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Abstract: Wearable devices are currently popular for fitness tracking. However, these general usage
devices only can track limited and prespecified exercises. In our previous work, we introduced
ExerSense that segments, classifies, and counts multiple physical exercises in real-time based on a
correlation method. It also can track user-specified exercises collected only one motion in advance.
This paper is the extension of that work. We collected acceleration data for five types of regular
exercises by four different wearable devices. To find the best accurate device and its position
for multiple exercise recognition, we conducted 50 times random validations. Our result shows
the robustness of ExerSense, working well with various devices. Among the four general usage
devices, the chest-mounted sensor is the best for our target exercises, and the upper-arm-mounted
smartphone is a close second. The wrist-mounted smartwatch is third, and the worst one is the
ear-mounted sensor.

Keywords: wearable; sports; human activity recognition; accelerometer

1. Introduction

Exercise and physical activity have well-documented mental and physical health
benefits [1,2]. People who partake in regular physical activity are healthier and have a better
mood. They are also less prone to several chronic diseases (e.g., cardiovascular disease,
diabetes, cancer, hypertension, obesity, and depression) and live much longer compared
to those with a sedentary lifestyle. Consequently, active daily living is recommended for
all people of all ages [2]. Unfortunately, despite the numerous benefits of regular physical
activity, it is challenging for most people to stay motivated and keep adherence to a regular
workout schedule [3]. Indeed, people easily lose self-motivation. Additionally, at least for
beginners, proper physical exercise necessitates training.

Researchers and exercise therapists have proposed numerous strategies that help
improve adherence to a regular exercise schedule [4]. These include, among other things,
encouraging people to be physically active and to create an environment that makes it
easier for people to be physically active in their homes. For example, [5] use smartphone
data and developed a fitness assistant framework that automatically generates a fitness
schedule. The framework also incorporates social interaction to increase the engagement
of its users. The most advanced state-of-the-art technology aims at serving as a substitute
for a personal trainer. For instance, FitCoach [6] is a virtual fitness coach that uses wearable
devices and assesses the patterns and position of its users during workouts in order to help
them achieve an effective workout and to prevent them from workout injuries. Extensive
experiments, both in indoor and outdoor conditions, have shown that FitCoach can assess
its users’ workout and provide an adequate recommendation with accuracy > 90%.
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In our previous work, we introduced a method that provides accurate real-time
segmentation, classification, and counting of both indoor and outdoor practiced physical
exercises from the signal of a single inertial measurement unit (IMU) worn on the chest [7].
Targeting five types of exercises, the proposed segmentation algorithm achieved 98%
precision and 94% recall, while the proposed classification method achieved 97% precision
and 93% recall. We demonstrated the flexibility of proposed method by developing a
virtual reality dodgeball application [8]. The application uses a wrist-mounted IMU and
an HMD (head-mounted display), and it implements the ExerSense algorithm to detect
a ball-throwing gesture toward the target in virtual space (Figure 1). This paper is an
extension improving the motion detection method and demonstrating its robustness to
various sensor wearing positions.

Figure 1. VR dodgeball game implementing ExerSense algorithm.

Recently, IMU sensors have become more widely adopted for physical activity recog-
nition [9–11]. Some IMU-based systems (e.g., [9]) are used for step counting and walking
detection to encourage its users to increase their ambulatory physical activity. Other meth-
ods (e.g., [10]) automatically recognize various walking workouts (e.g., walking and brisk
walking). Finally, advanced IMU-based systems (e.g., [12,13]) aim at altogether bypassing
the need for personal physical trainers. They monitor their users during exercise and clas-
sify their exercises technique and provide feedback to improve their workout. Compared
to existing research, the proposed approach provides the three following practical enhance-
ments. First, most existing approaches have practical limitations. For example, methods for
outdoor physical activity recognition are usually based on frequency analysis, and since
the number of cycles is large, a few misclassifications are tolerable, but such errors are not
tolerable for plyometric exercise. The proposed method works well for short-term cyclic
movement exercises (e.g., push-ups) and for long-term cyclic quick movements exercises
(e.g., running and walking). Second, unlike other comparable machine-learning-based
approaches that need a lot of training data, the proposed method needs one sample of
motion data of each target exercises and yet performs reasonably well (accuracy > 95%).
Finally, although not yet validated, the proposed approach has also the potential to evaluate
the quality of the workout.

