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Abstract: Traditionally, mental health specialists monitor their patients” social behavior by applying
subjective self-report questionnaires in face-to-face meetings. Usually, the application of the self-
report questionnaire is limited by cognitive biases (e.g., memory bias and social desirability). As an
alternative, we present a solution to detect context-aware sociability patterns and behavioral changes
based on social situations inferred from ubiquitous device data. This solution does not focus on the
diagnosis of mental states, but works on identifying situations of interest to specialized professionals.
The proposed solution consists of an algorithm based on frequent pattern mining and complex
event processing to detect periods of the day in which the individual usually socializes. Social
routine recognition is performed under different context conditions to differentiate abnormal social
behaviors from the variation of usual social habits. The proposed solution also can detect abnormal
behavior and routine changes. This solution uses fuzzy logic to model the knowledge of the mental
health specialist necessary to identify the occurrence of behavioral change. Evaluation results
show that the prediction performance of the identified context-aware sociability patterns has strong
positive relation (Pearson’s correlation coefficient >70%) with individuals’ social routine. Finally, the
evaluation conducted recognized that the proposed solution leading to the identification of abnormal
social behaviors and social routine changes consistently.

Keywords: mental health; pervasive computing; context awareness; sociability; social behavior;
sociability pattern

1. Introduction

Mental health refers to the psychological, social, and emotional well-being, so influ-
encing our behaviors, feelings, and thoughts. Mental well-being contributes to individuals
perceive their skills, work productively, contribute to their community, interact with other
people, and recover from their daily routine stresses [1]. Mental disorder is a term used
to describe mental health problems, such as depression, schizophrenia, and social anxiety.
These disorders are responsible for affecting aspects such as mood, sleep, personality,
thoughts, and social relationships [2]. Mental disorders are a health problem prevalent
in a large part of the world population, affecting about 700 million people worldwide [3].
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Depression is a mental disorder that affects more than 300 million people worldwide,
while around 800,000 people commit suicide each year [4]. Therefore, it is possible to
recognize that the prevalence of mental health problems has reached a significant part of
the world population.

Mental disorders cause behavioral change that represents a relevant indicator of their
onset, presence, or development. These behavioral changes are situations of interest to
mental health professionals since they are used as a basis for performing assessments
and interventions. In particular, social behavior changes can represent relevant indicators
of mental disorders as individuals’ sociability has significant implications for their state
of well-being [5]. Social relationships’ characteristics can represent aspects capable of
protecting or contributing to the development of mental disorders. For example, there
is evidence that social support is a relevant factor for mental health [6,7], since there is
a higher likelihood of depression among people who do not have social support. There
is also evidence that social isolation is associated with mental health problems, such as
depression, anxiety, and suicidal ideation [8]. Moreover, social isolation imposed to reduce
the rate of contagion by the COVID-19 coronavirus may further impact global mental
health [9]. Therefore, symptoms of mental disorders can be externalized through changes
in social behaviors, so characterizing a situation of interest for monitoring mental health.

Traditional methods of evaluating social behavior performed by mental health pro-
fessionals are based on clinical evidence and information self-reported by the patient [10].
These approaches generally use retrospective reports of social experiences lived by indi-
viduals in their daily lives, in which memory time can be days, weeks, and even months.
As a result, cognitive biases limit these methods, hence contributing to an incoherent expo-
sure of the lived experience [11,12]. For example, memory bias can prevent patients from
reporting their feelings and behaviors accurately [11]. Social desirability bias encourages
patients to hide or modify the truth of their reports to achieve socially desirable results [12].
The clinical context in which mental health assessments occur is also a limitation since it
does not represent the patients’ natural environment, implying a low ecological validity of
traditional mental health assessment methods.

Currently, ubiquitous devices (e.g., smartphones, smartwatches, smart bands, and fit-
ness bracelets) represent a promising means of mitigating those limitations [13]. The perva-
sive nature of these devices combined with a large amount of behavioral data from their
sensors make ubiquitous computing a natural option to incorporate new system proposals
for monitoring social behaviors related to mental health. Among the methodologies in
this research area, the approach called Digital Phenotyping stands out. The term Digital
Phenotyping refers to “moment-by-moment quantification of the individual-level human
phenotype in-situ using data from smartphones and other personal digital devices” [14].
The goal of digital phenotyping is to learn and monitor patterns overtime that characterize
behaviors of individuals (e.g., physical activities performed, their social interactions and
mobility), based on context data derived from mobile, wearable, and Internet of Things
(IoT) computing devices [13]. By using this concept, it is possible to create computational
mechanisms able to perform continuous and discrete detection of individuals’ social behav-
iors [15]. These mechanisms can integrate computerized systems of Ecological Momentary
Assessment (EMA) and Ecological Momentary Intervention (EMI), which allow mental
health professionals to collect daily behavioral information from their patients and perform
interventions in their natural environment. These solutions contribute to the effectiveness
of the treatment and provide real-time support to the patients’ daily life.

The current literature presents solutions that use pervasive devices to recognize
social behaviors related to mental health [13,16,17]. These solutions usually aim to make
association, detection, classification, and prediction of mental states through features of the
identified social situations [17]. However, there is still a need to develop solutions capable
of recognizing sociability patterns representing the patients’ social routine, so providing
a valuable tool for assessing social behavior. Consequently, it is also essential to develop
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solutions to monitor changes in a patient’s sociability pattern because these behavioral
changes can mean the manifestation of mental disorders.

Given the need to objectively monitor social behavior, this study proposes a solution
for processing social activity derived from pervasive devices to detect context-aware
sociability patterns and social behavior changes. The proposed approach is able to perform
incremental learning of context-aware sociability patterns through the combination of
Frequent Pattern Mining (FPM) [18] and Complex Event Processing (CEP) [19]. Specifically,
our proposed solution detects the time intervals in which social activities habitually occur.
The recognition of sociability patterns is performed for specific contexts (e.g., weekdays,
rainy days, and weekends), which enables the identification of behavior variability in
different context conditions. The proposed solution is also able to identify changes in
sociability patterns that reflect abnormal social behaviors and variations in social routines.

This article is an extended version of [20], where we outlined our approach to detect
sociability patterns, but we did not present the solution for identifying changes in social
behaviors. This paper has the following contributions: (i) we present an update of the
formalization of the algorithm to detect context-aware sociability patterns; (ii) we introduce
a solution for recognizing abnormal social behaviors and social routine changes; (iii) we
use fuzzy logic to model knowledge of the mental health specialist needed to recognize
social behavior changes; (iv) we evaluate the ability of the sociability patterns identified by
the proposed solution to explain and predict users’ social behaviors; and (v) we present an
extensive analysis to evaluate the social behavior change detection solution.

The remaining of the paper is organized as follows. Section 2 discuss the related works.
Section 3 presents the proposed solution to detect context-aware sociability patterns and
changes in social behavior. Section 4 exposes an experimental evaluation of the proposed
solution using a real-world data stream. In the end, we drive our conclusions and future
works in Section 5.

