
sensors

Article

Robust Inferential Techniques Applied to the Analysis of the
Tropospheric Ozone Concentration in an Urban Area

Wilmar Hernandez 1,* , Alfredo Mendez 2 , Vicente González-Posadas 3, José Luis Jiménez-Martín 3

and Iván Menes Camejo 4

����������
�������

Citation: Hernandez, W.; Mendez, A.;

González-Posadas, V.; Jiménez-Martín,

J.L.; Camejo, I.M. Robust Inferential

Techniques Applied to the Analysis of

the Tropospheric Ozone Concentration

in an Urban Area. Sensors 2021, 21,

277. https://doi.org/10.3390/

s21010277

Received: 14 December 2020

Accepted: 30 December 2020

Published: 3 January 2021

Publisher’s Note: MDPI stays neu-

tral with regard to jurisdictional clai-

ms in published maps and institutio-

nal affiliations.

Copyright: © 2021 by the authors. Li-

censee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and con-

ditions of the Creative Commons At-

tribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Facultad de Ingeniería y Ciencias Aplicadas, Universidad de Las Américas, Quito EC-170125, Ecuador
2 Departamento de Matematica Aplicada a las Tecnologías de la Informacion y las Comunicaciones,

ETS de Ingeniería y Sistemas de Telecomunicacion, Universidad Politecnica de Madrid, 28031 Madrid, Spain;
alfredo.mendez@upm.es

3 Departamento de Teoría de la Señal y Comunicaciones, ETS de Ingenieria y Sistemas de Telecomunicacion,
Universidad Politecnica de Madrid, 28031 Madrid, Spain; vicente.gonzalez@upm.es (V.G.-P.);
joseluis.jimenez@upm.es (J.L.J.-M.)

4 Facultad de Informatica y Electronica, Escuela Superior Politecnica de Chimborazo, Riobamba EC-060155,
Ecuador; imenes@espoch.edu.ec

* Correspondence: wilmar.hernandez@udla.edu.ec

Abstract: This paper analyzes 12 years of tropospheric ozone (O3) concentration measurements
using robust techniques. The measurements were taken at an air quality monitoring station called
Belisario, which is in Quito, Ecuador; the data collection time period was 1 January 2008 to 31
December 2019, and the measurements were carried out using photometric O3 analyzers. Here,
the measurement results were used to build variables that represented hours, days, months, and
years, and were then classified and categorized. The index of air quality (IAQ) of the city was
used to make the classifications, and robust and nonrobust confidence intervals were used to make
the categorizations. Furthermore, robust analysis methods were compared with classical methods,
nonparametric methods, and bootstrap-based methods. The results showed that the analysis using
robust methods is better than the analysis using nonrobust methods, which are not immune to the
influence of extreme observations. Using all of the aforementioned methods, confidence intervals
were used to both establish and quantify differences between categories of the groups of variables
under study. In addition, the central tendency and variability of the O3 concentration at Belisario
station were exhaustively analyzed, concluding that said concentration was stable for years, highly
variable for months and hours, and slightly changing between the days of the week. Additionally,
according to the criteria established by the IAQ, it was shown that in Quito, the O3 concentration
levels during the study period were not harmful to human health.

Keywords: robust analysis; central tendency and scale estimates; robust and nonrobust confidence
intervals; categorization of ozone measurements

1. Introduction

Ozone is a substance that, based on its composition, is classified as a simple molecular
substance made up of three oxygen atoms joined by covalent bonds, one single and the
other double; its molecular formula is O3 [1,2].

According to [3], the ozone molecule is angular, with an angle of 117◦ and a structure
in resonance between two possible electronic configurations. It is diamagnetic, indicating
the absence of unpaired electrons [3].

Ozone (O3), whose name is trioxygen according to [4,5], is one of the allotropes of
oxygen, the most familiar of which is molecular oxygen (O2), also known as dioxygen.
Its CAS Registry Number (Chemical Abstracts Service registration number) [6] is 100-15-6.
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1.1. Stratospheric Ozone

Ozone is concentrated in the stratosphere between 12 and 25 km high, forming the
ozone layer, and reaching its maximum concentration at a height between 20 and 25 km.
Stratospheric ozone is formed by the action of ultraviolet radiation, which dissociates the
dioxygen molecules into two highly reactive atoms, as in Equations (1) and (2), which react
with the molecular:

O2 + hν(λ < 240 nm)→ 2O (1)

O2 + O + M→ O3 + M, (2)

where O2 is oxygen, λ stands for wavelength, the photon’s energy is E = hν, the Planck
constant is h, the photon’s frequency is ν, and O is an oxygen atom. In addition, (2) occurs
with heat release and requires the presence of a third body, M, such as N2 (dinitrogen) or
O2, which removes the energy from the reaction and stabilizes the ozone molecule.

Ultraviolet radiation with a wavelength greater than 290 nm causes the O3 molecule
to dissociate as shown in Equations (3) and (4):

O3 + hν(λ > 290 nm)→ O2 + O (3)

O + O3 → 2O2 (4)

This set of processes is called the Chapman cycle [7].
A dynamic equilibrium is formed in which ozone is formed and destroyed, consuming

most of the wavelength radiation less than 290 nm. Thus, ozone acts as a filter that does
not let harmful radiation pass through to the Earth’s surface [8].

In accordance with [7], due to stratospheric winds, ozone is transported from tropical
to polar regions. Thus, the closer human beings live to the equator, the less ozone will
protect them from ultraviolet light.

The ozone balance in the stratosphere is affected by the presence of pollutants known
as ozone-depleting substances, such as, among others, chlorofluorocarbons (CFCs), which
rise to the upper atmosphere and catalyze the destruction of ozone faster than it is gener-
ated, thus producing a hole in the ozone layer [9].

1.2. Tropospheric Ozone

Tropospheric ozone, also called environmental ozone, is a colorless gas that is mainly
created through photochemical reactions of nitrogen oxides (NOx) and volatile organic com-
pounds (VOCs) [10]. Additionally, soil and plants emit NOx and VOCs (biogenic sources) [11].

O3 is formed through reactions caused by sunlight. The phenomenon by which
precursors are emitted and accumulated through reactions necessary for the formation of
ozone to occur is called photochemical smog [12]. Smog episodes are the main production
process for tropospheric ozone [13]. It is the most important oxidant present in the lower
levels of the atmosphere, making it a potentially dangerous compound due to its ability
to react with most compounds, degrading them. In addition, this affects both materials
and living things that are affected by its action, externally but also internally, in the gas
exchange that takes place when breathing, which is the main way humans are affected by
ozone pollution. The response also varies greatly between individuals for genetic reasons
(antioxidant capacity of cells), age (children and the elderly are the most sensitive groups),
and the presence of respiratory conditions (allergies and asthma) [14].