2. Related Work
2.1. Behavior Recognition and Step Counting from Wearables

Step counting has been extensively studied in the ubiquitous computing community.
Many works have proposed accurate algorithms to count accurately walking and running
steps from a smartphone worn in the trousers pocket or at the upper arm [14–16], but also
from a smartwatch [17,18]. Step counting is now a standard functionality in most smart-
phones and smartwatches. Still, false positives are still unsolved issues. The main reason
for that is motion noise that produces the same signals as walking.

However, when IMUs are at the ear, they find that many of the lower-body motions
are naturally “filtered out”, i.e., these noisy motions do not propagate up to the ear. Hence,
the earphone IMU detects a bounce produced only from walking. Prakash et al. introduced
the advantages of eSense in counting the number of steps of walking [9]. While head
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movement can still pollute this bouncing signal, they developed methods to alleviate the
problem. Results show 95% step count accuracy even in the most difficult test case—very
slow walk—where smartphone and wrist-band-type systems falter. Importantly, their
system STEAR (STep counting from EARables) is robust to changes in walking patterns
and scales well across different users. Additionally, they demonstrate how STEAR also
brings opportunities for effective jump analysis, often crucial for exercises and injury-
related rehabilitation.

Bayat et al. [19] proposed a machine-learning-based recognition system to recognize
certain types of human physical activities using acceleration data generated by a user’s
smartphone, and could reach an overall accuracy rate of 91%. Similarly, Balli et al. [20] can
classify eight different daily human activities with high accuracy from smartwatch sensor
data using a hybrid of principal component analysis and random forest algorithm. More
recently, Teng et al. [21] demonstrated on several open datasets that convolutional neural
network (CNN) models could improve further the performance across a variety of HAR
(human activity recognition) tasks.

While many researchers and developers have been developing applications based
on smartphones and smartwatches, Kawsar et al. [22] proposed and developed a new
wearable platform called “eSense” (see Figure 2). The eSense platform consists of a pair of
wireless earbuds augmented with kinetic, audio, and proximity sensing. The left earbud
has a six-axis IMU with an accelerometer, a gyroscope, and a Bluetooth Low Energy
(BLE) interface used to stream sensor data to a paired smartphone. Both earbuds are also
equipped with microphones to record external sounds.

The use of earphones to listen to music while exercising is widespread, and though
the eSense platform is still recent, it already attracted the attention of many research teams.
It can simultaneously monitor behavior analyzing the sensory information and provide
feedback that does not bother the visual field of the user through the acoustic interface.
Indeed, repeated check of some visual feedback provided on a smartphone or smartwatch
screen may be dangerous and the cause of accidents when done during exercises implying
motion. For example, Prakash et al. developed an algorithm that can perform robust
step counting and jump analysis from the inertial signals streamed by the eSense ear-
buds [9]. In their study, they also showed the ear position is advantageous to collect motion
signals since it enables to filter of lower-body noisy motions naturally. On the other hand,
Radhakrishnan et al. proposed to use the eSense platform to improve user engagement
during indoor weight-based gym exercises [23].

Figure 2. Components of eSense (quoted from [22]).

2.2. Vision-Based Exercise Recognition

There exist many studies that quantitatively evaluate the performance of sports and
physical exercises. These researches are often based on three-dimensional (3-D) image
analysis, whether it is for baseball [24–29], tennis [30–33], or games [34]. Typically, the evalu-
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ation is based on kinematics and the dynamics of joint motions of shoulder, elbow, forearm,
wrist, and fingers during pitching. For example, Antón et al. [35] introduced a Kinect-based
algorithm for the monitoring of physical rehabilitation exercises. The algorithm recognizes
the main components of the exercises, postures, and movements in order to assess their
quality of execution. Moreover, this game-like immersive framework motivates them to do
the rehabilitation sessions more enjoyable. Despite only a few samples in the training step,
the algorithm is capable of making real-time recognition of the exercises and achieved a
monitoring accuracy of 95.16% in a real scenario when evaluated on 15 users.

In general, vision-based approaches are more accurate than wearable sensor-based
approaches for exercise recognition. Although they achieve good performances, the use of
a vision-based sports/exercise recognition system is limited to dedicated locations. 3-D
image analysis is complex and computationally intensive. This limitation is, however,
minimized by the possibility to perform some preprocessing on the sensor level.