2. Related Work

Several studies have proposed solutions to identify social situations through mobile
and wearable devices to support mental health professionals [17]. In particular, studies
have developed solutions to transform contextual data into sociability information. We cate-
gorize these studies according to their primary objectives [17]: solutions that aim to classify,
predict, or associate social features to mental state, and solutions that focus on detecting
and quantifying sociability levels. Table 1 presents the related works categorized by their
primary objectives.

Table 1. Categorization of related works.

Type of Study Goal References
Detection Detecting and quantifying sociability. [21-27]
Classification Classifying a mental state through social features. [26,28-33]
Prediction Predicting a mental state through social features. [22,30,32,34]
Association Associating sociability with a mental state. [30,33,35-40]

2.1. Detecting and Quantifying Sociability

Some studies aim to develop solutions to identify social situations through passive
detection to derive high-level information such as behavioral patterns and sociability levels.
Exler et al. [21] designed a classification model capable of recognizing whether a person is
alone or accompanied with an accuracy of 91.1%. This model uses location data, time of
day, and activity information to perform this task. Barnett et al. [22] present a statistical
approach to detect changes in sociability patterns by using phone calls and text messages,
which were used to predict schizophrenic relapses. Harari et al. [23] identify patterns of
stability and changes in social behavior (i.e., daily duration of conversations) of a student
group over ten weeks. Bonilla et al. [24] found a set of patterns related to intensity functions
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of all interactions in which patients were involved by analyzing data from the use of their
phone calls and social applications.

Studies also aimed to explore the passive detection of social situations to quantify
sociability. Eskes et al. [25] propose the use of context data produced by smartphones (e.g., call
logs, GPS locations, and Bluetooth encounters) to capture social communication and social
exploration (e.g., mobility patterns and social density). These social behaviors were used to
develop a statistical approach able to generate a sociability score, in which higher scores
represent greater social engagement. Wahle et al. [26] monitors participants’ involvement
in device-mediated communication (i.e., call logs and text messages) to quantify their
sociability. Additionally, this solution recommends social exercises based on information
on the intensity of social activities, time and location. Lane et al. [27] present a mobile
application called BeWell, which has a classifier able to infer the human voice through
microphone audio. This application calculates a sociability score by applying a linear
regression on the total duration of conversations. In addition, BeWell provides feedback on
the social engagement level of its users.

2.2. Associations between Mental State and Social Features

Researchers also work on correlating social features (e.g., duration of phone calls,
frequency of using social applications) with mental states (e.g., bipolar disorder, anxiety,
depression). Mental states are typically identified using clinically validated self-report
questionnaires. In general, researchers use correlation coefficients, as the Pearson and
Spearman correlation coefficients [41,42], to calculate the degree of association between
these variables.

In a study involving university students, Wang et al. [35] recognize that social routines
(i.e., conversations and Bluetooth co-locations) of students presented correlations with
their depression symptoms and stress levels. Results indicate that students who had lower
frequencies and shorter duration periods in their daily social interactions also had higher
levels of depression and stress. Chow et al. [36] identify temporal associations between
depression, affective state and social anxiety with social isolation (i.e., home stay duration
measured by GPS data). Boukhechba et al. [37] demonstrate that the social roles of visited
places and communication patterns (i.e., phone calls and text messages) of the students
show consistent associations with depressive states and social anxiety.

Some studies focus specifically on investigating association of social features with
participants’ stress levels. Wu et al. [30] found significant correlations between student
stress levels with social features extracted from their social encounters measured through
Bluetooth co-locations. Ono et al. [38] use a wearable device equipped with an infrared
sensor to identify face-to-face interactions. This study found relationships between par-
ticipants’ stress levels with frequency, duration, and number of people involved in the
social interactions. To do so, evaluation and validation methods were used to measure the
performance of social models.

Some studies have as the main topic of social anxiety. Gong et al. [39] performed
an association between participants’” social anxiety levels and their physical behaviors,
which were based on accelerometer-tracked body movement during device-mediated social
interactions such as phone calls and text messages. Also, this study investigates whether the
location where users performed technology-mediated communication influenced the social
anxiety levels. Results indicate that people with higher levels of social anxiety exhibit more
movement variations when making phone calls, especially in unfamiliar environments.

Other studies aim to correlate participants’ social activities with their mood status. Servia-
Rodriguez et al. [33] found associations between sociability patterns measured by analyzing
phone calls and text messages of a large number of participants with their self-reported mood
assessments. Matic et al. [40] found associations between time spent on speech activities
(i.e., participation in verbal social interactions) and changes in positive affects.
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2.3. Classifying and Predicting Mental State

In this study category, researchers design solutions capable of classifying and predict-
ing mental states. Specifically, these approaches train machine learning algorithms from
social features.

Different social models have developed to classify mental states of individuals. Gu
et al. [28] developed a wearable device equipped with a microphone capable of automati-
cally identifying and analyzing paralinguistic features (e.g., Brightness_sp and MFCC5_sp)
contained in the human voice during social interactions. These features were used to
train the K-Means algorithm to classify the participants” anxiety level, which obtained an
accuracy of 72.73%. Chen et al. [29] use the transfer learning technique [43] to identify
autism symptoms through the analysis of speech features extracted from microphone data
of the wearable device.

Solutions presented by the studies also developed social models to predict mental
states of individuals. For this, Wu et al. [30] use features extracted from physical social
interactions identified by smartphone Bluetooth encounters to train the Random Forest
algorithm, which was able to predict participants’ stress levels. Barnett et al. [22] developed
and applied a statistical approach to recognize changes in patients’ communication patterns.
The proposed method can predict schizophrenic relapses at two weeks in advance.

Some solutions recognize other human behaviors (e.g., sleep, mood, mobility) com-
bined with sociability to design solutions that can identify mental states. Researchers
identified several types of behaviors that have implications for mental health, allowing
them to design more appropriate features to develop mental state classification models and
predictions. For example, these multimodal features are used to design machine learning
models to identify and predict patients with depression [26,31], bipolar disorder [32,34],
and mood states [33]. Therefore, these solutions represent potential tools for supporting
digital phenotyping of mental health as they recognize and utilize various patient behaviors
to perform this task.

2.4. Discussion

Related works aim to make association, detection, classification, and prediction about
mental health. From the analysis of these studies, we identified some open issues about
applying passive detection of social situations to support mental health professionals.
First, it is necessary to develop solutions able to identify sociability patterns that represent
information about social routine of individuals. Second, analyses of such solutions should
consider contextual information to identify social situations. Finally, there is a need for
solutions that can detect social behavior changes to allow specialized professionals to
investigate whether there is a relationship between the identified change and the patient’s
mental state.

