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Abstract: Walking algorithms using push-off improve moving efficiency and disturbance rejection
performance. However, the algorithm based on classical contact force control requires an exact model
or a Force/Torque sensor. This paper proposes a novel contact force control algorithm based on
neural networks. The proposed model is adapted to a linear quadratic regulator for position control
and balance. The results demonstrate that this neural network-based model can accurately generate
force and effectively reduce errors without requiring a sensor. The effectiveness of the algorithm is
assessed with the realistic test model. Compared to the Jacobian-based calculation, our algorithm
significantly improves the accuracy of the force control. One step simulation was used to analyze the
robustness of the algorithm. In summary, this walking control algorithm generates a push-off force
with precision and enables it to reject disturbance rapidly.

Keywords: neural network; push-off; walking; force control; contact force; ground reaction force

1. Introduction

Zero Moment Point (ZMP) control is widely accepted as a basic approach for walking
robots [1-10]. Kajita [11] suggested a preview control system based on the Cart-Table model
to generate biped walking patterns by ZMP. The preview control model requires the Center
of Mass (CoM)’s height and weight to predict a stable CoM trajectory with the desired
ZMP. However, the preview controller is not the most ideal for feedback because ZMP
contains acceleration terms and also real-time feedback control in the influence of external
disturbances is challenging. As described in Figure 1a, a ZMP-controlled robot swings its
leg in order to take off and touches the leg down softly to the pre-defined footstep placement.
When accelerating, a ZMP-controlled robot only uses its stance leg to accelerate, whereas
humans utilize the propulsive push-off power from the swinging leg to accelerate [12,13]
as shown in Figure 1b. The reason why the push-off mechanism is not used for ZMP-
controlled robots is because push-off makes ZMP perturbation. Ground Reaction Forces
(GRFs) from push-off are considered a disturbance, which is one of potential reasons for
the efficiency gap between humans and robots [14-17]. Therefore, here we propose a new
control method by push-off that does not cause ZMP perturbation [18].

Atrias [19,20] is a bipedal walking robot co-developed by Carnegie Mellon University
and Oregon State University. The developers of Atrias have shown that Series Elastic
Actuator (SEA) and Spring Loaded Inverted Pendulum (SLIP) model could improve the
efficiency of walking. Atrias achieved a 9 km/h speed and robust walking on an uneven
terrain with human like GRF. However, because GRF is controlled directly by the SLIP
model, Atrias cannot stand still without making constant motion. Therefore, this solution
is not applicable for robots that need to operate at a standstill. The researchers of Atrias
calculated a required joint torque using the Jacobian method without using mass terms
of foot.

A more complicated model does not guarantee a better performance because the
uncertainties are coming from the model. Lee [21] used a null space method to regulate
the GRF and kept the robot’s balance. The null space method could control effectively
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without a Force/Torque (F/T) sensor. Moreover, the performance is modulated by inertia
information. Park [22] proposed a hybrid approach for contact force control combining the
null space method and observer. The approach removes the effect of disturbance or error
with the F/T sensor [23] by applying a filter or observer to reduce noise from sensed signal.
Furthermore, the observer can estimate the force for sensorless control [24]. However,
these approaches have delays that significantly reduce the performance and stability of the
robots. the F/T sensor for bipedal robots is also high cost and weighs over 500 g.

A

Foot off Foot off

(a) ZMP controlled robot (b) Human

Figure 1. Swing leg’s foot trajectory of (a) robot and (b) human during gait cycle. Robot’s trajectory is from pre-developed

robot [25]. Human gait is running at 3.56 m/s [26,27].

Neural network (NN) learning is a useful method for unknown complicated mod-
els [28,29]. NN-based hybrid position/force control was proposed by Passold [30] and
Kumar [31]. Moreover, observer based approaches have been reported in [32-34]. How-
ever, these researches also used a force sensor in their model. Unlike sensor based control,
Xu [35] suggested an impedance control based on an observer without force sensor. Adap-
tion algorithm is applied to estimate stiffness and position of environment. Yet, this model
has a significant delay for early contact.

In this paper, we propose a NN model to control ground reaction force without F/T
sensor. This approach reduces modeling error and effort for finding model parameters.
The contributions of our work are shown as follows:

e We propose a model based on neural network (NN) estimation on push-off force
(GRF) control. It effectively decreases errors created by the robot’s mass and gravity.

®  Theneural network model is applied with Linear Quadratic Regulator (LQR), which is
adopted for balancing and generating desired force for push-off.

¢ We introduce the simulation to prove that our approach is validated in dynamic
situations like walking.