2.3. Skill Science

Up to now, many researches have proposed to evaluate sports skills quantitatively.
For long time, they have been principally carried out based on three-dimensional image
analysis, whether it is for baseball [24,29] or tennis [30,33]. Along with the widespread use
of wearable sensor devices, research and techniques for analyzing the movement of bodies
and tools from acquired data are progressing in sports fields and the like by attaching
sensors to the body and gears. In the field of skill science, there are some research works
consisting in attaching a sensor to a tennis racket and analyze its behavior [36], and others
focusing on the estimation of baseball pitching speed using a wrist-mounted acceleration
sensor and laser apparatus [37]. However, most proposed accurate solutions are base on
dedicated sensors (“Smart Tennis Sensor” by Sony Corporation [38]) or the wrist (“Babolat
Play” by Babolat [39]), and require computer postprocessing, such that there is no real-time
nor onsite feedback to improve skills.

With the popularity of smartwatches and other smart wearable devices that integrate
multiple sensors, there is less need for exercise-specific hardware development. Smart-
watches generally have built-in microelectromechanical systems (MEMS), IMU, and pulse
rate (PR) sensors. Therefore, these devices need only software applications to be developed
for each targeted sport or exercise. In their extensive review of technologies available for
tennis serve evaluation, Tubez et al. raise the great prospect offered by markerless systems
based on inertial measurement units for real situation evaluation [40]. Examples are the
applications developed by Lopez et al. [41] for supporting an athlete or a beginner with
baseball pitching action and tennis serve action. The personal sport skill improvement
support application is running on Sony’s SmartWatch SWR50 and does not even need
to communicate with the paired smartphone to perform onsite movement analysis and
feedback. The comparative research using the proposed smartwatch applications for sport
skill improvement support achieved encouraging results.

2.4. Recognition of Movement-Repetition-Based Exercises

One of the relevant previous work is that of Dan et al. [42], who introduced RecoFit,
a system for automatically tracking repetitive exercises such as weight training and cal-
isthenics via an arm-worn inertial sensor. They addressed three challenges: segmenting,
recognizing, and counting of several repetitive exercises. They achieved precision and
recall greater than 95% in segmenting exercise periods, 99%, 98%, and 96% of recognition of
4, 7, and 13 exercises, respectively, and 93% of±1 repetition of counting accuracy. However,
the method of RecoFit needs five seconds to segment and recognize exercise. In the case of
a small number of counts, it cannot find correct exercise and count. It requires a dedicated
device attached to the forearm; that implies a supplementary cost for users that have to
buy a device for a particular and limited usage, as well as the burden of attaching a device
to an unusual part of the body.
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Viana et al. [43] proposed an application called GymApp, similar to the system
mentioned above, but applied to workout exercise recognition. It also runs on Android
OS smartwatches and monitors physical activities, for example, in fitness. It has two
modes of operation: training mode and practice mode. In training mode, an athlete
is advised to perform an exercise (e.g., biceps curl) with lighter weight and with the
supervision of a fitness instructor to guarantee the correctness of the performed exercise.
The application then gathers sensory data and builds a model for the performed exercise
using supervised machine learning techniques. Then, in the practice mode, the recorded
sensory data are compared with the previously acquired data. The application calculates
the similarity distance and, from the result, estimates how many repetitions of the exercise
were performed correctly.

More recently, Skawinski et al. [44] consider four different types of workout (pushups,
situps, squats, and jumping jacks), and proposed a workout type recognition and repetition
counting method based on machine learning with a convolutional neural network. Their
evaluation with data from 10 subjects wearing a Movesense sensor on their chest during
their workout resulted in 89.9% average detection of workout and 97.9% average detection
accuracy for repetition counting.

Although the above-described studies are promising, they are based on machine
learning techniques. It implies a necessary preliminary step to collect data to train a model
for each type of targeted movement, as well as for each type of sensor or sensor position
(wrist, chest, arm, head, etc.). This training step is a burden for the users and a disadvantage
towards deploying the technology.