Although the related works aim to identify social behaviors to support mental health
monitoring, these studies differ from our solution, so it is a challenge to use objective
comparison metrics. For example, some studies develop machine learning models to
classify and predict mental states, while our solution aims to extract sociability patterns
and detect behavior changes. The works [22-24] also propose solutions capable of detecting
sociability patterns, but they differ from our solution. These works design sociability
patterns to quantify the duration and frequency of social interactions, while our solution
recognizes periods of the day representing individuals’ social routine. Besides, these works
do not recognize sociability patterns based on contextual data (e.g., weekends, holidays,
and rainy days) and do not perform incremental learning, then requiring to execute
batch processing.

In comparison to related works, our research has the following contributions. First,
this study does not focus on the diagnosis of a specific state or mental disorder but works on
identifying situations of interest (i.e., the sociability routine) for mental health professionals.
Second, the proposed solution recognizes context-sensitive sociability patterns, so enabling
to distinguish normal behavioral variation from behaviors that are considered anomalies.
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Third, besides identifying the periods of the day when the individual generally socializes,
the proposed solution can recognize unusual social routines and significant changes in the
patient’s social habit. Finally, the proposed solution uses a data stream mining approach to
learn from social observations continuously.

3. Proposed Solution

In this section, we present the solution proposed to detect context-aware sociability
patterns and behavioral changes. It performs incremental learning of context-sensitive
sociability patterns through the combination of FPM and CEP. FPM is a computational
technique that aims to discover patterns that occur with significant frequency in different
data collection types, such as relational and non-relational databases, text files, and data
streams [18].

The algorithm used in our solution was proposed by Lago et al. [44], which aims to
learn activity patterns in smart homes (e.g., activity sequence). We applied this algorithm
to digital phenotyping of mental health through the recognition of sociability patterns.
First, we present a formalization update of this algorithm through unit step functions to
represent the appropriate logic to identify time intervals in which social events routinely
occur. We used the formalized algorithm to implement an event processing network
capable of incrementally identifying context-sensitive sociability patterns. For this purpose,
we used CEP concepts [19], which provide a set of tools to process data streams efficiently,
so performing tasks such as data aggregation and filtering, context partitions, data window,
high-level information derivation, and pattern recognition.

The proposed solution can also detect abnormal social behaviors and changes in social
routines through the application of concepts of drift identification techniques. Additionally,
we use fuzzy logic to model the knowledge of the mental health specialist to detect behavior
change. Finally, the developed solution provides an Application Programming Interface
(API) to enable the rapid implementation of strategies to identify context-aware sociability
patterns and configure behavioral changes.

Figure 1 presents an overview of the processing flow to identify context-aware socia-
bility patterns and social behavior change. The first layer represents the generation of social
events from data of online social networks and physical and virtual sensors embedded in
ubiquitous devices. As examples of social events, it is possible to cite conversations identi-
fied from microphone data and interactions mediated by technology (e.g., phone calls, text
messages, and social media posts). Next, the layer responsible for detecting context-aware
sociability patterns supports a set of CEP rules designed to implement the algorithm to
identify sociability patterns. The next layer performs tasks of detecting abnormal behaviors
and routine changes. This layer also contains a Fuzzy Inference System (FIS) that models
specialist knowledge needed to recognize social behavior changes. The last layer refers to
client applications that receive notifications of new patterns and behavior changes emitted
by the proposed solution’s components.

Ubiquitous devices (e.g., smartphones, wearable sensors, IoT devices, social networks)
represent valuable social data sources. Computational methods (e.g., data mining, machine
learning) can process context data from physical and virtual sensors embedded in these
devices to identify social situations, such as face-to-face interactions (i.e., socialization
in physical environments) and device-mediated interaction (i.e, socialization in virtual
environments). For example, computational methods can process microphone and wireless
communication interfaces data (e.g., WiFi, Bluetooth, NFC) to identify conversations and
physical proximity [23,35]. Call logs and text messages can represent device-mediated
interactions [31,33].

We emphasize that our proposed solution does not include the generation of events,
but focuses on processing high-level sociability events inferred by other solutions to identify
patterns and behavior changes. Next, we present in detail its components.
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Figure 1. Components of the proposed solution.

3.1. Learning Context-Aware Sociability Patterns

In this section, we present the algorithm for identifying context-sensitive sociability
patterns and its implementation using CEP.

3.1.1. Algorithm for Identifying Sociability Patterns

We consider that, if the social activities are detected frequently at a specific time
interval, this interval composes the sociability pattern of monitored individuals. Thus,
we define sociability patterns as periods of the day in which the individual usually socializes, that
is, the set of time intervals in which social activities habitually occur. The algorithm processes
the data stream to recognize time intervals [Tstart, Tpq] in which the number of occurrences
of social activities is higher than ¢ * |n|. In this regard, |n| is considered as the total number
of processed observations in a defined time window to model social behavior, and ¢
is a parameter to be manually set, which is responsible for indicating the sensitivity of
the algorithm.

The algorithm input is a social event stream that has the start time of each social
activity. The first step of the algorithm is to determine, based on the timestamp, which time
frame each social event belongs. For this, the algorithm segments the time in slots with
equal sizes. Each slot represents a slice of the day and has a sequential identifier. To define
the size of the slot (i.e., in how many periods should divide the day), the programmer is
required to specify a value for the t parameter, which is responsible for creating an array
of counters with the total number of slots. For example, if the programmer decides to
divide the day into periods of 30 min, the parameter ¢ is equal to 0.5, since 274 = 48 slots.
This equation is responsible for creating the storage structure for counting occurrences of
social activities in each slot.

After defining the size of the slots, we now describe the counting phase of the al-
gorithm. At this stage, the algorithm uses the timestamp of each event to define its
slot. By identifying the slot of social event, the algorithm increments the counter value
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that represents this slot in the structure responsible for storing these statistics. Therefore,
when processing the flow of events, the frequency of social activities in each slot is updated.
This approach of saving only the summary (i.e., the count) allows reducing the data volume
since it is not necessary to memorize the full content of the events.

The next phase of the algorithm is the sociability pattern discovery, which uses the
summary of the counting phase to identify frequent intervals of sociability. At this stage,
it is necessary to define which slots have a sufficient number of observations, that is,
a quantity that enables them to be candidate slots to form a frequent period. For this,
the number counting of social observations of the analyzed slot must be greater than or
equal to Sy,. The algorithm uses Equation (1) to define the value of Sy,. The 6 parameter is
entered by the programmer to set up the sensitivity of the equation.

Sth:|n|*6*% (1)
i

Equation (2) is responsible for iterating the slot array Cs and verifying which slots are
candidates to form a sociability pattern, so assigning zero to the count of non-candidate
slots. For this, this equation defines the multiplication between the count of each slot
(slot[i]) and the unit step function, which returns zero value in cases of negative arguments
(slot[i] — slot_th < 0) and one for non-negative arguments (slot[i] — slot_th > 0). In the

end, the slot array C; is sent to the process of identifying frequent sociability intervals.