The rest of the paper is organized as follows. Section 2 introduces the NN model and
procedure of the simulation. Section 3 shows The results obtained from our model and
simulation. The analysis about the result is summarized in Section 4. Section 5 concludes
the paper.

2. Method
2.1. Neural Network Model

The parallel type leg in this paper is shown in Figure 2. It is developed for reducing
inertia and fast walking. Physical modeling and simulation are executed on the MATLAB
Simscape. There are two motors on the hip to control the position (x,z) of the foot. The hip
is connected to the body with a roll motor and is fixed during the NN training.
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Dynamic equation for leg can be formulated as:

16+C(0,0)+K0+GO)+]'F=1 1)

where I is the inertia matrix, C represents the coriolis and centrifugal term, K is the stiffness
matrix and G(9) is the gravity function. The matrix J is the contact Jacobian for the contact
position and F is the contact force matrix. 8 is the joint angle matrix and 7 is the joint
torque matrix. If we the know exact model, the reference torque for the desired force is
obtained by:

Treference = Igm + C(Gm; em) + KOy, + G(gm) + ]TFﬂlesired 2)

where 6, represents the measured joint angle. Because the model information from CAD
is not perfect, we need to conduct experiments for calculating the exact parameter [18].
Besides, links must be decomposed, and the test takes much time and effort. Further-
more, if we use a force sensor or observer to compensate the modeling error, the delay
is unavoidable.

T T,

Figure 2. Leg model for neural network regression.

Thus, we propose a neural network model for removing model error without force
sensor. Because the inertia of the leg is negligible against the body in this model, I, C could
be omitted. Then, the reference torque is simplified by:

Treference = KOy, + G(Gm) + ]TFdesired = h(Ql/ q2, Fix, sz) ®3)

where g1, g7 are the joint angle from the left and right motors, F;,, F;, represents the x-axis
and z-axis of the desired contact force. We assume the robot’s foot is fixed on a vertically
moving stage with a force sensor. When the torque (7, ) is applied on the foot position by
the joint angle (g1, 92), we could measure the generated force Fy, F;.
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Our purpose is to acquire an approximation function of & by using these data. The neu-
ral network is efficient for curve fitting and works well in nonlinear regression. To avoid
overfitting, the Bayesian regularization algorithm is adopted .

In Figure 3 and 4, the torque surface is plotted to determine the neural network param-
eter. The figures show # is not a highly nonlinear function. Therefore, we used one hidden
layer. When the data are divided into 10 values in the range, sufficient performance is
achieved. 10,000 datasets are collected under each 10q; x 10g2 x 10F, x 10F,. Performance
by random datasets is not significantly different. Ranges of input data are determined
as follows:

F € [~100,100]N, g1 € [—g,o]rad, 0 € [0, g]rad

Torque(N)

Torque(N)

-50

FN) 0 00 F N E 50 w0 O F,N)
(a) Left motor torque (b) Right motor torque
Figure 3. Measured torque is plotted for each force, g = — %, g2 = %.

0.4

Torgue(N)
Tomue(N)

-1 R
q,(rad) 0 -1.5 q, (rad) a,(rad) 0 -1.5 a,(rad)

(a) Left motor torque (b) Right motor torque
Figure 4. Measured torque is plotted for each joint angle, F, = &70N - @N .
The structure of the NN model is described in Figure 5 and in Equation (4).
y = by +wy * tansig(by + wrx) 4

T
e y=outputvector= [T T] .
e b1,by =Dbias vector.
e wp = Layer weight matrix, w; = Input weight matrix.

e tansig(n) = He%z,l -
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¢  x=input vector = [ql 92 Fix Fdz] "

q1 Hidden Layer Output Layer
Input Output
E) . . t
- N
F, dx 4 n n 2 Ty
F Az 50 2

Figure 5. Neural network model for regression.

We used 70% of the data for training, 5% for validation, and 25% for the test. The
parameters for NN learning are shown in Table 1. Training stops when the maximum
number of epochs is reached, y exceeds yx or the gradient falls below min_grad.

Table 1. Paratmeters used for neural network training.

Parameters Value Description
epochs 1000 Maximum number of epochs
u 0.005 Marquardt adjustment parameter
Hdec 0.1 Decrease factor for u
Uine 10 Increase factor for p
Himax 1 x 1010 Maximum value for y
min_grad 1x1077 Minimum performance gradient
Cad Model

The same approach is tested on a realistic CAD model. It contains a motor, gearbox
and it is fully designed for manufacturing. We assume this leg has the same workspace as
a pre-developed robot [25]. The leg length is twice as long. The motor is selected for an
increased length and weight. One motor position is changed because the motor is too big
to place side by side. The range of q; is not symmetric because the length of the left and
right link are not the same.