When the ozone concentration is high, it is not advisable to do physical exercise,
especially in the central hours of the day, since it increases the breathing rate and increases
the entry of ozone into the lungs [11,14]. In regards to vegetation, a high level of ozone
damages the leaves, reduces plant growth, and leads to a lower crop yield [11,14]. In the
vicinity of the sources (cities, roads, and industries), fresh emissions can react with ozone
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and locally reduce its concentration; nitric oxide emitted into the air locally by automobiles
removes ozone carried from other parts [3]:

NO + O3 → NO2 + O2 (5)

where NO is nitric oxide and NO2 is nitrogen dioxide. However, at a certain distance, the
photochemical formation of O3 is reactivated, which is why the concentrations of O3 are
normally low in industrial centers and urban areas. On the other hand, in rural areas and
in the outskirts of urban areas, the concentration is higher [11].

The photochemical formation of ozone does not occur during the night, because there
is no sunlight [11]. In addition, during the day, the maximums of O3 concentrations occur
from noon, when the radiation is highest; regarding the time of year, the maximums occur
during the spring and summer months.

The World Health Organization [15] has established that when the ozone concentration
in the air that is breathed is higher than 240 µg/m3 and is maintained for more than 8 h,
there is a probability of significant health effects [16].

To synthesize ozone, a machine called an ozone generator or ozonizer is used, in
which a high electrical voltage known as the corona effect is generated, which produces
ozone from O2 [17]. The ozone generation has application in the elimination of bad odors
and disinfection of the air, in the treatment and purification of water, and in ozone therapy.

What has been mentioned in the previous paragraphs provides a justification for
carrying out a robust analysis [18–20] of the information given by ozone measuring systems,
so that we can be able to describe with high precision the behavior of ozone concentration
in cities, even when there are a large number of extreme observations and the data under
study follow heavy-tailed distributions [19,21]. This last aspect has become a bottleneck
because many times the outliers represent the response of the physical system to certain
types of inputs. Therefore, these values are carriers of useful information and should not be
eliminated, but must be treated appropriately in order to understand what they are telling us
about the system from which they come. It is for this reason that the robust data analysis gains
strength and shows a highly precise way to explain the behaviors of air pollution variables,
even when they come from heavy-tailed distributions with a large number of outliers.

The aforementioned, applied to the analysis of ozone concentration in urban areas,
constitutes one of the contributions of the research presented in this paper.

The robust analysis of the concentration of ozone at Belisario air quality monitoring
station, which is in Quito, Ecuador, is the foremost objective of this research. This analysis
is carried out from 1 January 2008 to 31 December 2019 [22,23].

Quito was chosen because of the effect of this city’s vehicular traffic, poor fuel quality,
and traffic jams on air pollution levels. Furthermore, there are other factors in the city that
could increase air pollution levels, such as industrial zones and population growth [23].

The design of a sensor-based system aimed at measuring and georeferencing at-
mospheric variables, including ozone, is presented in [24]. In addition, a low-cost air
quality monitoring station was presented in [25], where the authors proposed a calibration
procedure based on artificial intelligence techniques. Furthermore, another air quality
monitoring system was presented in [26], which employed a Zigbee network to improve
the network layout. Additionally, a long short-term memory (LSTM) network was used
in [26] to predict the urban air quality pollution period. Moreover, O3 and seven other
indicators were used in [26] to qualitatively validate the experiential knowledge of the
authors; to allow cells to have long-term memory, the hidden layer of recurrent neural
network cells was replaced by LSTM cells.

A meta-analysis of ground-level ozone pollution was carried out in [27]. This analysis
was performed to find the similarities and differences between the risk of asthma aggrava-
tion and ground-level ozone exposure measurements. In [27], three different time periods
(i.e., 1-h daily maximum, 8-h daily maximum, and 24-h average concentrations) were used.
In addition, the meta-analysis performed in [27] was carried out using pooled relative
risks, 95% confidence intervals, and random-effects models [28]. Additionally, in order
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to achieve robustness in the results, subgroup and sensitivity analyses were conducted
in [28]. Moreover, the Cochrane Q statistic and I2 estimation [29] were used to measure
heterogeneity and inconsistency in the meta-analysis. Furthermore, in order to test whether
there was publication bias, the authors made use of a funnel plot and Egger’s test [30].

In [31], a study was carried out in 48 cities of China from 2013 to 2017. In that study,
time-series analyses were conducted and the authors used a generalized model combined
with a random effect model to estimate ozone levels. Another time-series study was
performed in [32] in 184 cities of China from 2014 to 2017. Additionally, in [32], the
relationship between patients due to pneumonia and ozone concentration was found by
using a generalized additive model, and the authors provided robust proof of the existence
of a relationship. The robustness of the relation was tested by fitting two-pollutant models.

A 10-year study on the relationship between particulate matter and ozone exposure
(PM and OE), and a depression and anxiety diagnosis (DAD) in Saxony, Germany, was
conducted in [33]. In that research, the data used for the analysis corresponded to the
information collected from 2005 to 2014. In [33], the analysis was performed by using
generalized estimating equations [34], and the robust metric was the number of days
for which the maximum value of the 8-h average ozone concentration was greater than
120 µg/m3. Additionally, two-pollutant models were built and a sensitivity analysis was
carried out, aimed at studying the relationship between PM and OE and DAD.

The reasons why there was a high ozone concentration in Chengdu, China in July
2017 were studied in [35]. In order to perform such a study, both measurements and air
quality simulations were used. Additionally, in order to identify the VOC sources and
perform the quantification of these sources, positive matrix factorization [36–38] was used.
Moreover, in [35], the impact of physical and chemical processes on ozone concentrations
was analyzed by the integrated process rate method [39–41].

In various situations in which it is intended to study the behavior of air pollution
variables, researchers face the problem that these variables either do not follow a Gaussian
distribution or do not follow any known parametric distribution. Therefore, classical
statistical inference methods cannot be used for data analysis and nonparametric statistical
inference must be used. For example, both Mann–Whitney U and Kruskal–Wallis tests [42,
43] were applied in [44] to analyze vehicle emissions. In [44], 1000 vehicles were tested in
order to find significant differences between the mean emissions of air pollutants. Other
instances of authors using robust techniques to analyze the concentration of air pollutants
are presented in [45–54].

In this research, the measurement results of 12 years of tropospheric ozone concen-
tration were analyzed using robust techniques. The urban area chosen for the study was
Belisario station [22], and robust statistics [18–20] were used in this research to deter-
mine the robust central tendency and scale estimations of tropospheric ozone and find
parametric, nonparametric, and robust confidence intervals that explain the O3 concentra-
tion [18–20,42,43]. The O3 concentration measurements that were analyzed in this paper
were taken from 1 January 2008 to 31 December 2019.

The analysis presented here allowed us to judge the central tendency of the data
based on the variability. Here, the data were grouped and classified, and similarities
and differences were determined. Moreover, confidence intervals were used to do the
aforementioned classification and several methodologies were used to analyze the data:
classic, nonparametric, bootstrap, and robust methodologies.

In [23], another analysis of air pollution variables in Quito is presented. However, the
analysis performed in [23] is not robust and, what is more, it is only based on the mean and
maximum values. For this reason, the study performed in this research can be considered
essential to comprehensively understand, in a formal and rigorous manner, the behavior of
tropospheric ozone at Belisario monitoring station.