Csi] := slot[i] * unit_step(slot[i] — slot_th) ()

Finally, after defining the requirement for a slot to be candidate, the next step is to
identify which sets of slots compose an interval at which social activities are routine for
the monitored individual. Equation (3) groups the adjacent non-zero candidate slots in
the array Cs into a sociability pattern. The unit step function verifies whether the sum of
the event counts for the grouped slots (i.e., time intervals) subtracted from ¢ * |n| results
in a positive value. If this condition is satisfied, the time interval formed by these sets
of adjacent slots represents a sociability pattern. In the end, the array Ps will contain
sociability patterns, that is, the time intervals in which social activities routinely occur for
the monitored individual.

i+n—1
Ps[i 1 i+ n] := unit_step(( Z Gslf]) — ¢ = |n]) (©)]
j=i

3.1.2. Context-Aware Sociability Patterns

So far, the algorithm allows identifying the individual’s sociability routine, so mapping
the frequent start time of social activities. However, this context-free analysis may result
in inefficiency when outlining the social habit, since the individual’s behavior may vary
due to specific contexts, such as workdays, weekends, rainy days, among others. For this,
we use a strategy with Context Attributes (CAs), in which several scales can be used to
represent them. For example, a temporal feature may have several scales, as a broad scale,
so differentiating days of week and weekends, or a more specific, so distinguishing each
day of the week (e.g., Monday, Tuesday, Wednesday). We inject these CAs into the stream
of social observations, which can be derived directly from event properties (e.g., timestamp)
or retrieved from external sources (e.g., climate APIs). By enabling this setting, mental
health professionals can define which contexts are considered more suitable for each patient
and treatment.

Each CA is used as a data segmentation dimension to identify behavior change due to
specific context situations. Therefore, the identification of sociability patterns is performed
from a subset of data that has a particular CA. For example, all social events that occurred
over the weekend (i.e., CA = Weekend) are used to identify the individual’s social routine
in this context condition. The algorithm needs to create a structure (e.g., a matrix) to store



Sensors 2021, 21, 86

9 of 26

slot counters for each context dimension. During the counting phase, each social event
increments, in the index of its respective slot, values in the structures that store statistics
for each CA of the processed social observation. In summary, we partitioned data flow
based on CAs and performed incremental learning of sociability patterns for each derived
data stream.

3.1.3. CEP Implementation

We have used CEP concepts to implement the algorithm. CEP enables to react in real
time to data stream through a continuous query language [19]. This method processes
data as a sequence of events, in which each event models an observation in a specific
domain. Atomic events, or only events, are immutable records of something in the real
world or a software system. For example, in this study, an event represents a social activity
at a specific time. These social events are generated by ubiquitous devices through the
processing of context data. In the implementation of the algorithm, we use Esper (http:
/ /www.espertech.com/esper/), which is an engine developed for CEP and continuous
stream analysis. This mechanism provides an Event Processing Language (EPL) that
implements and extends the Structured Query Language (SQL) standard. The processing
workflow (Figure 2) consists of the following steps:

e (a) Enrich Social Event: it injects the slot (extracted from its timestamp) and CAs in
social events. The result of this process is the emission of an enriched event named
SocialUpdate;

e (b) Context Partition EPA: it segments SociallUpdate streams based on CAs. A derived
event called SocialContext that has the slot and its context label is triggered for each
context record of the observation;

®  (c) Count Table: it is responsible for maintaining the count of events that occurred in
specific contexts in each slot. This count is updated with each ContextEvent emitted;

¢ (d) Candidate Slot EPA: it is responsible for verifying which slots have reached an
adequate number of observations to become candidate, so sending these to the pattern
extraction phase;

e (e) Extract Pattern: it identifies which sets of adjacent candidate slots compose a time
interval that the individual habitually socializes.

Social Data Stream

(a)

Social Event

Social Update

Social Context

Count Slot > Sth

(b) (c) @ |
Enrich Social = Context Partition Candidate Slot| |
Event EPA Count Table EPA ‘ Extract Pattern .

.

|

‘ () l

#um Slots > * num_0b4

Figure 2. Processing workflow.
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3.2. Social Behavior Change Detection

Another contribution of this study is an approach to recognize social routine changes
and abnormal social behaviors. This approach aims to continuously detect information
about changes in social habits of the monitored individual, since this information is of vital
importance for treatment and monitoring, so enabling to increase the chances of effective
interventions performed by mental health professionals.

3.2.1. Behavioral Change Detection Strategy

We developed a strategy for detecting social behavior changes by applying the concept
of drift identification techniques [45], which allows recognizing socialization flow changes
of the monitored individual. Specifically, we explore unsupervised techniques to detect
changes in the data stream distribution, since there is no ground truth available in social
event streams to monitor performance indicators (e.g., accuracy, sensitivity, specificity,
recall). Therefore, we combine the processing of data windows with a similarity metric to
verify pattern change of an instant from ¢1 to ¢2. It is important to note that the proposed
approach detects social behavior changes for each CA, so differentiating common social
routine variation from abnormal social habits.

We explored data window processing strategy provided by the Esper engine to par-
tition data flow, so extracting sociability patterns at different time intervals. Therefore, it
is possible to detect sociability patterns through current data and, subsequently, compare
them with the pattern identified in a future data window to recognize occurrences of social
routine changes of the monitored individual. We used the Jaccard similarity coefficient
(Equation (4)) to quantify overlaps between intervals of identified sociability patterns
(i.e., proportion between intersection and union of the compared patterns).

j(a8) =400 @

Based on the strategy described above, we developed a solution to detect two types of
situations of interest for specialized mental health professionals: abnormal social behaviors
and social routine changes. Abnormal social behaviors reflect a low similarity between
the current sociability pattern and the individual’s social habit on a specific day. When ab-
normal behaviors occur with substantial frequency, it is necessary to assess whether the
individual’s sociability routine has changed. Therefore, routine change is recognized when
a sociability pattern extracted from a data window at time t has low similarity to a pattern
identified from the data window t + n. The proposed solution maintains the first identified
sociability pattern (i.e., a reference pattern) until it finds a new pattern significantly differ-
ent from the reference pattern, so allowing to identify changes that happen slowly, over a
long period.

Figure 3 shows the strategy for detecting abnormal social behaviors. To perform
this task, the specialist (e.g., a mental health professional) is required to define the time
window size that models an observation of the individual’s social behavior in a given
context (e.g., Mondays, rainy days, weekends). For example, in Figure 3, an observation
could be composed of a one-week data window, so requiring two observations to extract
a consistent sociability pattern, i.e., to conceive a predictive model of intervals of the day
in which the individual habitually socializes. Therefore, to recognize abnormal behaviors,
our proposed solution uses the Jaccard similarity coefficient (Equation (4)) to compare the
current sociability pattern with the social behavior of the next observations. Hence, if the
similarity between the current pattern and the recognized social habit (i.e., an observation)
has value below a threshold defined by the specialist, the solution sends an event to notify
interested parties about the identification of abnormal social behavior.

