 2019; pp. 277–283.

9. Ott, C.; Roa, M.A.; Hirzinger, G. Posture and Balance Control for Biped Robots Based on Contact Force Optimization. In
Proceedings of the 2011 11th IEEE-RAS International Conference on Humanoid Robots, Bled, Slovenia, 26–28 October 2011;
pp. 26–33.

10. Feng, S.; Whitman, E.; Xinjilefu, X.; Atkeson, C.G. Optimization-Based Full Body Control for the DARPA Robotics Challenge:
Optimization-Based Full Body Control For The DARPA Robotics Challenge. J. Field Robot. 2015, 32, 293–312. [CrossRef]

11. Lee, S.-H.; Goswami, A. Ground Reaction Force Control at Each Foot: A Momentum-Based Humanoid Balance Controller for
Non-Level and Non-Stationary Ground. In Proceedings of the 2010 IEEE/RSJ International Conference on Intelligent Robots and
Systems, Taipei, Taiwan, 18–22 October 2010; pp. 3157–3162.

12. Jiang, X.; Chen, X.; Yu, Z.; Zhang, W.; Meng, L.; Huang, Q. Motion Planning for Bipedal Robot to Perform Jump Maneuver. Appl.
Sci. 2018, 8, 139. [CrossRef]

13. Ahn, D.; Cho, B.-K. Optimal Periodic Hopping Trajectory Generation for Legged Robots. In Proceedings of the 2018 IEEE/ASME
International Conference on Advanced Intelligent Mechatronics (AIM), Auckland, New Zealand, 9–12 July 2018; pp. 1263–1268.

14. Ahn, D.; Cho, B.-K. Optimal Standing Jump Trajectory Generation for Biped Robots. Int. J. Precis. Eng. Manuf. 2020, 21, 1459–1467.
[CrossRef]

15. Wan, X.; Urakubo, T.; Tada, Y. Optimization of Jumping Motion of a Legged Robot for Different Take-off Postures. J. Mech. Sci.
Technol. 2015, 29, 1391–1397. [CrossRef]

16. Nguyen, Q.; Powell, M.J.; Katz, B.; Carlo, J.D.; Kim, S. Optimized Jumping on the MIT Cheetah 3 Robot. In Proceedings of the
2019 International Conference on Robotics and Automation (ICRA), Montreal, QC, Canada, 20–24 May 2019; pp. 7448–7454.

17. Ding, Y.; Park, H.-W. Design and Experimental Implementation of a Quasi-Direct-Drive Leg for Optimized Jumping. In
Proceedings of the 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Vancouver, BC, Canada,
24–28 September 2017; pp. 300–305.

18. Sentis, L.; Khatib, O. Synthesis Of Whole-Body Behaviors Through Hierarchical Control Of Behavioral Primitives. Int. J. Human.
Robot. 2005, 2, 505–518. [CrossRef]

19. Nakamura, Y.; Hanafusa, H.; Yoshikawa, T. Task-Priority Based Redundancy Control of Robot Manipulators. Int. J. Robot. Res.
1987, 6, 3–15. [CrossRef]

20. Kim, D.; Di Carlo, J.; Katz, B.; Bledt, G.; Kim, S. Highly Dynamic Quadruped Locomotion via Whole-Body Impulse Control and
Model Predictive Control. arXiv 2019, arXiv:1909.06586.

21. Hutter, M.; Sommer, H.; Gehring, C.; Hoepflinger, M.; Bloesch, M.; Siegwart, R. Quadrupedal Locomotion Using Hierarchical
Operational Space Control. Int. J. Robot. Res. 2014, 33, 1047–1062. [CrossRef]

22. Herzog, A.; Righetti, L.; Grimminger, F.; Pastor, P.; Schaal, S. Balancing Experiments on a Torque-Controlled Humanoid with
Hierarchical Inverse Dynamics. In Proceedings of the 2014 IEEE/RSJ International Conference on Intelligent Robots and Systems,
Chicago, IL, USA, 14–18 September 2014; pp. 981–988.

23. Herzog, A.; Rotella, N.; Mason, S.; Grimminger, F.; Schaal, S.; Righetti, L. Momentum Control with Hierarchical Inverse Dynamics
on a Torque-Controlled Humanoid. Auton. Robot. 2016, 40, 473–491. [CrossRef]

24. Kanoun, O.; Lamiraux, F.; Wieber, P.-B. Kinematic Control of Redundant Manipulators: Generalizing the Task-Priority Framework
to Inequality Task. IEEE Trans. Robot. 2011, 27, 785–792. [CrossRef]

25. de Lasa, M.; Mordatch, I.; Hertzmann, A. Feature-Based Locomotion Controllers. ACM Trans. Graph. 2010, 29, 1–10. [CrossRef]
26. Aoustin, Y.; Formalskii, A.M. Modeling, Control and Simulation of Upward Jump of a Biped. Multibody Syst. Dyn. 2013, 29,