In this paper, in order to perform robust data analyses, each year under study was
considered as a random variable. Additionally, it was shown that the distribution of these
variables was heavy-tailed [19,21]. The concentration of other air pollution variables in
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Quito was robustly analyzed in [47–51]. Furthermore, in [55,56] some robust estimators
were also used. Additional research in which statistical tools have been used to analyze the
O3 concentration are as follows.

A pollution weather prediction system was proposed in [57] and used to measure O3
among other pollutants. In [57], in order to carry out predictions, linear regression and
artificial neural networks were used.

An air quality monitoring network aimed at analyzing the changeable nature of
ozone across several communities of California, USA, was shown in [58], where the mean
absolute error was used to analyze O3 concentrations and the accuracy of measurement
nodes and their correlation to reference instrumentation was indicated by using least
squares regression. Moreover, summary statistics based on the mean, standard deviation,
minimum, maximum, mean bias deviation, mean absolute deviations, and ordinary least
squares statistics were used in [58] to present the data in a meaningful way.

In order to produce well-calibrated data, both multiple linear regression and nonlinear
techniques were used in [59]. Additionally, a recalibration was done to mitigate the bias
presented by the sensors and improve the variance.

A low-cost air quality monitoring system was presented in [60]. This system was
aimed at monitoring O3, among other pollutants, and a comparative analysis between a
neuro-fuzzy system and a multilayer feed-forward perceptron was performed.

Finally, a statistical analysis of ensembles of O3 profiles at the P. N. Lebedev Physical
Institute, Moscow, Russia from 1996 to 2017 was carried out in [61]. This analysis was based
on radiometric ozone monitoring and several statistical parameters were calculated: mean,
variance, root-mean-square error, probability density function, probability distribution
function, covariance function, correlation function, and frequency spectra.

The contribution of the present research with respect to the studies mentioned above
is that, in order to optimize the sampling process to reduce power consumption in cases
where researchers use portable devices powered by a battery, variables have been defined
that represent the hours of the day in which the ozone concentration is the highest. This
was done for both hours grouped by months and hours grouped by days of the week,
separating working days from weekends, and it was shown that all the variables considered
were different. For example, what happens in a particular month has nothing to do with
what happens in other months. Therefore, it is difficult to make predictions since the
distributions of the variables are different. Specifically, the variables do not come from the
same statistical populations. Therefore, it is shown here that using robust methods is more
effective than using nonrobust ones.

The objectives of this paper were as follows:

1. Compare the values of tropospheric ozone measurements based on four sets whose
elements are variables that represent the following: (a) the 12 years under study,
(b) the months: January to December, (c) the days: Monday to Sunday, and (d) the
hours in pairs: from 0:00–1:00 to 22:00–23:00.

2. Analyze the behavior of the abovementioned variables in comparison with the differ-
ent categories of air pollution established by the IAQ of Quito [23].

3. Estimate the data’s central tendency and variability, and quantify differences using
robust and nonrobust confidence intervals.

In this paper, it is shown that for the data under study, the trend of tropospheric ozone
concentration at Belisario station has been towards stability for years, very variable by
months and during the day, and moderately changing between the days of the week.

Some general comments on ozone sensors are made in Section 2. Section 3 describes
the data and presents summary statistics on the collected data. Furthermore, nonparametric
statistical inference is used in Section 4 to classify the data. Moreover, Section 5 is a robust
data analysis and classification, and Section 6 is the discussion. Finally, Section 7 presents
the conclusions of the paper.
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2. Some General Comments on Ozone Sensors: Characteristics and Considerations of
Signal Conditioning and Processing

In terms of low-cost O3 measurements, the electrochemical (EC) sensor technology and
the heated metal oxide sensor (HMOS) technology are at the vanguard [62]. Furthermore,
the ultraviolet absorption principle-based analyzer is a well-known method for conducting
O3 measurements. However, the cost of O3 analyzers is prohibitive [62].

In this research, O3 measurements were carried out using THERMO 49C/49i photo-
metric O3 analyzers [63,64], which are used as measurement standards in several countries
(e.g., these instruments are designated by the United States Environmental Protection
Agency as a reference [65]). The principle of operation of the models 49C/49i is based on
the fact that, at a wavelength of 254 nm, O3 molecules absorb ultraviolet light.

The Beer–Lambert Law explains this type of absorption [63,64]. In short, a sample is
introduced into the equipment and divided into two gas streams. After passing through an
O3 scrubber, one gas is used as the reference and sent to a solenoid valve. The other gas
that is not sent to the O3 scrubber is used as the sample gas and sent to another solenoid
valve. Next, the reference gas and sample gas are deposited into two different cells and
detectors are used to measure the ultraviolet light intensity of each cell. During the process
of switching the sample gas, which is contained in one cell, and the reference gas, which is
contained in the other cell, ultraviolet light intensity measurements are not performed until
the two cells are flushed. Finally, both the O3 concentration of each cell and the average
concentration are calculated [63,64].

With regard to low-cost O3 measurements, the principle of operation of EC and HMOS
sensors is explained in [62]. Some of the strengths of EC sensors are as follows [62]: low
power consumption, good repeatability and accuracy, and linear response, among others.
On the other hand, some weaknesses of these sensors are that their readings can be affected
by humidity and changes in temperature, they have a limited life, and their aging process
is fast [62].

Furthermore, some of the strengths of HMOS sensors are as follows [62]: long life,
very responsive to O3 levels below 0.1 ppm, and excellent repeatability and accuracy. On
the other hand, some weaknesses of these sensors are that their response time is slower
than that of EC sensors, they require higher power consumption than EC sensors, and the
linearity is reduced above 1 ppm [62].

In addition, when health and safety monitoring below 0.1 ppm is required, HMOS
sensors can be used. However, when this monitoring is needed above 0.1 ppm, then EC
sensors can be used. Moreover, EC sensors can be used to detect O3 leaks, in controlling
alarms and in O3 generators (above 0.1 ppm). Additionally, HMOS sensors can be used
in O3 control applications below 0.1 ppm, when portable monitoring below 0.1 ppm is
needed, and to measure ambient O3 concentrations [62].

For the purpose of this research, in order to determine real-time O3, a cumulative
gas sensor is shown in [66]. Such a sensor used visible spectroscopy, which was based on
cheap material, and was aimed at carrying out O3 measurements in workplaces using a
portable device.

At 600 nm, the abovementioned sensor showed high sensitivity at low O3 concen-
trations, and good reproducibility and stability. In addition, a review of deep ultraviolet
absorption applied to gas sensing is presented in [67], and a discussion of applications of
ultraviolet absorption spectrometry for O3 and other air pollutants is given in [67].

The performance of EC sensors is studied in [68], and it is shown that devices based
on these sensors can be built and used at both lower cost and power consumption than
conventional O3 monitoring devices.

A review of gas and dissolved ozone sensors are presented in [69]. The different princi-
ples of operation of the sensors mentioned in [69] are based on the following: amperometric
measurement methods, impedimetric measurement methods, and optical measurement
methods. Moreover, this review was done in order to establish the requirements that these
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sensors must meet in order to be used in medical applications. Ozone has also found a
large number of applications in the search for solutions to SARS-CoV-2/COVID-19 [70,71].