Figure 4 presents the strategy for detecting social routine changes. In this scenario,
sociability patterns are extracted through a determined number of observations (e.g., two
observations), which represent the current social routine of the monitored individual.
In principle, the solution persists in memory the first sociability pattern identified, which is
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used as a comparison model with the next patterns to recognize significant social routine
changes. Specifically, when the similarity is below the defined threshold, two tasks are
triggered to: (i) update the current sociability pattern with the most recent routine and;
(ii) notify interested parties by sending a social routine change event.
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Figure 3. Strategy for detecting abnormal social behavior.
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Figure 4. Strategy for detecting social routine changes.

3.2.2. Expert Knowledge Modeling

As we could seg, it is possible to identify the specialist’s need to define a similarity
threshold between patterns. The specification of the change threshold is subjective, as it
depends on the specialist’s knowledge, and has an imprecise essence, since a rigid limit may
not adequately model the change that has occurred. For example, consider that an specialist
has configured the behavior change detection solution with a similarity threshold of
60%. In this scenario, if the similarity between sociability patterns is 59.9%, abnormal social
behavior is detected even though it is very close to the specified threshold. Therefore, it is
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necessary to define strategies that allow modeling the specialist’s knowledge automatically,
so enabling to send behavior change alerts with a judgment of the belief degrees.

We implemented expert knowledge modeling through fuzzy logic concepts to consider
the imprecise nature of this task. Specifically, we used the open-source library jFuzzyLogic
(http:/ /jfuzzylogic.sourceforge.net/) [46,47] to develop fuzzy controllers. This library
uses Fuzzy Control Language (FCL), which is a domain-specific language to facilitate the
development of fuzzy systems. jFuzzyLogic enabled the integration of FIS into the proposed
solution to allow the specialist to specify linguistic variables, fuzzy sets, and rules.

The motivation for using fuzzy logic in this task is the possibility of representing
imprecise and qualitative human knowledge through fuzzy sets instead of using crisp
sets [48]. Fuzzy logic allows computational systems to model human reasoning so that
output variables can vary from false to true gradually, then making it possible to express
partially true or partially false conclusions. Another reason is the notation of defining
fuzzy rules through linguistic variables (i.e., natural language) and logical connectors [49],
which presents semantics that is easy to understand for users. Therefore, we used fuzzy
logic due to its ability to model expert knowledge through fuzzy sets and fuzzy rules and
its notation that is easy to understand. Moreover, fuzzy logic has already been used to
model situations of interest to mental health professionals [50].

First, the specialist is required to determine three fuzzy sets: sensitivity, similarity,
and drift. Sensitivity sets define discrepancy levels between patterns that represent a
change, i.e., it models the sensitivity knowledge to detect changes. Similarity sets define
correspondence levels between evaluated patterns. Finally, drift sets represent the FIS
output (i.e., defuzzifier) responsible for modeling change levels in social behaviors.

After defining fuzzy sets, the next step is to subdivide them to represent specialist’s
knowledge to assign linguistic terms to the intervals of each set. Therefore, the specialist
should use FCL to perform this task. Code 1 shows a configuration example of the
sensitivity sets using FCL, while Figure 5 shows their visual representation. The specialist
divided the sensitivity input variable into three levels: low, moderate, and high. In this
scenario, a certain level of intersection between intervals is observed, so representing a
gradual pertinence transition.

Code 1: Configuration example of the sensitivity sets using FCL.

FUZZIFY sensibility

TERM low:= (0, 1) (25, 1) (50, 0);
TERM moderate:= (25, 0) (50,1) (75, 0);
TERM high:= (60, 0) (75, 1) (100, 1);
END_FUZZIFY

Moderate High

G 30 50 B0 Y0 75 80 B0 T00

Figure 5. Fuzzy sets to model behavior change detection sensitivity.
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The specialist is also required to represent his/her knowledge through FCL to define
similarity set partitions and their respective linguistic terms. Code 2 shows a configuration
example of the similarity sets using FCL, while Figure 6 shows their visual representation.
The specialist subdivided the similarity input variable into three levels: low, moderate, and
high. In this scenario, intervals have an intersection level to model uncertainty.

Code 2: Configuration example of the similarity sets using FCL.

FUZZIFY similarity

TERM low:= (0, 1) (40, 1) (60, 0);
TERM moderate:= (50, 0) (60,1) (70, 0);
TERM high:= (60, 0) (75, 1) (100, 1);
END_FUZZIFY

Low Moderate High
1
0.8
0.64
0.4
0.2]
) 16 36 25 30 30 50 50 To0
Figure 6. Fuzzy sets to model the similarity levels between patterns and behaviors.
The third set to be specified is the drift, which is representing the FIS output, i.e., it mod-
els the occurrence of social behavior changes of the monitored individual. Code 3 presents
a configuration example of the drift sets, while Figure 7 shows their visual representation.
The specialist described three linguistic terms: no_change, moderate_change, and change.
In this example, we used the Center of Gravity (COG) defuzzification method to determine
the inference’s final value from activated rules. jFuzzylLogic supports several fuzzification
and defuzzification methods.
Mo Change Moderate Change Change
1
0.8]
0.64
0.4
0.2
o 10 26 25 30 30 50 60 65 70 75 30 100

Figure 7. Output fuzzy sets defined to assess behavior change.
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Code 3: Configuration example of the drift sets using FCL.

DEFUZZIFY drift

TERM no_change:= (0, 1) (50, 1) (65, 0);

TERM moderate_chabge:= (50, 0) (65, 1) (80, 0);
TERM change:= (65, 0) (80, 1) (100,1);

METHOD: COG;

ENDDEFUZZIFY

Next, the specialist is required to specify fuzzy rules that guide the solution’s de-
cision. These fuzzy rules have the primary structure <condition> AND <condition>
THEN <consequence>. The specified fuzzy rules form the knowledge used by the FIS to
determine the final value of the behavior change inference. Therefore, based on fuzzy sets
presented above, the fuzzy rules contained in Code 4 can be specified using FCL.

Code 4: Fuzzy rules for behavior change.