Fy € [~200,200]N, F, € [—100,1000]N, g, € [0.824, — 0.6067,0.82q, + 0.52]rad, g, € [0,1.8]rad

2.2. Lgr Design

Figure 6 shows the 2D robot model and the parallel leg is simplified into a single
effective link. LQR is an optimal feedback controller for a linear plant, and is easily tuned
for multiple objectives by state (Q) and input (R) weight matrix.

The equations obtained from the model are shown below:

Mx = Fycos(qp)
Mz = Fycos(qy) — Mg for body

Ry = —Fxcos(qp) ®)
R, = Mg — F.cos(qyp) for leg
9o =41 = 4n

I4; = Rylcos(q;) — R.lsin(q;)

e M =mass of robot, ¢ = gravity acceleration.

¢ F=force from leg to body.

* R =force from body to leg.

* g, =body angle, g5, = hip angle, g; = leg angle.

¢ [ =inertia of robot, [ = length from body to foot.



Sensors 2021, 21, 287

6 of 16

Figure 6. Free body diagram for body.

Besides high gain being applied in the support phase, we assume ! is constant. The
mass of the leg is % scale of robot mass, thus it is ignored. At a linearized point, g; = g7 ~ 0.
The state-space equation for LQR can be written as:

HX = AX+BU
X =H Y (AX+BU)=A'X+BU
. . AT
X=lqg 4 x % z Z
H=diag([l I 1 M 1 M])

(0 1.0 0 0 O
000O0O0TO
A— 0001O00O0
|00 00 0O
000001 ©)
0 00 00O
U
-1 0
0 0
b= 1 0
0 0
L0 1
T
U= [F E]|
We use simple PD control on hip roll motors.
Upoll = KP(qref - qroll) — Kp4ron 7)

ron = angle of roll motor, 4, = angular velocity of roll motor, g,.¢ = reference angle
qref is a constant that keeps initial hip roll angle.

__|100 10 50,000 5000 0 0
L0 0 0 0 50,000 5000 (8)
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Kjgr is calculated from (4, B, Q, R) by the algebric Riccati equation. The controllability
matrix is not full rank but is stabilizable. It means that the robot could fall from some
initial states. Controlling x and g;, are trade-offs because two states are coupled. If we give
too much weight to x, g3 is not controlled properly. After some simulation, we could find
appropriate ratio for them.

The entire control flow is described as:

—_

LQR calculates desired contact force (Fy, F;) from error.
Desired Joint torque (7, 7+) is obtained from a neural network regression model.
3. Apply the joint torque to the robot plant and measure the states.

N

Workflow is also described in Figure 7.

q1, 92

Desired 7,7,

N — Ko]
trajectory

XbodyrZbodys b
Figure 7. Entire control flow, NN means neural network model.

2.3. One Step Simulation

We establish a simulation model to verify that the proposed approach works well
while the robot body is moving. The robot model is demonstrated in Figure 8. There are
two hip roll motors on the invisible frame. The control objective for the hip roll motor is to
sustain the angle. There is no external constraint on the model, but only spatial contacts
between the spherical foot and ground. The static friction coefficient is 1 and the dynamic
is 0.8. This is the friction coefficient of rubber on dry concrete. The hip width is 0.1m and
the other parameters are written in Figure 9 and Table 2.

Figure 8. Robot model for simscape.
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Figure 9. Leg model parameter.

Table 2. Leg model parameter table.

Name Value
L1 (m) 0.04
L1r (m) 0.04
L2 (m) 0.24
L2r (m) 0.255
Lf (m) 0.05
Lt (m) 0.08
M (kg) 10

Leg length parameters are optimized for minimizing the required torque, and the step
width is 0.1 m. The push-off force is generated by trajectory based on the trigonometric
function (Pesired = % (1- cos(%))). The maximum force for the z-axis is 170% of the mass
and force for the x-axis is 40%. The step time and amplitude of the push-off is selected
by tuning.

Simulation starts from the double support phase. Right leg push-off ground and mode
is changed into a single support phase. Body angle and effective leg length I are regulated
in a single support phase. After heel-strike, the robot is balanced.

3. Results
3.1. Neural Network Model

We did the test to prove robustness:

Pick random desired force.

Calculate the joint torque by using a neural network model.

Compare the real torque for the desired force with a calculated one (Test 1).
Apply the joint torque and compare the measured force with the desired (Test 2).

Ll .