Furthermore, another review of absorption spectroscopy-based O3 sensors is given
in [72]. In that paper, sensor applications, performance, limitations, and costs are discussed.
Additionally, requirements such as accuracy, dynamic range, response, sensitivity, and
cross-sensitivity are discussed for several specific applications.

However, it is not enough to design a sensor that measures the value of a certain
physical quantity; this measurement must also be as robust as possible against disturbances
and unwanted information. In this sense, several authors [66,67] are also concerned about
the robustness that the sensors could have and are aware of the limitations of the sensor
as an isolated element. Therefore, to achieve a good design of measurement equipment,
it is necessary to put the sensor inside a signal conditioning and processing system that
is capable of dealing with everything that represents noise, disturbance, and unwanted
information [73]. Additionally, the stage of signal conditioning and processing must
transform the sensor signal in such a way that it meets the design requirements of the
measuring system.

It must be added that sometimes the systems that are designed to optimally solve
the problem of conditioning and processing the signal from the sensors are not causal
systems [74]. Therefore, it is necessary to resort to advanced design tools to make these
systems realizable. However, the more one tries to design an optimal and robust system,
the more complex and expensive the final design becomes. Therefore, it is recommended
to establish a tradeoff between the desired performance of the signal conditioning and
processing system and what can physically be achieved satisfactorily. Once this tradeoff is
established, engineers and researchers can later use other analysis tools that allow them
to robustly extract the relevant information from the signal under study. In general, in
this last stage, the analysis of the information is carried out after the measuring system
delivers the results to the user. Then, with the measurement results at hand, researchers
and engineers focus on studying the characteristics of the data, the modeling, and the
possibility of predicting the behavior of the physical quantity under study. In some cases,
the aforementioned is done in order to design a robust feedback control system [75].

In this research, THERMO 49C/49i photometric O3 analyzers were used to carry out
the ozone measurements and, in order to extract the most important information from the
measurement results, robust analysis methods were proposed. The proposed methods
allowed us to classify and categorize variables that represented sets of ozone measurements,
which were taken over hours, days, months, and years. Figure 1 shows the system diagram.
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The type of analysis of ozone measurements developed in this paper could serve
as a starting point for design procedures that allow researchers to examine in detail the
behavior of ozone in different parts of a city.

3. Data Description and Summary Statistics of Tropospheric Ozone Measurements at
Belisario Station

Here, the ozone measurements were taken using THERMO 49C/49i photometric O3
analyzers. The sampling rate was 1 h [23], which would imply that 105,193 data points
were obtained. However, some observations could not be recorded because the data were
not stored. The database was improved to take this circumstance into account, so it was
possible to work with more than 96% of the data. In this way, it was guaranteed that more
than 75% of the data were used for the analysis [76].

Due to the fact that the geographical and meteorological characteristics of Quito are
adequate to have high insolation, the highest tropospheric ozone concentrations occur in
August and September [23]. In addition, the months of the year that are either close to the
equinox or correspond to the equinox are the abovementioned months, which are months
in which the skies are clear. On the other hand, the months with the lowest tropospheric
ozone concentrations in Quito are May and June, which are the months in which there are
the most days with cloudy skies and rain [23].

In order to find possible relationships between the data, the following variables
were considered:

• Xk, k = 1, · · · , 12, where X1 = 2008, X2 = 2009, . . . , X12 = 2019.
• Yk, k = 1, · · · , 12, where Y1 = January, Y2 = February, . . . , Y12 = December.
• Zk, k = 1, · · · , 7, where Z1 = Monday, Z2 = Tuesday, . . . , Z7 = Sunday.
• Wk, k = 1, · · · , 12, where W1 = 0 : 00–1 : 00, W2 = 2 : 00–3 : 00, . . . , W12 = 22 :

00–23 : 00.

In order to summarize the observations, Table 1 shows some summary statistics. In
addition, Figure 2a shows a multiple box plot of the variables Xk, k = 1, · · · , 12. In this
figure, a separation between air pollution levels due to O3 concentration in Quito [23] is made
by using dashed vertical lines. These levels in µg/m3 are as follows: Desirable = [0, 50);
Acceptable = [50, 100); and Caution = [100, 200).

Table 1. Summary statistics: ozone observations.

Year
(Variable) Count

Mean of
the

Variable(
µg/m3)

Median
of the

Variable(
µg/m3)

Standard
Deviation of
the Variable(

µg/m3)
Skewness

of the
Variable

Kurtosis
of the

Variable

Minimum
Value of

the
Variable(
µg/m3)

Maximum
Value of

the
Variable(
µg/m3)

Outliers
of the

Variable
(%)

2008 (X1) 8741 19.2240 12.740 19.0235 1.1341 3.6247 0 102.12 1.60
2009 (X2) 8371 22.1576 16.050 20.5857 0.9860 3.4136 0 124.54 0.79
2010 (X3) 8447 21.8439 14.520 21.6142 1.2647 4.3375 0 134.08 2.12
2011 (X4) 8392 19.3263 13.400 18.3904 0.9742 3.1587 0 98.89 0.54
2012 (X5) 8484 20.1288 15.160 18.1590 0.8699 3.0665 0 128.08 0.40
2013 (X6) 8277 21.0235 16.290 18.5324 0.7868 2.8418 0 106.31 0.28
2014 (X7) 8506 21.3930 16.515 18.6472 0.7817 2.7286 0.13 92.57 0.24
2015 (X8) 8509 23.6667 19.770 20.0291 0.9794 4.1337 0.04 131.68 0.92
2016 (X9) 8384 22.6818 16.700 21.0013 0.9370 3.1916 0 121.22 0.63
2017 (X10) 8448 19.5031 13.875 17.9236 1.0155 3.4485 0.34 110.46 0.90
2018 (X11) 8405 21.6929 15.380 20.4016 0.9974 3.3810 0 129.17 0.76
2019 (X12) 8413 25.7776 21.470 20.7732 0.7496 2.8240 0 113.89 0.32

Total 101,107 21.5345 15.940 19.7131 0.9832 3.4724 0 134.08 0.80
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Figure 2. Multiple box plots of the variables (a) and moving averages (b–d) n the box plot diagrams, the red circles represent
the outliers and, according to the IAQ of Quito [23], the vertical dashed lines indicate the following intervals of levels of air
pollution in µg/m3 due to O3 concentration in Quito: Desirable = [0, 50); Acceptable = [50, 100); and Caution = [100, 200).

In all the variables shown in Figure 2a, the following comparisons can be made: mean
> median, skewness > 0, and kurtosis > 2.7. Furthermore, kurtosis > 4 in both 2010 and 2015.
All of the aforementioned indicates that the distributions of Xk, k = 1, · · · , 12, are heavy-
tailed [19,21], or that these variables can be considered due to the existence of a mixture of
distributions. In addition, in Figure 2a it can be seen that each year presents observations
above the desirable level. Additionally, it is observed that abnormally high observations are
present almost every year, although the percentage of such observations does not exceed
2.2%. Moreover, it is observed that the desirable level is always far exceeded, although
the average does not exceed these values by much. All this confirms, once again, that the
samples do not come from a normal distribution.