RULEBLOCK No1l
RULE 1 : IF sensibility IS low AND similarity IS low THEN drift IS change

RULE 2 : IF sensibility IS low AND similarity IS moderate THEN drift IS
no_change;

RULE 3 : IF sensibility IS low AND similarity IS high THEN drift IS
no_change;
RULE 4 : IF sensibility IS moderate AND similarity IS low THEN drift IS
change;

RULE 5 : IF sensibility IS moderate AND similarity IS moderate THEN drift
IS

moderate_change;

RULE 6 : IF sensibility IS moderate AND similarity IS high THEN drift IS
no_change;
RULE 7 : IF sensibility IS high AND similarity IS low THEN drift IS
change;

RULE 8 : IF sensibility IS high AND similarity IS moderate THEN drift IS
change;

RULE 9 : IF sensibility IS high AND similarity IS high THEN drift IS
no_change;

END_RULEBLOCK

At the end of the expert knowledge modeling process, the solution can detect social
behavior changes considering uncertainty in this task. Specifically, the solution sends
a JSON object that contains information such as date, context, similarity index, and the
pertinence degree to each interval of the fuzzy output set. Code 5 presents an example
of social behavior change notification considering the expert knowledge modeled in the
previous cases. In this example, the output variable (i.e., defuzzification value) is ~74.86,
which is ~65% contained in the interval that represents change and ~34% in the partition
that reflects moderate change.

Code 5: Notification of social behavior change.

"date": "Sun 1, 2020, 9:17:48 PM",
"context":"Sunday",

"similarity" :56.00000000000001,
"defuzzification value":74.86688093051647,
"change" :0.6577920620344315,
"no_change":0.0,

"moderate_change" :0.3422079379655685,
"message":"Social routine change detected"

3.3. Application Programming Interface

The solution designed by this study provides an API to its users, which allows them
to quickly implement strategies for detecting sociability patterns and configuring the
recognition of behavioral changes. Development of this API used the Builder design
pattern (Constructor) [51], which enables separation of the construction of a complex object
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from its representation, so dividing this process into parts (i.e., steps). We mitigate the
complexity inherent in the creation and instantiation of the EPLs and solution configuration
using this design pattern.

Next, the user specifies the RootTopic attribute (setRootTopic) with the value “com/Is-
di/sociability”. The solution uses this attribute to publish new sociability patterns and
behavior change notifications in MQTT broker, allowing interested client applications to
subscribe to this topic to receive updates. Finally, the user set true value to the parameters
AbnormalBehavior and ChangeBehavior (setAbnormalBehavior and setChangeBehavior)
for the solution to activate the detection of abnormal behaviors and social routine changes.

Code 6 presents an example of use of the designed API. Specifically, the developer
create an object called SociabilityPattern, which configures and enables the entire solution
operation. In this example, the developer initializes the constructor with two parameters:
“MONDAY_" and 50.0, so representing the CA considered and the sensitivity level to
detect behavior changes, respectively. Next, the developer specifies the RootTopic attribute
(setRootTopic) with the value “com/lsdi/sociability”. The solution uses this attribute to
publish new sociability patterns and behavior change notifications in an MQTT broker [52],
so allowing interested client applications to subscribe to this topic to receive updates.
Finally, the developer set true value to the parameters AbnormalBehavior and ChangeBehavior
(setAbnormalBehavior and setChangeBehavior) for the solution to activate detection of
abnormal behaviors and social routine changes.

Code 6: Application Programming Interface (API) usage example.

SociabilityPattern sociabilityPattern = new SociabilityPattern
.Builder ("MONDAY_", 50.0)
.setRootTopic("com/1lsdi/sociability")
.setAbnormalBehavior (true)
.setChangeBehavior (true)

.build () ;

4. Experimental Evaluation

The proposed solution identifies context-aware sociability patterns using incremental
unsupervised learning. Consequently, applying metrics commonly used to evaluate learn-
ing models is challenging because there is no ground truth available to compare results. By
considering this, we evaluate the proposed solution’s feature to consistently recognize
sociability patterns for modeling social routine and behavior changes.

In [20], we performed the following: (i) a comparison of the similarity between
the sociability patterns identified with the intervals recognized by Gaussian Mixture
Models (GMMs); (ii) an analysis of the contribution of context-aware sociability patterns
to understand the monitored individual’s social routine. Here, we performed a more
in-depth evaluation to recognize the proposed solution ability to identify context-sensitive
sociability patterns that model social behavior and detect behavioral changes.

4.1. Data Description

We evaluated the solution using a public dataset [35], which is referred to as Stu-
dentLife. Wang et al. [35] performed during 66 days a passive sensing of social activities
(i.e., conversations) derived from microphone data gathered from smartphones of 48 Dart-
mouth College undergraduate and graduate students. Conversation samples are composed
of two fields: start and end timestamps of conversations experienced by participants.
All collected data was anonymized to preserve privacy of the monitored individuals.

The used dataset contains conversation samples composed of two features: start
and end timestamps of social interactions. Figure 8 shows the first lines of the dataset
of an individual. For example, the second line in this file records that he/she expe-
rienced a conversation that started at Unix timestamp 1364359600 and ended at Unix
timestamp 1364359812.
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start_timestamp, end timestamp
1364359600,1364359812
1364382621,1364383065
1364383516,1364384993

Figure 8. Dataset features used in the solution.

Firstly, we performed a data cleaning process to remove users who had insufficient
data to conduct experiments. Only users who contained at least 52 days of collected data
(~=80% of the study days) are in this experiment. We used data from 24 individuals who
had sufficient data.

We represent each record as a social event to design a proper data flow for the proposed
processing network. For this, we derived the following information from social activity
records: social activity type (i.e., conversation), start time, and a set of CAs. The first
step was to convert the Unix timestamp to a Date Java object to represent the event start
time attribute and extract CAs. We identified the weekday when events occurred using
their timestamps, so enabling to specify temporal context scales. We defined two context
scales: a fine-grained scale composed of weekdays (e.g., Monday, Tuesday, and Wednesday)
and a broad one to distinguish weekends (i.e., Saturdays and Sundays) from midweeks
(i.e., Monday to Friday). In the end, the structure of the generated social event flows was
as follows:

1 event = (activity: Conversation, start: 12:20, contexts: [Saturday, Weekend])
2 event = (activity: Conversation, start: 14:12, contexts: [Saturday, Weekend])
3 event = (activity: Conversation, start: 8:35, contexts: [Monday, Week]))
4 event = (activity: Conversation, start: 16:20, contexts: [Tuesday, Week])

4.2. Experimental Design

The first evaluation consisted of verifying the ability of the context-aware sociability
patterns to model and explain social behaviors, i.e., we verified whether sociability pat-
terns could explain and predict stable social routine (i.e., individuals repeating their social
behaviors over the days) and less able to explain unstable social routine. For this, we used
Pearson correlation coefficient [41] to assess the association between the ability of sociability
patterns to explain social routine and stability of the individual’s social routine. This coeffi-
cient measures linear correlation between two variables, which assumes values between
—1 (perfect negative correlation) and 1 (perfect positive correlation). Therefore, higher
levels of positive associations indicate that the proposed solution recognizes consistent
sociability patterns and capable of modeling monitored people’s social behaviors.

In the end, we evaluated the proposed solution to detect social behavior changes. For
this, we joined data of two users who had different social routine, hence enabling to
identify the moment when the change occurs. We verified whether the proposed solution
can accurately detect this change and its ability to adapt to the new sociability pattern.