2.5. Summary

Most of the works related to detailed exercise recognition achieve around 95% for each
defined exercise under the condition of only indoor workouts or only outdoor exercises like
walking and running. Thus, in this research, we aim to recognize both indoor and outdoor
exercises while keeping with the same accuracy. We define indoor exercises as physical
activities performed on the spot, such as push-ups and sit-ups, usually performed at home
or a sports gym. Contrarily, we define outdoor exercises as physical activities involving the
displacement of the whole body, such as running and walking, usually performed outdoor
(though you can use some running machines indoors).

Many of them are based on machine learning techniques, which often require a new
dataset for each new user. Thus, this research also aims at proposing a method that provides
accurate real-time segmentation, classification, and counting of physical exercises without
needing recalibration for each user.

3. Methods

In this section, we introduce the method of the proposed system. In Section 3.1,
the outline of ExerSense is presented. Then, in Sections 3.2 and 3.3, we describe, respectively,
the details of segmentation and classification. Finally, we briefly explain how counting is
performed in Section 3.4.

3.1. Outline of ExerSense

Figure 3 represents a broad schematic of the architecture of the proposed recognition
method, ExerSense. It is separated into two phases: preprocessing and runtime phase.
As described later, the proposed method works independently of the kind of devices.
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Figure 3. Schematic of the architecture of the proposed method.

In the preprocessing phase, some acceleration data are collected by target devices at
least one motion for each target exercise. Because the method uses a correlation-based
algorithm to classify each motion, only one single motion sample of the target exercise
is needed in advance. That is a significant advantage of the correlation-based approach
against approaches based on machine learning. In the case of image classification, natural
language processing, and so on, data are extensively available on the Internet and easy to
collect physically. However, in the case of exercise recognition, it is tough to collect training
data for machine learning.

The runtime phase starts with the segmentation of the streamed acceleration signal
into single motions by finding the peaks in the synthetic acceleration signal. The next
section explains in detail the segmentation process. Then, every segmented 3-D accelera-
tion signal is classified by comparison with each exercise’s motion template produced in
the preprocessing phase using a correlation-based algorithm, and the count of classified
exercise is incremented.

3.2. Segmentation Algorithm for Single Motion Extraction

Hereafter we describe the process of segmentation algorithm from a 3-D acceleration
signal collected at the chest during push-ups exercise. First, the synthetic acceleration of
streamed inertial sensor data, which is the norm of the 3-D acceleration signal, is calculated.
In the case of push-ups, peaks detection and motion segmentation may be performed using
only the longitudinal acceleration of raw data. However, it is not the right solution since
this research targets not only push-ups but also other types of exercise, including those that
do not imply movements in the longitudinal direction. Therefore, the synthetic acceleration
is more appropriate, though it presents a disadvantage of reducing the differences between
movements that are similar but along a different axis.

The result of the norm includes much noise. Applying short-term energy enables not
only to emphasize significant signal variations but also to smooth them. Smoothing is
important to detect only motion start and end peaks easily.

Then, we used a sliding window of 0.25 s length to detect peaks. The tempo of the
running steps is the shortest tempo among regular exercises. After observing various
persons running, the fastest tempo more than three but less than four steps per second.
Hence, to avoid having two steps in a sliding window, we chose 0.25 s as the optimal
size. If the center value of the window is the maximum value of the window, then it is
determined as a peak. The fourth plot shows detected peaks plotted on the smoothed norm
of acceleration signal collected during push-ups exercise.

Finally, the synthetic acceleration signal (x × x + y × y + z × z) is segmented by ex-
tracting the data between the period of two consecutive peaks. Such, we define a “segment
of exercise” as the raw acceleration data between the time interval of two consecutive peaks
extracted from the smoothed synthetic acceleration signal, and containing a single motion
of an exercise (e.g., one step, one jump, one push-up, etc.).

In most cases, one peak is detected for each motion. However, in the case of sit-ups,
multiple peaks are detected for each motion (see Figure 4). To be able to deal with this
case, one of the peak-to-peak periods (yellow-colored in Figure 4) is defined as sit-up
base motion. Yellow-colored peak-to-peak represents “wake-up” motion during sit-up.
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Because “wake-up” is the most important movement for sit-up training, we selected
the area.

Figure 4. The smoothed synthetic acceleration signal and detected peaks during sit-ups exercise.