The moving averages (MAs) [77,78] of all years are shown in Figure 2b, the MAs of
the years from 2008 to 2013 are shown in Figure 2c, and the MAs of the years from 2014 to
2019 are shown in Figure 2d. In this research, the size of the moving average MA was equal
to 720, which represents the number of samples that can be taken in a month, assuming
that each month has a duration of 30 days. The graph of MAs of all years indicates a stable
concentration of O3. Furthermore, the maximum and minimum are reached in the third
and second quarters, respectively. This corroborates the findings of [23]. Additionally,
it is observed that when the observations are smoothed, none of the values fall outside
the interval of desirable air pollution values. Therefore, the overcoming of this level is in
specific moments and, when this occurs, it does not take place in a sustainable way.
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The analysis performed by months, days, and hours confirmed the previous conclu-
sions. Figure 3a–c shows that the observations have heavy-tailed distributions. In addition,
Figure 3a shows that the O3 concentration is lowest in the summer months, although the
maximums occur in September and October. There do not appear to be any differences in
O3 concentration when the analysis is carried out by days (see Figure 3b). Furthermore,
Figure 3c shows that the O3 concentration grows slightly at noon and that there are a lot of
abnormally high observations in all time slots.
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Figure 3d–f shows that the months, days, and hours have similar behavior throughout
the years. In short, if the O3 concentration values are higher or lower in any period of a
particular year or day, something similar occurs for the rest of the years. In the case of the
analysis by days (see Figure 3e), more noticeable periodic behavior appears. Moreover, it is
possible that the periodic behavior observed in Figure 3e also manifests itself in Figure 3d,f.
Therefore, it is likely that the samples come from a variable that presents behavior patterns
that repeat every certain time interval. However, the frequencies of the possible oscillations
that can be seen in Figure 3d–f seem to be neither the same nor integer multiples of the
others. Additionally, it does not seem that some frequencies are rational multiples of others.
Therefore, it can be said that this type of signal could have characteristics that are typical of
variable frequency signals, among other things. The mathematical modeling of this type of
signal belongs to different research that is not part of the objective of this paper.

In this research, different transformations of variables were made [79], because classi-
cal statistical inference methods could not be used. The previous paragraphs have shown
that the data distribution was not normal. Nevertheless, this strategy did not give satisfac-
tory results, because the data of the years could only be fitted to heavy-tailed distributions.

Furthermore, in order to analyze the ozone concentration by months, weeks, and
hours, several transformations of variables were also attempted, and some transformations
of a very few variables produced adjustments close to the logistic or normal distributions.
However, when these changes were attempted for the rest of the variables of the same type,
it was not possible to achieve distributions that were not heavy-tailed.

Therefore, the aforementioned was the motivation for using both nonparametric
statistics and robust statistics to perform the type of data analysis presented in this paper.

4. Nonparametric Analysis

In this paper, after having found that there was almost no linear correlation between
samples, it was concluded that they came from linearly independent variables. In addition,
the samples were compared with each other by making use of the Wilcoxon signed-rank
test (WSRT) [43]. Here, Me = M0 was the null hypothesis (H0), where Me stands for the
median; the alternative hypothesis (H1) was Me 6= M0. Specifically, if H0 is true and
observations behave in a stable manner, then half of the observed values are less than M0.

In the case under study, at the (1− α) confidence level [43], the nonparametric
confidence intervals should be as follows: P

(
X(k′α/2)

< Me < X(kα/2)

)
= 1 − α, where

k′α/2 = N/2 + 0.5− zα/2
√

N/4, kα/2 = N/2 + 0.5 + zα/2
√

N/4, N is the sample of length,
and, at (1− α)/2, zα/2, depends on the normal distribution [43,79].

The limits of the confidence intervals are shown in Table 2, and Figure 4 shows a
graphical representation of these intervals. From the analysis of Table 2 and Figure 4, we
see that no trend in the concentration of O3 is clear. It can be seen that there were three
years, 2008, 2011, and 2017, that seemed to have lower O3 concentrations. However, there
is an overlap of intervals with all the years, with two exceptions: 2015 and 2019. These two
years have higher O3 concentration levels than the rest of the years, especially 2019. In
addition, 2015 and 2019 are different from each other. On the other hand, the widths of the
confidence intervals have no significant differences. Moreover, it is verified once again that
the desirable level of air pollution [23] was exceeded.

Furthermore, Figure 4 shows that the data can be grouped into three categories. One
formed by the variables X8 (corresponding to 2015), another formed by the variable X12 (cor-
responding to 2019), and the third formed by the rest of the years. The WSRT [43] showed
that the variables’ median homogeneity was the same as that obtained using nonparametric
confidence intervals, although with some small differences because p-values [43] greater
than 5% were considered. For example, X1 is significantly different from the distribution of
X3, but not different from X4. Moreover, X3 is also not significantly different from X4.
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Table 2. The 95% confidence intervals (CI0.95): median.

Variable (Year) Lower Limit of the CI0.95(
µg/m3) Upper Limit of the CI0.95(

µg/m3)
X1 (2008) 12.20 13.29
X2 (2009) 15.44 16.69
X3 (2010) 13.95 15.18
X4 (2011) 12.74 13.95
X5 (2012) 14.62 15.81
X6 (2013) 15.69 17.00
X7 (2014) 15.81 17.28
X8 (2015) 19.02 20.41
X9 (2016) 16.05 17.47
X10 (2017) 13.22 14.44
X11 (2018) 14.75 16.10
X12 (2019) 20.85 22.24

Sensors 2021, 21, x FOR PEER REVIEW 13 of 33 
 

 

 

Figure 4. The 95% confidence intervals. Nonparametric intervals for the median: 𝑋1 =

2008, … , 𝑋12 = 2019. The separation of categories is carried out using horizontal dashed lines. 

For the nonparametric analysis of the months (see Figure 5a), seven categories were es-

tablished. In this case, the use of the nonparametric intervals and the WSRT yielded the same 

results. According to the months, the level of O3 concentration seems to be a periodic signal. 

At the end of summer, the ozone concentration levels are the highest, when there is less activ-

ity in the city, and these levels reach their minimum value in May. In addition, a stabilization 

occurs between the first and last months of the year, and between May and November a re-

bound occurs and the stabilization level is reached. Additionally, the nonparametric confi-

dence intervals’ amplitude was directly proportional to the value of the median. 

Figure 5b shows that, when analyzing the weeks, the concentration of O3 increased 

notably on the weekends and continued to decrease on weekdays. In this case, the WSRT 

and the nonparametric intervals yielded the same results. Furthermore, the width of the 

nonparametric confidence intervals was directly proportional to the value of the median. 

Finally, in the analysis of hours (see Figure 5c), the level of O3 concentration reached 

its maximum value, close to 50 μg m3⁄ , around 12:00. For the rest of the hours, the con-

centrations were close to 5 μg m3⁄  around 7:00 and around 22:00. Moreover, there were 

more categories than for the analysis of the days of the week, because between states of 

high concentration and low concentration there were transition variables. Between 22:00 

on the current day and 7:00 on the following day, the O3 concentration remained stable, 

with minor changes. 