425–445. [CrossRef]
27. Aoustin, Y.; Formalskii, A. Upward Jump Of A Biped. Int. J. Human. Robot. 2013, 10, 1350032. [CrossRef]

http://doi.org/10.1016/0021-9290(89)90224-8
http://doi.org/10.1017/S0263574702004551
http://doi.org/10.1109/LRA.2020.2976597
http://doi.org/10.1109/70.88138
http://doi.org/10.1109/TIE.2009.2032439
http://doi.org/10.1002/rob.21559
http://doi.org/10.3390/app8010139
http://doi.org/10.1007/s12541-020-00360-6
http://doi.org/10.1007/s12206-015-0309-5
http://doi.org/10.1142/S0219843605000594
http://doi.org/10.1177/027836498700600201
http://doi.org/10.1177/0278364913519834
http://doi.org/10.1007/s10514-015-9476-6
http://doi.org/10.1109/TRO.2011.2142450
http://doi.org/10.1145/1778765.1781157
http://doi.org/10.1007/s11044-012-9319-6
http://doi.org/10.1142/S0219843613500321

Sensors 2021, 21, 3679 19 of 19

28. Xiong, X.; Ames, A.D. Bipedal Hopping: Reduced-Order Model Embedding via Optimization-Based Control. In Proceedings
of the 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Madrid, Spain, 1–5 October 2018;
pp. 3821–3828.

29. Tamaddoni, S.H.; Jafari, F.; Meghdari, A.; Sohrabpour, S. Biped hopping control bazsed on spring loaded inverted pendulum
model. Int. J. Human. Robot. 2010, 7, 263–280. [CrossRef]

30. Kuindersma, S.; Deits, R.; Fallon, M.; Valenzuela, A.; Dai, H.; Permenter, F.; Koolen, T.; Marion, P.; Tedrake, R. Optimization-Based
Locomotion Planning, Estimation, and Control Design for the Atlas Humanoid Robot. Auton. Robot. 2016, 40, 429–455. [CrossRef]

31. Miyadaira, A.N.; Kolm Madrid, M.; Garcia, J.C.; Gualda, D.; Delai, A.L. Squat Vertical Jump of a 3DOF Robot Leg over an Inclined
Plane: Analysis with Joint Torque Profile Approximation. IEEE Latin. Am. Trans. 2018, 16, 80–87. [CrossRef]

32. Schlossman, R.; Thomas, G.C.; Campbell, O.; Sentis, L. Exploiting the Natural Dynamics of Series Elastic Robots by Actuator-
Centered Sequential Linear Programming. arXiv 2018, arXiv:1802.10190.

33. Zhang, J.; Song, G.; Li, Y.; Qiao, G.; Song, A.; Wang, A. A Bio-Inspired Jumping Robot: Modeling, Simulation, Design, and
Experimental Results. Mechatronics 2013, 23, 1123–1140. [CrossRef]

34. Nunez, V.; Drakunov, S.; Nadjar-Gauthier, N.; Cadiou, J.C. Control Strategy for Planar Vertical Jump. In Proceedings of the 12th
International Conference on Advanced Robotics, Seatle, WA, USA, 18–20 July 2005.

35. Nunez, V.; Nadjar-Gauthier, N. Control Strategy for Vertical Jump of Humanoid Robots. In Proceedings of the 2005 IEEE/RSJ
International Conference on Intelligent Robots and Systems, Edmonton, AB, Canada, 2–6 August 2005; pp. 2253–2258.

36. Park, H.-W.; Park, S.; Kim, S. Variable-Speed Quadrupedal Bounding Using Impulse Planning: Untethered High-Speed 3D
Running of MIT Cheetah 2. In Proceedings of the 2015 IEEE International Conference on Robotics and Automation (ICRA),
Seattle, WA, USA, 26–30 May 2015; pp. 5163–5170.

37. Astley, R.J.; Stol, K.A.; Harrington, J.J. Modelling the Elastic Properties of Softwood; Springer: Berlin/Heidelberg, Germany, 1998;
p. 8.

38. Hudson, P.E.; Corr, S.A.; Wilson, A.M. High Speed Galloping in the Cheetah (Acinonyx Jubatus) and the Racing Greyhound
(Canis Familiaris): Spatio-Temporal and Kinetic Characteristics. J. Exp. Biol. 2012, 215, 2425–2434. [CrossRef]

39. Haberland, M. The Effect of Swing Leg Retraction on Running Energy Efficiency. In Proceedings of the 2011 IEEE/RSJ International
Conference on Intelligent Robots and Systems, San Francisco, CA, USA, 25–30 September 2011; pp. 3957–3962.

40. Tian, D.; Gao, J.; Liu, C.; Shi, X. Simulation of Upward Jump Control for One-Legged Robot Based on QP Optimization. Sensors
2021, 21, 1893. [CrossRef]

http://doi.org/10.1142/S0219843610002106
http://doi.org/10.1007/s10514-015-9479-3
http://doi.org/10.1109/TLA.2018.8291458
http://doi.org/10.1016/j.mechatronics.2013.09.005
http://doi.org/10.1242/jeb.066720
http://doi.org/10.3390/s21051893

	Introduction
	Related Work—Hierarchical Task Controllers
	Related Work—Controllers in the Flight Phase
	Proposed Approach and Contribution

	Planar Biped and its Dynamical Model
	Biped
	Planar Dynamic Model
	Time Sequence of Vertical Jumping
	Simplification of the Full Dynamics
	Simplification in the Stance Phase
	Simplification in the Flight Phase

	Trajectory Generation
	Trajectory Optimization in the Launch Phase
	Transformation of Trajectory Generation in the Launch Phase
	Cost Function of Nonlinear Optimization
	Constraints for Achieving a Stable Launch

	Trajectory Generation in the Landing Phase

	Control Algorithm
	Control in the Landing Phase
	Problem Formulation
	HQP Solver

	Control in the Flight Phase

	Simulation and Results
	Discussion
	Conclusions
	References