4.3. Ability to Model Social Routines

This experiment aimed to assess the ability of the sociability patterns to model so-
cial routine. Specifically, a sociability pattern should explain the social behavior of the
monitored individual, which should be correlated with his/her social habit, because the
more stable the individual’s social behavior, the greater the pattern’s ability to predict it.
We analyzed association between the identified sociability patterns” prediction level and
the social routine’s stability. For this reason, we used Pearson correlation coefficient for
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quantifying this association. By using this correlation coefficient, patterns’ ability to explain
and predict social routine of the monitored individuals were identified.

We defined that a social observation consisted of a data window of one week (i.e.,
seven days). For example, for the MONDAY context, an observation consisted of data
from 1 day, since a week has only 1 day with that context. Therefore, the first step of this
experiment was to define the number of observations necessary to extract patterns con-
sistent with the monitored individual’s social behavior. For this, we identified sociability
patterns considering each day of the week as a CA (i.e., MONDAY, TUESDAY, WEDNES-
DAY, THURSDAY, FRIDAY, SATURDAY, and SUNDAY), and we checked the predictive
performance of sociability patterns when using different numbers of social observations to
design them. We defined prediction performance as the ability of sociability patterns to
explain and predict individuals’ social routines.

Figure 9 presents an example of scenario for assessing the prediction performance of
sociability patterns using two observations. We performed this evaluation using one, two,
three, and four observations to project sociability patterns, so allowing us to compare the
predictive performance of each configuration. Each execution consisted of the following
steps: (i) recognizing the sociability pattern with the number of specified observations (i.e.,
one, two, three, or four); (ii) measuring the Jaccard similarity index between the pattern
extracted with the next social observations; and (iii) identifying a new social pattern from
the evaluated observations to represent a new reference pattern.

[Extract pattern (P)] [Extract pattern (P)]
Obs01 Obs02 Obs03 Obs04 Obs05 J Obs 06 - Obsn Obs n+1
120 1|3 |0 0|10 t|zfof|1|z|aef|l21|z|0 120 T'T'_G"
(Extract pattern (P) ] (Extract pattern (P))

Figure 9. Evaluation of the prediction performance of sociability patterns using two observations.

We performed the experiment for all users considering CAs specified previously
(e.g., MONDAY, TUESDAY, and SUNDAY), so making it possible to recognize the pre-
dictive performance (i.e., the similarity between sociability patterns and observations)
of sociability patterns for these CAs. We calculated the average prediction performance
to identify the number of observations required to extract sociability patterns to explain
social routine.

Figure 10 shows the average predictive performance of the sociability patterns identi-
fied using one, two, three, and four observations. From results, we identified that extracting
the sociability pattern using only one observation resulted in poor predictive performance
compared to other configurations. Extraction of social patterns with two, three, or four
observations showed similar predictions. Therefore, we concluded that the most appro-
priate approach was to use two observations to extract sociability patterns since we could
identify them in less time with predictive performance similar to other configurations.
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01 Observation 02 Observations 03 Observations 04 Observations

Figure 10. Prediction performance of sociability patterns.

After quantifying prediction levels of the extracted sociability patterns, we measured
stability of the social routine of the individuals who participated in this study. We calculated
average similarity between one day and the subsequent day (Figure 11), i.e., similarity of
the individual’s social behavior between consecutive days. CAs considered each day of the
week, similar to the previous experiment. In the end, we calculated average stability of the
individuals” social routine, so allowing us to correlate this variable with prediction levels
of sociability patterns.

v

" Obs 01

| Obs02 | Obs03 Obs04  Obs05

T T

1

2

0 z 0 1 3 1 0 1(2 |0 0|21

Figure 11. Configuration used to evaluate stability of individuals’ social routines.

We performed a stability analysis of the individuals” social routines to recognize
essential information to understand their social behaviors. Figure 12 shows the stability
of the individuals’ social routines (i.e., the similarity of social behaviors between days),
so making it possible to identify that most users had social habits with stability below
40%. However, some users had more stable routines, such as 1#04 and u27. From this
analysis, we expect that sociability patterns could explain and predict more consistently
social behaviors of the more stable users and that present lower levels of predictions when
applied to individuals with more unstable social routines.

So far, we quantified the prediction performance of the extracted sociability patterns
and the stability of the individuals” social routine. Therefore, we can perform association
analysis between these two variables using Pearson correlation coefficient. Figure 13 shows
this association, in which y-axis represents the average of prediction performance of the
social patterns, and x-axis represents the average of the individuals’ social routine stability.
When analyzing Figure 13, we can identify a clear correlation between these two variables,
so representing a linear relationship. Pearson correlation coefficient resulted in +0.86,
which represents a strong positive association between these variables.
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Figure 13. Correlation between prediction performance of sociability pattern and social routine stability.

Figure 14 shows the relationship between prediction performance of the sociability
patterns and stability of the individuals” social routines for each CA, so making possible
to identify a linear relationship between these variables. Figure 15 shows the result of
applying the Pearson correlation coefficient between these variables for each specified CA,
so indicating that association levels were higher than 0.7, which represents strong positive
correlations. When analyzing these results, we can recognize that prediction performance
of the extracted sociability patterns remains related to stability of the social routine in all
evaluated CAs.
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Figure 14. Correlation between prediction performance of sociability pattern and social routine for each Context
Attribute (CA).
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Figure 15. Average correlation level for each CA.

From this experiment, we can recognize that sociability patterns of the proposed
solution satisfactorily model social routines of individuals. Therefore, sociability patterns
can be used to reliably understand and predict social behavior since they have strong
correlations with users’ social habits.
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4.4. Evaluation of Social Behavior Change Detection

This experiment aimed to verify the performance of the social behavior change detec-
tion solution. In particular, we evaluate its ability to detect social behavior changes and
adaption to the new social behavior of the monitored individual. Therefore, we expect that
the solution to accurately identify observations that represent abnormal social behaviors
and social routine changes.

Firstly, we defined a similarity threshold that represents a change in social behavior.
For this reason, we calculated mean and standard deviation of the stability of social
routines for all users, so defining this threshold as [y + ¢]. Similar to the configuration of
the previous experiment (Figure 11), we calculated mean and standard deviation of the
similarity of social behaviors of individuals between consecutive days considering each
day of the week as CAs. In the end, we identified that users had an average of 35.4% of
stability in their social routines and standard deviation of 10.7%. Therefore, we specified
the threshold for social behavior changes at 46.1%.

We combined data from two users with significantly different social routines to sim-
ulate a change in social behavior. For this, we selected users who had more stable social
habits. We identified that users u27 and u04 presented social routines with satisfactory
stability for this experiment by considering results from the previous experiment.