Figure 4. The 95% confidence intervals. Nonparametric intervals for the median: X1 = 2008, . . . ,
X12 = 2019. The separation of categories is carried out using horizontal dashed lines.

For the nonparametric analysis of the months (see Figure 5a), seven categories were
established. In this case, the use of the nonparametric intervals and the WSRT yielded the
same results. According to the months, the level of O3 concentration seems to be a periodic
signal. At the end of summer, the ozone concentration levels are the highest, when there is
less activity in the city, and these levels reach their minimum value in May. In addition,
a stabilization occurs between the first and last months of the year, and between May
and November a rebound occurs and the stabilization level is reached. Additionally, the
nonparametric confidence intervals’ amplitude was directly proportional to the value of
the median.

Figure 5b shows that, when analyzing the weeks, the concentration of O3 increased
notably on the weekends and continued to decrease on weekdays. In this case, the WSRT
and the nonparametric intervals yielded the same results. Furthermore, the width of the
nonparametric confidence intervals was directly proportional to the value of the median.
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Finally, in the analysis of hours (see Figure 5c), the level of O3 concentration reached
its maximum value, close to 50 µg/m3, around 12:00. For the rest of the hours, the
concentrations were close to 5 µg/m3 around 7:00 and around 22:00. Moreover, there were
more categories than for the analysis of the days of the week, because between states of
high concentration and low concentration there were transition variables. Between 22:00
on the current day and 7:00 on the following day, the O3 concentration remained stable,
with minor changes.

5. Robust Analysis

The analysis carried out in this section is based on robust statistics, which are not
sensitive to extreme observations. As a consequence, the estimations of the data distribution
and dispersion performed in this section had little sensitivity to the influence of extremely
high or low observations [18–20]. In addition, the foremost objective of this section is to
analyze the observations by using these estimations.

Furthermore, in order to prevent robust estimators from being affected by extreme
observations, the influence curve [80] is used to characterize the robust statistics of this
paper. Moreover, the order sample statistics [43] is used to obtain the robust estimators
found in the paper.

5.1. Location and Scale Estimators

Location estimators [18–20,81]. TM: Trimean; Twa(c): Andrew’s wave; T(α): α-trimmed
mean; Tbi(c): Biweight; and W(α): α-winsorized mean.
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Scale estimators [18–20,80,82,83]. sx: Sample standard deviation; MAD: Median absolute
deviation; MADmean: Mean absolute deviation; sW(α): Winsorized standard error; SRH:
One-half of the fourth-spread; sωa(c): Andrew’s wave; Cα

n: Estimator based on a subrange;
LMS: Least median squares; and Sbi(c): Biweight.

Tables 3 and 4 show the point estimates of location and scale, respectively. In addition,
the above estimators are graphically represented in Figure 6.

Table 3. Estimates of the location of the observations: point estimates
(
µg/m3).

Year (Variable) Mean Me TM T(0.2) T(0.3) W(0.2) W(0.3) Twa(2.4π) Tbi(9)

2008 (X1) 19.2240 12.7400 14.8475 20.2708 18.3577 16.4755 14.5822 17.2095 16.7942
2009 (X2) 22.1576 16.0500 17.9700 23.2451 21.8878 19.4422 18.0712 20.7875 20.4229
2010 (X3) 21.8439 14.5200 16.9025 23.1257 20.4529 18.6331 16.8467 19.4255 19.0174
2011 (X4) 19.3263 13.4000 15.4825 19.9706 20.4038 16.9701 15.3045 17.9404 17.5358
2012 (X5) 20.1288 15.1600 16.6900 21.7689 21.8030 17.8895 16.7320 19.1783 18.8911
2013 (X6) 21.0235 16.2900 17.9100 22.4651 21.4295 19.0371 17.9505 20.2210 19.9591
2014 (X7) 21.3930 16.5150 18.0950 23.7089 22.5498 19.3308 18.0997 20.5514 20.2711
2015 (X8) 23.6667 19.7700 20.7250 25.1945 25.4667 21.4437 20.6082 22.7003 22.5663
2016 (X9) 22.6818 16.7000 18.4675 23.3377 22.2582 19.9581 18.4120 21.4043 21.0557
2017 (X10) 19.5031 13.8750 15.7275 20.5899 20.5212 17.1472 15.6978 18.1965 17.8385
2018 (X11) 21.6929 15.3800 17.4650 23.1852 22.0576 18.9715 17.2909 20.2167 19.8159
2019 (X12) 25.7776 21.4700 22.6300 27.7630 26.9957 23.5995 22.5443 24.9686 24.7720
All years 21.5345 15.9400 17.7425 21.3231 21.3523 19.0408 17.6475 20.2792 19.9625

Table 4. Estimates of the scale of the observations: point estimates
(
µg/m3).

Year (Variable) sx MADmean MAD SRH LMS sW(0.2) swa(2.4π) sbi(9) C0.2
n

2008 (X1) 19.0235 15.5054 10.780 13.385 6.370 13.0238 17.8466 18.0195 14.4307
2009 (X2) 20.5857 17.0561 13.560 15.670 8.025 14.6313 20.2597 20.3431 18.3482
2010 (X3) 21.6142 17.4023 12.260 15.185 7.220 14.4179 19.6660 19.9031 16.2346
2011 (X4) 18.3904 15.2864 11.460 13.955 6.700 13.2390 18.1400 18.2282 15.2142
2012 (X5) 18.1590 15.1994 12.710 14.170 7.580 13.2382 18.2522 18.2864 17.4007
2013 (X6) 18.5324 15.6567 13.600 15.070 8.145 13.9860 18.8507 18.8497 18.5486
2014 (X7) 18.6472 15.7440 13.445 14.855 8.185 13.9803 19.0047 19.0099 18.2571
2015 (X8) 20.0291 16.4902 14.990 15.600 9.805 14.4142 19.5946 19.5970 21.1724
2016 (X9) 21.0013 17.4754 14.190 16.105 8.350 15.1890 20.8681 20.9305 19.6236
2017 (X10) 17.9236 14.8651 11.445 13.500 6.720 12.8552 17.5676 17.6466 15.2871
2018 (X11) 20.4016 16.9178 12.990 15.570 7.690 14.5733 20.0564 20.1505 18.0931
2019 (X12) 20.7732 17.4184 15.750 16.570 10.695 15.4182 21.0559 21.0423 21.9559
All years 19.7131 16.3365 13.210 15.095 7.970 14.1425 19.4223 19.4884 17.9655
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In Figure 6a, according to the location estimates, the ozone concentration is stable,
with two increases in 2015 and 2019; the rise occurring in 2019 is more pronounced. It is
interesting to see that the 0.2-trimmed mean and the median are the boundaries of the
location measures.

In Figure 6b, according to the scale estimates, the standard deviation and the LMS
point estimator are the boundaries of the scale measures, with the biweight midvariance
being very similar to the Andrew’s wave.

Likewise, it is noteworthy that the scale estimates are quite stable for each estimator
and very large compared to the location estimates. These estimates indicate great variability
in the O3 concentration measurements, which, on the one hand, have few outliers, but, on
the other, have many high observations compared to the center of the distribution. What
was said previously was already appreciated when analyzing Figure 2a.