3.3. Classification of Extracted Motion Segments

Figure 5 shows the processing flow of the proposed classification method. After ex-
tracting the 3-D acceleration signal corresponding to a single motion through the segmen-
tation process, the dynamic time warping (Algorithm 1) algorithm is applied to calculate
the distance between every template signal and the extracted signals. The dynamic time
warping (DTW) can calculate the distance between two time series data that have different
lengths. This is a crucial property since it offers the capability to deal with the shape of
signals issued from one identical exercise, independently of the speed the exercise motion
is performed. Finally, the proposed method classifies the exercise that has the minimum
DTW score as the ongoing exercise.

Figure 5. Flow chart of the processing flow of the proposed method to classification extracted motion
signal segments.

In our previous work [7], artificial coefficients are applied to DTW score to increase
the performance. These coefficients were determined by variances of the three axes that are



Sensors 2021, 21, 91 8 of 16

affected by the body influence, the direction of maximum movement, and the intensity of
movement. However, these coefficients were predefined by authors based on experiences
and only for the chest-mounted sensor. In this work, we removed the coefficients to
compare multiple device positionings.

Algorithm 1 Dynamic Time Warping

DTW ⇐ array[0...n, 0...m]

for i = 0 . . . n do
DTW[i, 0]⇐ in f inity

end for
for j = 0 . . . m do

DTW[0, j]⇐ in f inity
end for
DTW[0, 0]⇐ 0
for i = 0 . . . n do

for j = 0 . . . m do
cost⇐ ||(s[i]− t[j])||
DTW[i, j]⇐ cost + min(DTW[i− 1, j], DTW[i, j− 1], DTW[i− 1, j− 1])

end for
end for
return DTW[n, m]

3.4. Counting

After the classification step, it is easy to count each exercise. Only what we need to do
is to iterate by one the counter for each classified exercise. However, in the case of sit-ups,
the proposed method divides one motion into three segments. One of the three segments
will be similar to template data, but other similarities are unlikely. Thus, we can count
correctly with the combinations of segmentation and classification.

4. Experimental Results

This section presents the experimental datasets in Section 4.1 and describes the pro-
posed method’s accuracy in Section 4.2.

4.1. Datasets

The experimental conditions are described in Section 4.1.1, the targeted exercises are
defined in Section 4.1.2, and the collected segments are discussed in Section 4.1.3.

4.1.1. Conditions

• Experimental circuit —As mentioned in the introduction, this research targets exer-
cises including indoor workouts and outdoor activities. A circuit to perform five exer-
cises has been created to evaluate the proposed method. The order of the five exercises,
which is explained in the next section, is determined randomly and systematically.

• Participants —Fifteen university student participants were recruited. Participants
varied in weight from 58kg to 80kg, and self-assessed as performing exercise “at least
once a week,” with an average of four times a week. Each participant performed
all exercises once according to the conditions described above. Due to the missing
value of three participants, we used valid data from 12 participants to validate the
proposed method.

• Sensors —This research aims to develop an exercise recognition and counting method
that is deployable with various commercially available general use wearable devices
(e.g., smartwatches, smart glasses, chest bands, etc.). Such a method needs to be
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robust to devices and their positioning. One can assume that the chest movement,
like the head, has less noise than other body parts. Chest sensors are also commonly
used by people practicing exercise several times a week to monitor their heart rate.
Hence, our previous study [7] demonstrated the validity of the proposed method
based on the signal of an IMU mounted at the chest. As a chest-mounted sensor, we
used Suunto Movesense Sensor HR+ (Movesense), consisting of a nine-axis motion
sensor, heart rate sensor, and Bluetooth within 10 g [45]. In this work, in addition to
Movesense mounted at the chest, we used three other wearable devices that are often
worn by people when practicing physical exercises: a smartwatch attached to the left
wrist, a smartphone attached to the upper left arm, and a wearable device (Nokia
Bell Labs eSense) attached to the left ear (see Figure 6). All four wearable devices
integrate a nine-axis IMU. The smartwatch and smartphone have some storage so
that they could collect data by themselves. The chest-mounted and ear-mounted
wearable devices do not have storage, so these two were connected to a smartphone
by Bluetooth and streamed the acceleration data.

Figure 6. Sensors used for the experiment and their positions.

4.1.2. Definition of Exercises

The proposed method was evaluated and validated on the following five exercises.