Figure 16 shows social routines of the individuals u27 and u04, in which each cell
contains the number of social events in a given time slot of 30 min (t = %). From this
visualization, we can recognize an evident change in social behavior at the limit that
separates the two users’ data. In this scenario, we expect that the proposed solution would
detect abnormal behaviors when starting to process data of the user u04 and recognize the
social routine change. Additionally, the solution adapt to the new pattern, then providing
a new sociability pattern capable of explaining and predicting the new social routine.
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Figure 16. Merge of the social routines of the users u27 and u04.

Social event streams for the proposed solution were created from data of the selected
users. After processing data stream, our solution detected social behavior changes pre-
sented in Table 2. These results demonstrate that it identified abnormal behaviors and social
routine changes precisely. Specifically, our solution identified a high similarity between
social patterns and observations (i.e., similarity > 46.1%) while processing user data u27,
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so not representing behavioral changes. From the first observation of the user u04, our solu-
tion started to detect abnormal social behaviors, so recognizing the social routine change by
extracting the first pattern using data from this user (i.e., 5th pattern). This new reference
pattern remained consistent with the next processed social observations, i.e., the solution
can efficiently adapt to data stream changes.

Table 2. The flow of social behavior change detection. Red lines represent the identification of
abnormal behaviors and social routine change.

Observation Uid Similarity Change

03 u27 0.520000 Normal social behavior

04 u7 0.727273 Normal social behavior

2nd Pattern u27 0.680000 Maintained the reference pattern
05 u27 0.652174 Normal social behavior

06 u27 0.520000 Normal social behavior

3rd Pattern u27 0.640000 Maintained the reference pattern
07 u27 0.576923 Normal social behavior

08 u7 0.555556 Normal social behavior

4th Pattern u27 0.666667 Maintained the reference pattern
09 u04 0.411765 Abnormal social behavior

10 u04 0.444444 Abnormal social behavior

5th Pattern u04 0.428571 Social routine change detected
11 u04 0.657143 Normal social behavior

12 u04 0.647143 Normal social behavior

6th Pattern u04 0.647059 Maintained the reference pattern
13 u04 0.540541 Normal social behavior

14 u04 0.575758 Normal social behavior

7th Pattern u04 0.600000 Maintained the reference pattern
15 u04 0.666667 Normal social behavior

16 u04 0.685714 Normal social behavior

8th Pattern u04 0.666667 Maintained the reference pattern
17 u04 0.647059 Normal social behavior

4.5. Discussion and Limitations

This section presented an experimental evaluation of the proposed solution that
significantly extended experimental evaluations reported in [20]. We performed an in-
depth evaluation of the components designed to detect context-aware sociability patterns
and behavior changes. From these experiments, we found that patterns recognized by
the solution can model and predict social routines of individuals considering context
information. Moreover, it can detect significant changes in social habits consistently.

In [20], we compared the similarity between social intervals detected by the proposed
solution with those recognized by a batch processing algorithm. From the evaluation
in [20], we recognized that the compared solutions identified sociability patterns with
86.33% similarity. We also analyzed sociability patterns based on CAs to investigate their
contribution to understand social habits. We identified that context-based recognition
provides insights into sociability patterns hidden in the context-free analysis. Therefore,
the detection of sociability patterns based on CAs improves the understanding of social
habits because it enables to distinguish abnormal behaviors from expected changes due to
the context.

The aims of our experiments differ from the evaluations performed by the related
works, hence it is a challenge to compare their results using specific metrics. For example,
studies that design machine learning models to classify and predict mental states use
metrics such as accuracy, precision, recall, whereas in our unsupervised sociability pattern
learning approach, we use methods to assess the ability to model social routine and detect
behavior changes. The works [22-24] also assess sociability patterns, but they differ from
our experiments. Harari et al. [23] computed test-retest correlations between the observed
behavior durations for adjacent weeks. Barnett et al. [22] analyzed the rate of anomalies in
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behavioral patterns based on a statistical test inspired by Filzmoser’s approach to predict
schizophrenic relapse. Bonilla et al. [24] analyzed the applying of the Poisson mixture
model to obtain the intensity functions of all calls in which patients were involved.

Our experiments evaluated the ability of the proposed solution to identify context-
aware sociability patterns capable of explaining social routine and detecting social behavior
changes. From this analysis, we identified that the prediction performance of social
patterns has a strong positive correlation with the stability of the social routine (i.e., Pearson
correlation coefficient greater than +0.7) in all CAs considered, so enabling to recognize
that the proposed solution detects patterns consistent with the social behaviors of the
monitored individuals. The evaluation of the social behavior change detection solution
analyzed results of the detection processes performed by the solution when processing
data containing changes in social routines. This experiment recognizes that our proposed
solution can accurately detect and report abnormal social behaviors and social routine
changes. Therefore, this is a promising tool for monitoring mental health, since reports of
behavioral changes may indicate the onset, presence, or development of mental disorders.

This study has some limitations. First, the algorithm requires to manually enter two
parameters: ¢ and 6. Therefore, the recognized sociability pattern depends on the prede-
fined values chosen empirically rather than automatically setting the best values based on
processed data. Second, the experimental evaluation was based on only one type of social
activity (i.e., conversations). Other sources of social interactions should be considered, such
as interactions on mobile social networks and telephone call communications. Third, social
routine change does not necessarily imply change in sociability, as individuals can change
their routine and maintain the same sociability level. However, the solution can identify
social routine changes (i.e., whether there is a change in sociability), so allowing mental
health professionals to interpret and investigate changes in the user’s social aspect. Finally,
another aspect is the homogeneous essence of the study participants (i.e., university stu-
dents). Our solution should be validated with a more heterogeneous population, especially
mental health professionals and their patients.

5. Conclusions and Future Work

This work presented an approach for monitoring mental health through awareness of
the social situation. Specifically, we introduced a solution based on FPM and CEP concepts
to recognize intervals of the day when a monitored individual habitually socializes for
each contextual condition. We also presented the solution developed to recognize abnor-
mal behaviors and routine changes. Additionally, we introduced specialized knowledge
modeling through fuzzy logic to allow the solution to send notifications of behavioral
changes considering the imprecision of this task. From the evaluation conducted, we
demonstrate that the predictive performance of context-aware sociability patterns has
a strong correlation with social routine stability and that the solution can detect social
behavior changes. We conclude that our proposed solution can be integrated into mental
health monitoring tools to objectively collect patterns and changes in social behaviors, then
providing support to mental health professionals and contributing to the effectiveness of
the treatment proposed for patients.

As future work, we plan to address some open issues. The first one is to detect
sociability patterns previously specified by mental health professionals, so enabling to
identify situations of interest. We would also like to create dashboards for sociability
patterns in an appropriate way for professionals, so facilitating analysis of social behavior.
Another task is to update the solution to add information about the sociability level
(e.g., social interaction intensity) to extracted patterns and identified behavioral changes.
We also intend to develop an approach capable of automatically defining the best values
for the parameters of the algorithm. Moreover, we plan to extend our solution to detect
patterns related to other behaviors, such as physical activity and mobility. Plans also
include validating our solution with professionals and their patients.
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