So that the O3 concentration analysis could also be carried out over periods of time
that are representative of the daily activity of human beings, we decided to repeat what was
done previously for the analysis of the years, but this time to analyze the O3 concentration
by months, days, and hours. Figure 7 shows graphical representations of the new estimates.

The location estimates of the variables of the months (see Figure 7a) are all very similar
to each other; the higher the value of the estimate, the more similar these estimates are.
Additionally, the scale estimates are very stable (see Figure 7d). The boundaries of these
estimates are sX and C0.2

n (upper boundary) and the LMS point estimator (lower boundary).
Furthermore, despite having few outliers, the variability is high because the value of the
scale estimates cannot be discarded.

Figure 7b shows that the O3 concentrations increase on the weekends, keeping the
location estimates stationary. The O3 concentration during the weekend is higher than
during the first days of the week. All estimates are bounded by the median and the mean.

Figure 7e shows that the scale estimates evolve in parallel in a band of values. It is
notable that the lower bound of all these estimates are the estimates given by the LMS
point estimator, just as it happens in Figure 7d,f. In other words, the LMS scale estimates
are much lower than the other estimates. Furthermore, the biweight, standard deviation,
and Andrew’s wave values are very high. This result suggests that there is high variability
without the need for extreme observations to be all outliers because the biweight and the
Andrew’s wave are robust.

In the day location estimates (see Figure 7c), from 7:00 there is a very abrupt rise in the
concentration of O3 until noon, going from 5 µg/m3 to about 48 µg/m3. Afterward, there
is also a very pronounced drop until 20:00, which is when the commercial activity ends.
For the rest of the hours, the O3 concentration is similar, remaining at very low levels.

Regarding the scale estimates of the hours of the day (see Figure 7f), these estimates
have a behavior similar to that of the other variables. In short, the boundaries of these
estimates are the standard deviation and the LMS estimator. In general, these scale estimates
appear to differ from each other in a constant and the increase is related to the increase in
the location estimate.

Finally, it is worth mentioning that the same pattern seems to be followed by the
months, weeks, and hours. We observed that, for each variable, the curves grew and de-
creased at the same time. Furthermore, we observed that the more the ozone concentration
increased, the more the variability increased, and vice versa.
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5.2. Confidence Intervals

In this research, the confidence intervals were built using the methodology explained
in [48–50], which is in accordance with [84,85]. These intervals allowed us to perform the
variable classification and categorization and recognize similarities and differences. The
intervals are as follows:

•
(
X, sx

)
, where X is the mean

• (Me, MAD), where Me is the median
• (Me, IQR), where IQR is the interquartile range
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•
(
T(α), sW(α)

)
• (Twa(c), swa(c))
• (Tbi(c), sbi(c)).

In addition, other confidence intervals were built by using a bootstrap method [20,49,50].
As a result, eight confidence intervals were built: one classic, one bootstrap, one parametric,
and five robust. The intervals have been included in this paper for three of the 12 variables
under study. Specifically, intervals are shown here for 2008, 2014, and 2019 (see Figure 8).
That is, the intervals are shown for the two end variables and one intermediate. Showing
these intervals for more variables would not contribute significantly to the analysis carried
out in this section.
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Analyzing Figure 8, it can be concluded that all the variables have similar characteris-
tics. First, the 0.2-trimmed mean and winsorized variance-based confidence intervals are
the most shifted to high concentrations, closely followed by the classic confidence intervals.
The difference is approximately 2 µg/m3. Second, the biweight confidence interval is very
similar to the Andrew’s wave confidence interval. Third, the intervals with the lowest
values are those based on the median. Furthermore, a similarity between nonparametric
and bootstrap intervals is observed. Additionally, the pair (Me, MAD) yields the narrowest
confidence intervals. Finally, it should be noted that there is a slight increase in estimates
for the early years compared to later years.

According to what has been previously said, the estimators
(
T(α), sW(α)

)
and (Tbi(c),

sbi(c)) were used in this paper to compare the variables under study, for the following reasons:

1. Classic confidence intervals are based on the fact that an approximately normal
underlying distribution is assumed. However, in this research that is not the case.

2. The (Me, MAD) and (Me, IQR) point estimators, the bootstrap estimators, and the
nonparametric estimators give similar results. Nevertheless, when groupings of
variables are analyzed, the pair (Me, MAD) allows for establishing a greater number
of differences between them.

3. The estimators based on the biweight and Andrew’s wave yield similar results.
Therefore, it is acceptable to use one type of estimator or the other to carry out the
comparative analysis.

Information on the confidence intervals for the pair of estimators
(
T(0.2), sW(0.2)

)
and (Tbi(9), sbi(9)) is given in Table 5. In addition, graphical representations of these
intervals are shown in Figure 9. Moreover, horizontal lines have been used in Figure 9 to
carry out the classification of the variables, which is the same as that performed in Section 4.
The only difference between the classification obtained in this section and the classification
obtained using nonparametric estimators (see Section 4), is that the variables X1, X4, and
X10 can be grouped in the same category for the pair of estimators

(
T(0.2), sW(0.2)

)
and

for the pair of estimators (Tbi(9), sbi(9)) in a clearer way.
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Regarding the amplitudes of these confidence intervals, it can be said that the pair(
T(0.2), sW(0.2)

)
yielded confidence intervals that are approximately 15% wider than those

obtained with the pair (Tbi(9), sbi(9)). In addition, the median and amplitude of these
intervals evolve in parallel.

Figure 10 shows graphs that are used to study confidence intervals. In this case, the
variables are months, days, and hours. In Figure 10, 95% robust confidence intervals have
been found, on the one hand, using the α-trimmed mean location estimator and the sW(α)
scale estimator; and, on the other hand, using the biweight estimators (Tbi(c), sbi(c)).
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Table 5. The 95% confidence intervals (CI0.95): X1 (2008), . . . , X12 (2019).

Variable (Year) Pairs of Estimators Lower Limit of the CI0.95(
µg/m3) Upper Limit of the CI0.95(

µg/m3) Length of the CI0.95(
µg/m3)

X1 (2008)
(
T(0.2), sW(0.2)

)
19.8084 20.7331 0.9247

(Tbi(9), sbi(9)) 16.4104 17.1780 0.7676

X2 (2009)
(
T(0.2), sW(0.2)

)
22.7226 23.7676 1.0450

(Tbi(9), sbi(9)) 19.9870 20.8588 0.8718

X3 (2010)
(
T(0.2), sW(0.2)

)
22.6131 23.6382 1.0251

(Tbi(9), sbi(9)) 18.5928 19.4419 0.8491

X4 (2011)
(
T(0.2), sW(0.2)

)
19.4984 20.4428 0.9444

(Tbi(9), sbi(9)) 17.1457 17.9259 0.7801

X5 (2012)
(
T(0.2), sW(0.2)

)
21.2993 22.2385 0.9392

(Tbi(9), sbi(9)) 18.5019 19.2803 0.7784

X6 (2013)
(
T(0.2), sW(0.2)

)
21.9628 22.9674 1.0046

(Tbi(9), sbi(9)) 19.5530 20.3653 0.8123

X7 (2014)
(
T(0.2), sW(0.2)