1. Running (right/left)
2. Walking (right/left)
3. Jumping
4. Push-up
5. Sit-up

The reason why we chose these five exercises is that we suppose that exercise consists
of indoor workouts and outdoor running/walking. Additionally, these five exercises can be
completed on flat ground without any equipment. Participants ran and walked more than
20 steps each without caring whether they start with the right or left foot. They performed
jumps, push-ups, and sit-ups around ten times each. The movements of jumping, push-ups,
and sit-ups were predefined and explained using demonstration photos because there are
various kinds of movements (see Figure 7).

In the case of the ear and the chest, it does not matter whether the running or the
walking step is taken by the right foot or left foot. On the contrary, the upper arm and the
wrist movements are different between the the right step and the left step. Accordingly, we
separated the templates of the upper arm and the wrist by right and left. While there are
five ear and chest templates, there are seven upper arm and wrist templates.

In previous work [7], the author performed the exercises to produce the templates for
all five exercises, which are necessary for real-time classification. This time, we chose the
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templates randomly from the participants data and calculate the classification accuracy
excluding the templates. Additionally, we repeated the validating process 50 times and got
the mean accuracy.

Version December 15, 2020 submitted to Journal Not Specified 10 of 17

In the case of the ear and the chest, it does not matter whether the running or the walking step294

is taken by the right foot or left foot. On the contrary, the upper arm and the wrist movements are295

different between the the right step and the left step. Accordingly, we separated the templates of the296

upper arm and the wrist to right and left each other. So, while the number of templates of the ear and297

the chest are five, the number of templates of the upper arm and the wrist are seven.298

In previous work [7], the author itself performed the exercises to produce the templates for all five299

exercises, which are necessary for real-time classification. This time, we chose the templates randomly300

from the participants data and calculate the classification accuracy exclude the templates. Additionally,301

we repeated the validating process 50 times and got the mean accuracy.302

Figure 7. Pictures used to define push-ups (top left), sit-ups (top right), and jump (bottom) to subjects

4.1.3. Number of segments303

Table 1. Number of collected segments

Running Walking Jumping Push-ups Sit-ups Total

327 396 123 125 120 1092

Under the conditions mentioned above, we collected segments of five each exercises by using304

four different sensors. Table 1 shows the number of collected segments. Although some sensors have305

few missing values, we generally used the number of segments for validation.306

Figure 7. Pictures used to define push-ups (top left), sit-ups (top right), and jump (bottom)
for subjects.

4.1.3. Number of Segments

Under the conditions mentioned above, we collected segments of five for each of the
exercises using four different sensors. Table 1 shows the number of collected segments.
Although some sensors have several missing values, we generally used the number of
segments for validation.

Table 1. Number of collected segments.

Running Walking Jumping Push-Ups Sit-Ups Total

327 396 123 125 120 1092

4.2. Performances

The recall of segmentation and the performances metrics of classification are described
in Sections 4.2.1 and 4.2.2, respectively.

4.2.1. Recall of Segmentation

We counted the segments cut out accurately by the proposed algorithm. Table 2 shows
the recall of segmentation against truth counts.
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Table 2. Segmentation recalls.

Each Exercise
Total

Running Walking Jumping Push-Ups Sit-Ups

Position

Ear 0.859 0.909 0.724 0.920 0.600 0.841

Chest 0.970 0.961 0.965 0.943 0.537 0.914

Upper arm 0.972 0.977 0.951 0.936 0.517 0.918

Wrist 0.982 0.949 0.894 0.904 0.610 0.916

4.2.2. Performance of Classification

From the all collected segments, we randomly chose the template segments for each
exercises and classified other segments. Additionally, we repeated the random validation
process 50 times to avoid redundancy. Table 3 shows the classification accuracy for all five
exercises listed by sensor position. As shown in Table 3, the chest was the most accurate
position (97.2%) with a minimal standard deviation (4.4%), as expected in our previous
work [7]. Next came the upper arm and the wrist (93.1% and 83.5%), with relatively low
standard deviations (3.1%, 5.6%). The ear was the less accurate position with an average
accuracy of 78.4% and a large standard deviation of 10%. Regarding the classification
performances per exercise, jumping and push-ups had the worst F1 value that tended to
have a large standard deviation, especially with the earable device, prone to be loosely
attached. We can also raise the point that using a wrist-worn device, the lowest F1 value
was for push-ups (74.5% ±14.4) due to little motion of the wrist during push-ups.