Figure 10 shows the logarithmic MSE decrease as the number of neurons increases.
However, neurons more than 50 show negligible performance improvement in force
generation (Test 2). Thus, we decide the number of neurons is 50 and it needs about 27 ms
to calculate torque.
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Figure 10. Mean square error of torque by the number of neurons.

Test 1 executed 1000 times and Test 2 executed 100 times. When we use the Jacobian
method, torque is calculated by Tyeference = | TEesired- The gravitational term is not applied
because we assume the mass model is not accurate. In the error histogram (Figure 11a), the
torque error from the NN model is much lower than the error from the Jacobian method.
Table 3 shows the predicted torque error by dismissing I, C. In Test 2, the mean error from
the Jacobian method is 4.58 N and the mean error from NN is 0.37 N. The mean error is
reduced by 92% when a neural network model is applied.

Histogram of Force prediction error
200 o0 v - T - T - T - T -
ook 1 & |
70
600 1
BO [
500 1
Sept 1
400 1 5
[
Zanf 1
300 1
0 ¢ 1
200 1
0 r 1
100 1
mr 1
0 002 004 006 008 01 012 044 016 0 05 1 15 o a8 3 ar 4 ar =
Error of Torque(Nm) Error of force(i)
(a) MSE of torque (red) Jacobian, (blue) NN (b) MSE of force prediction

Figure 11. Histogram of mean square error.

Table 3. Statistical value of prove test.

Test 1 (Nm) Test 2 (N)
MSE 9.45 x 107° 0.67
Mean 0.0039 0.37

STD 0.0089 0.74
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CAD Model

To prove the robustness of the NN model, Test 2 is applied to the CAD model. The root
mean squared error (RMSE) from the NN model is 73.7% lower than the Jacobian method.
Because the CAD model is heavier (4.5 kg) than simplified model (300 g), Figure 12 shows
increased force error. The moving average line indicates the error from NN is significantly
smaller than the Jacobian’s.

Force prediction errorjacobian Force prediction error50
60 T T T . T

.
(=]

Measuremnt
Moving average

Measuremnt
Moving average | |

[#]
[52]
T

50

.
(=]

[ 4]

(=]

T

RMSE of force(N)
&

RMSE of force(N)
=]
(=}

ma
(=]

m
[=2]
T

-
o
T

-
=]

100 |

5
| t { 111 ! 1 7l ‘ I A i L 1
L L L L L 0 [ Il.u1].l.||.||||||.1.ﬂ‘.|.L|I.| “m r. i]..““;ll |4.|Ll. 1.'1.|..\||..\F.[|LII[JJ!hllu.Jl11“.||||l,.l..l.l,\llll..lak.[|u.|llll.lF|.||.‘
] 100 200 300 400 500 60O 700 8OO 800 1000 ] 100 200 300 400 500 600 700 800 900 1000
trial trial

(a) Jacobian (b) Neural network
Figure 12. Force prediction error.

According to Figure 13 and Table 4, the average error is reduced by 85.6%. There
are some spikes over 10 N in the NN model. When the leg is almost fully stretched, the
spikes appear by a singularity. Simscape solver’s linearization and approximation also
make an error.

?OO T T T T T T T T T T T

0 5 10 15 20 25 a0 35 4o 45 50
Error{N)

Figure 13. Histogram of force prediction error.
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Table 4. Statistical value of prove test in CAD model.

Error Max (N) Avg (N) Var (N) RMSE (N)
Jacobian 51 21.2 36.2 22.0
Neural 36 3.1 24.2 5.8
Change (%) —29.4 —85.6 —33.1 —73.7

3.2. One Step Simulation

Figure 14 demonstrates the procedure of one step simulation. Figure 15 indicates
the states and input of the LQR controller. Heel strike occurs at 0.6 s and the robot keeps
balance without additional stepping. On the other hand, Atrias has no ability to keep
balance at standstill [20]. It is critical for robots with manipulator.

Figure 14. Still shot of one step simulation.
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Figure 15a,b show the movement of the body, taking maximum overshoot values of
1 cm and 2 cm. Figure 15¢ shows the response of the body angle g;, which takes values
between —0.4 and 1.2 degrees. The joint torque of the swing foot, having maximum values
of —8 and 8 Nm, are presented in Figure 15d. Peak values appeared by mode transition
and numerical error of simulation.

0.06 0.305

0051 03r

0.04 0.295

‘g 0.03r ‘g‘ 0.291
£ £
2 2

> 002t No0.285

00171 0281

or 0.275

0.01 . . . . . 0.27 . . . . .
0 0.5 1 1.5 2 25 3 ] 0.5 1 15 2 25 3
Time(s) Time(s)
(a) Xbody (b) Zpody

q,(deg)

Joint torque{Nm)

0 0.5 1 15 2 2.5 3 0 0.5 1 15 2 2.5 3

Time(s) Time(s)
(©) Gvody (d) Control input

Figure 15. States and input of swing foot.