Table 3. Classification performance of randomly selected template exercise segments (50 iterations).

F1 Value (SD: Standard Deviation) of Each Exercise
Mean Accuracy

Running Walking Jumping Push-Ups Sit-Ups

Position

Ear 0.757 0.803 0.696 0.700 0.880 0.784
(0.178) (0.156) (0.238) (0.218) (0.112) (0.100)

Chest 0.952 0.988 0.905 1.000 0.991 0.972
(0.111) (0.035) (0.196) (0.001) (0.006) (0.044)

Upper arm 0.914 0.964 0.937 0.882 0.853 0.931
(0.039) (0.021) (0.090) (0.100) (0.185) (0.031)

Wrist 0.809 0.878 0.778 0.745 0.915 0.835
(0.096) (0.054) (0.151) (0.144) (0.131) (0.056)

4.3. Comparison with Machine Learning Method

The proposed method extracts one sample of motion data of each target exercise
from one subject data and uses it to recognize exercise data collected from unknown users.
To compare the accuracy with a conventional machine learning method, we used both leave-
one-subject-out and leave-other-subjects-out cross-validation. Indeed, leave-one-subject-
out cross-validation uses plural subjects data for training, while the proposed method used
only one subject data as a reference. In leave-other-subjects-out cross-validation, the model
training is performed with only one subject’s data and testing with all others. We repeated
both validation methods for each user (in or out) and calculated the average confusion
matrix for linear support vector machine (SVM) (see Tables 4 and 5).

Compared to the proposed method, for most types of exercise and sensor position,
the machine learning method gives better accuracy when trained with plural users (leave-
one-out) but lower accuracy when trained with only one user. These results confirm that the
proposed method is advantageous compared to conventional machine learning methods
when retraining for each new user is not affordable.

Table 4. Leave-one-subject-out cross-validation accuracy of conventional machine learning methods (linear SVM model).

Each Exercise
Total

Running Walking Jumping Push-Ups Sit-Ups

Position

Ear 0.964 0.990 0.934 0.864 0.934 0.957

Chest 0.988 0.992 0.991 1.000 0.991 0.990

Upper arm 0.984 0.965 0.995 0.995 0.804 0.952

Wrist 0.976 0.965 0.995 0.932 0.952 0.944
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Table 5. Leave-other-subjects-out cross-validation accuracy of conventional machine learning methods (linear SVM model).

Each Exercise
Total

Running Walking Jumping Push-Ups Sit-Ups

Position

Ear 0.848 0.937 0.832 0.685 0.620 0.771

Chest 0.911 0.949 0.868 0.989 0.919 0.869

Upper arm 0.936 0.968 0.903 0.941 0.759 0.835

Wrist 0.890 0.938 0.877 0.847 0.639 0.795

5. Discussion
5.1. Discussion about the Segmentation

As shown in Table 2, the chest-mounted IMU, arm-mounted smartphone, and wrist-
mounted smartwatch achieved 91% recall. Even the worst one, the ear-mounted device,
achieved 84% recall. It is said that the proposed segmentation algorithm works well at
various positions.

However, we can see the significant differences for each exercise. While walking and
push-ups achieved more than 90% recall, sit-ups achieved only 52–61%. The reason why
the proposed segmentation method overlooked many sit-ups segments is that the most
change in the moving axes occurs during one motion. As showing in Figure 8, the sit-up
motion is circular, and it causes the most change in the moving axes. As a result, when the
norm of three axes was calculated, plural peaks appeared. These peaks are ignored at the
step of smoothing if they are small. However, in some cases, the invalid peaks are big and
remain so after smoothing. Then, it is detected as the cutting point of segments.

Figure 8. The change of the most moving axis during one sit-up.

5.2. Discussion about the Classification

Table 6 shows that the range of length of collected exercise segments for each device
(position) and exercise type has significant variations. It means that each exercise is per-
formed at various speeds. The DTW (dynamic time warping) algorithm has the specificity
to be robust to different data lengths such that the proposed method was not affected by
the same exercise’s different execution speeds.

Table 6. Range (min-max) of exercise segment length in milliseconds for each exercise and device.