Figure 16 shows the real and target normal force of the stance leg. The NN model
operates normally under moving conditions. Average error is 0.64 N.

In Figure 17a, GRF is not measured in the swing phase. Human’s GRF is drawn for a
stance leg from heel strike to push-off [36]. It needs more steps to draw the grf of the stance
leg. Hence, we draw similar results by adding the swing and stance leg’s normal force.
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00T
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Time(s)
Figure 16. Measured and desired force.
200 - 120
Push-off Fricton q
f .
o \\ + Heel-strike 1001
I
goflh
100 ‘ 1
z z
g ‘ 8 oo\
I.IO. R LIO. I P_T’J
50 — I
40
} Swing —
y —_—
0 U ol
-50 0 :
0 0.5 1 1.5 2.5 0 0.5 1 15 2 25
Time(s) Time(s)

(a) Swing leg’s forces

(b) Normal force (Swing leg + stance leg)

Figure 17. Normal and friction force of one step simulation. Red dashed line: approximation of sum.

4. Discussion

The neural network model has a high accuracy in force control. The average and RMS
error are smaller than 10 N. According to Table 4, the proposed model achieves better
accuracy than the Jacobian method without including mass information. The NN model
removes the time-consuming process of formulating equations and finding the parameters
of each link. In biped robots, the error is produced by bolts, bearings, wire and electronic
parts. Even though all terms are modeled, force control error always exists [21]. NN
modeling is a systematic approach to modify models by experiments and learning. The
main reason for performance improvement comes from dismissing gravitational terms in
the Jacobian method. Since we designed the leg for faster movement, the leg mass under
5 Kg was used. There will be more improvement for heavier legs. In the manipulator’s case,
a computed torque method or observer based approach is applied for better performance
and removing the model error. Due to the noisy value from sensors, a filter or observer
is used in those approaches. Stability and performance deteriorate because the delay is
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accompanied by filters. Unlike manipulators, walking robots could fall by a small delay.
F/T sensors for an observer are also expensive and heavy.

Since Equation (3) has no terms about ground, the NN model is not affected by the
condition and material of the ground. Therefore, the model is also working in a floating
state. Figure 3 shows the model is linear about F,. Thus, F, range for the dataset could
be from 0 to positive value. If we get data only for pushing ground, it does not have any
performance drop.

Based on the results in Section 3.2, our approach can be used for moving platforms.
Figure 17b shows an approximated line that resembles a human’s GRF. There is a flat part
between two peaks in the single support phase. Because the robot’s speed is 0.25 m/s
which is much slower than a human’s (1-1.5 m/s), using push-off, the robot could achieve
more speed for multiple step. Although push-off and heel strike are disturbances over
100 N, the proposed LQR controller rejects the disturbance with a small error. Robots could
stand without any motion or additional stepping. ZMP-controlled robots usually need an
F/T sensor or advanced control like a capture point to remove disturbance.

5. Conclusions

The purpose of this article is to provide a new contact force control algorithm. Un-
known disturbance and modeling error will cause the failure of the walking robot. We pro-
pose a NN based force control method to solve these problems. We use NN regression
to remove time-consuming steps like formulating equations and finding parameters for
model. Secondly, we introduce the LOR walking controller with the NN model for balanc-
ing and push-off.

The performance of contact force generation was compared with the Jacobian method.
The result shows that the neural network model significantly improves the performance
of force control. The research pointed out that the proposed method is highly applicable
for contact force control. Our approach has strong robustness on one step simulation
which contains transient disturbance. The proposed algorithm satisfies requirements under
simulation and the result shows the feasibility of applying our approach to walking control.

NN modeling can be easily implemented by other manipulators or robots. The ad-
vantage of these solutions can be exploited well on complicated multi-axis robots or
parallel manipulators.

In our future work, we will add frictional or damping terms in the model. Friction
modeling is a challenging problem to be added to force control. However, this is essential
to improve performance in walking of real robots. The redundant degree of freedom will
be considered later. Additional objects like torque minimization can be added to the model.
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Abbreviations

The following abbreviations are used in this manuscript:

NN Neural Network

GRF  Ground Reaction Force
CoM Center of Mass

LQR Linear Quadratic Regulator
F/T Force Torque

CAD Computer Aided Design
ZMP  Zero Moment Point
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