Run Walk Jump Push-Up Sit-Up

Ear 96–654 269–846 173–1019 308–1250 404–1308

Chest 250–500 365–769 577–827 558–1673 462–1250

Upper arm 232–532 305–749 586–862 596–1680 601–1217

Wrist 179–623 226–981 566–840 245–783 377–1236
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Figure 9 illustrates the box plot of 50 times repeated validation using random exercise
segment template selection, with a mark of the mean accuracy for each exercise. Though the
median and quarter percentiles limits for ear and wrist positions are partially overlapping,
all device positions’ mean accuracies are significantly different at the 5% significance level
as summed up in Table 7. As described in Section 4.2.2, the ear mounted sensor’s average
classification accuracy was significantly lower than others. The head movements are
less restricted and more prone to noisy motions than trunk and hand movements during
physical exercises. Hence, the accuracy is more affected by the quality of the selected
exercise template. The large standard deviation also confirms this issue.

However, since the proposed method is based on one template segment per exercise
and position, this result also shows the importance of the template exercise segment’s
quality. Considering this, we should also refer to the maximum accuracy to fairly evaluate
the potential of the proposed approach. Indeed, the maximum accuracy is the accuracy
obtained when selecting optimal template exercise segments. In that case, the classification
accuracy is 99.8%, 97.1%, 94.2%, and 93.4% for the chest, the upper arm, the wrist, and the
ear, respectively (see Table 8). While the proposed method uses only one exercise segment
template to recognize unknown users’ exercises, such performances are equivalent to
the machine learning model evaluated by leave-one-out cross-validation. Hence, using
optimal template exercise segments, the proposed method is robust to various wearable
device positions.

Table 7. p-values of accuracy between two positions.

Position 1 Position 2 Mean Diff p-Value

Ear Chest –0.188 0.000
Ear Upper arm –0.147 0.000
Ear Wrist –0.051 0.000

Chest Upper arm 0.041 0.007
Chest Wrist 0.137 0.000

Upper arm Wrist 0.096 0.000



Sensors 2021, 21, 91 14 of 16Version December 15, 2020 submitted to Journal Not Specified 14 of 17

Figure 9. Box plot of the accuracy of each random validation (n = 50)

Table 7. P-values of accuracy between two positions

Position 1 Position 2 Mean diff P-value

Ear Chest -0.188 0.000
Ear Upper arm -0.147 0.000
Ear Wrist -0.051 0.000
Chest Upper arm 0.041 0.007
Chest Wrist 0.137 0.000
Upper arm Wrist 0.096 0.000

Table 8. Maximum and minimum Classification accuracy of 50 random template exercise segments

Position Mean Max Min SD

Ear 0.784 0.925 0.586 0.100
Chest 0.972 0.998 0.737 0.044
Upper arm 0.931 0.967 0.838 0.031
Wrist 0.835 0.938 0.703 0.056
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Table 8. Maximum and minimum classification accuracy of 50 random template exercise segments.

Position Mean Max Min SD

Ear 0.784 0.925 0.586 0.100
Chest 0.972 0.998 0.737 0.044

Upper arm 0.931 0.967 0.838 0.031
Wrist 0.835 0.938 0.703 0.056

6. Conclusions

In this research, we proposed ExerSense, a method to segment, classify, and count
multiple physical exercises in real time. ExerSense is based on the correlation method
because only one motion is needed in advance. In the case that is difficult to collect data
for a physical exercise, it is more advantageous to use the correlation method instead of the
machine learning method.

We collected acceleration data of five exercises by four different positioned sensors.
In order to validate our proposed segmentation method, we counted the correct extracted
segments. It recalled more than 91% of segments, except 84% of the ear. Using the accurately
extracted segments, we validated the classification method. The most accurate one was
the Movesense sensor mounted to the chest; it achieved 99% accuracy. The smartphone
mounted to the upper arm was a close second with 94%. The smartwatch mounted to the
wrist was third with 86%, and the worst one among the four was the eSense mounted to
the ear with 76%.

The proposed method, ExerSense, segments and classifies multiple exercises accurately
in general usage devices. We found that the ExerSense system works at various positions.
Though it has room for improvement of sit-up segmentation, it achieved high accuracy for
most of regular exercises. In future works, we will improve the ExerSense algorithm and
test it on other exercises and other positions.
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