)
23.2136 24.2042 0.9906

(Tbi(9), sbi(9)) 19.8670 20.6752 0.8081

X8 (2015)
(
T(0.2), sW(0.2)

)
24.6840 25.7051 1.0211

(Tbi(9), sbi(9)) 22.1498 22.9828 0.8329

X9 (2016)
(
T(0.2), sW(0.2)

)
22.7956 23.8797 1.0840

(Tbi(9), sbi(9)) 20.6076 21.5038 0.8962

X10 (2017)
(
T(0.2), sW(0.2)

)
20.1329 21.0469 0.9140

(Tbi(9), sbi(9)) 17.4621 18.2149 0.7527

X11 (2018)
(
T(0.2), sW(0.2)

)
22.6658 23.7046 1.0388

(Tbi(9), sbi(9)) 19.3850 20.2467 0.8618

X12 (2019)
(
T(0.2), sW(0.2)

)
27.2138 28.3123 1.0985

(Tbi(9), sbi(9)) 24.3223 25.2218 0.8995
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In Figure 10a,d, it can be seen that May is when the lowest values (around 12 µg/m3)
are reached and the maximum (around 38 µg/m3) is reached in September. This shows
that the ozone concentration triples in the summer.

On the other hand, the descent seems to present two steps, one reached in November,
when it drops by half (approximately 18 µg/m3), and the other that until March remains
stable and then falls until May. Figure 5a shows similar results. In addition, it seems that
the analysis of the years yielded wider confidence intervals. Furthermore, it is observed
that the median and the width of the intervals are directly related.

Figure 10b,e shows that the analysis for the weeks is in every way analogous to that in
Figure 5b, using nonparametric estimators. In short, the maximum is reached on weekends
and the values on working days are 33% lower than on weekends. Moreover, there are four
categories: (I) Saturday; (II) Sunday; (III) Monday; and (IV) Tuesday, Wednesday, Thursday,
and Friday. It is worth mentioning that Mondays and Saturdays are transition categories
between working days and Sunday.

Furthermore, Figure 10c,f shows that the analysis for the hours is the same as the one
using nonparametric estimators (see Figure 5c). In this case, the maximum is reached at
approximately noon, at the moment that most solar lighting occurs, and these confidence
intervals have very steep falls that reach two relative minimums. One minimum is around
7:00 and the other is around 21:00, with the deepest fall being seen in this last hour.

It is important to observe in Figure 10c,f that the O3 concentration goes from approxi-
mately 48 µg/m3 to approximately 4 µg/m3, which is a 12-fold reduction. In addition, the
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O3 concentration remains sustained between narrow limits between 21:00 on one day and
6:00 on the next.

Finally, the difference between the pairs of estimators
(
T(0.2), sW(0.2)

)
and (Tbi(9), sbi(9))

is that the separation level of the categories that is achieved by using (Tbi(9), sbi(9)) is
better than that achieved using

(
T(0.2), sW(0.2)

)
.

5.3. Data Transformation of the Hours at Which the O3 Concentration Is the Highest to Make
Them Fit a Normal Distribution: Analysis by Months and Days of the Week

Sometimes it is important to optimize the data sampling process because there are
some applications in which researchers are interested in reduced power consumption when
they are using portable devices powered by a battery. This is why, in this part of the paper,
some of the categories that have already been established for the months, days, and hours
in previous sections are going to be grouped into categories that represent the hours of the
highest O3 concentration.

For the station under study, the analysis carried out previously revealed that the
hours of the day at which the ozone concentration levels are highest are between 10:00
and 15:00 (that is, the central hours of the day). Therefore, here we have tried to fit the
variables that represent these hours by means of transformations to a normal distribution
(that is, W6 = 10:00–11:00, W7 = 12:00–13:00, and W8 = 14:00–15:00). The aforementioned
is extremely important because if the desired fittings are achieved, it is possible to use
classical statistical inferences to obtain confidence intervals for the mean. Once this is done,
the variable changes made can also be undone to obtain confidence intervals for measures
of location of the original variables.

In order to do the above, the variables hi, i = 1, . . . , 12, have been introduced to
represent the O3 concentration in the time interval 10:00–15:00 in each of the months.
That is, h1 represents the abovementioned concentration in January, h2 represents the
abovementioned concentration in February, and so on. Table 6 shows the coefficient of
skewness of the variables hi, i = 1, . . . , 12, and Figure 11 shows their box plot.

Table 6. Coefficient of skewness of hi, i = 1, . . . , 12.

Variable h1 h2 h3 h4 h5 h6
Skewness 0.2968 0.4070 0.2679 0.5104 0.4351 0.3874
Variable h7 h8 h9 h10 h11 h12

Skewness 0.3426 0.4981 0.6277 −0.0688 0.1212 0.2379
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Figure 11. Box plot diagram of the variables hi, i = 1, . . . , 12. The red circles represent the
outliers and, according to the IAQ of Quito [23], vertical dashed lines have been used to establish
the separation between O3 concentration levels in µg/m3: Desirable (i.e., [0, 50)), Acceptable (i.e.,
[50, 100)), and Caution (i.e., [100, 200)).
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Given the shape of the distributions, we used different transformations of vari-
ables [68]: linear, logarithmic, and inverse, among others. However, the transformations
that have given the best results have been those of the form: vi = (a·hi + b)q, i = 1, . . . , 12,
where a, b and q are positive real numbers. Statistical information on the transformations
made to the variables under study is given in Table 7.

Table 7. Statistical information on the transformed variables, vi, i = 1, . . . , 12.

Variable v1 =
√

h1 + 40 v2 = h2 v3 =
√

h3 + 40 v4 =
√

h4 + 20 v5 =
√

h5 + 60 v6 = 6.5
√

0.7·h6 + 80
Mean 8.8780 41.5695 9.0953 7.5570 9.6572 2.0441

Variance 0.7505 291.4980 0.8180 0.9817 0.4336 0.0005
p-Value 0.3336 0.1765 0.8237 0.5638 0.1021 0.0161

Skewness 0.0093 0.4070 −0.0136 0.0799 0.1962 0.0071
Variable v7 = 6.5

√
0.5·h7 + 65 v8 =

√
h8 v9 = 7

√
h9 + 50 v10 = (h10)

1.25 v11 = h11 v12 = h12
Mean 1.9789 7.0760 1.9548 146.9523 46.2482 43.3615

Variance 0.0003 0.6659 0.0018 3615.5855 345.2467 204.7272
p-Value 0.0728 0.4168 0.0431 0.1592 0.6320 0.1607

Skewness 0.0027 0.0599 −0.2071 0.2300 0.1212 0.2379

Therefore, taking into account the information on the p-value shown in Table 7, all
transformations have been carried out at a 0.01 level of significance. In other words,
this means that there is a 1 in 100 chance that we would reject the hypothesis that the
transformed variable is Gaussian when it should be accepted. However, despite the fact
that transformations to normal distributions have been achieved, there is no pattern that
could serve to describe a vast majority of the variables considered. In reality, the process of
obtaining the transformation of the variable that can give rise to a normal distribution can
be quite laborious, and it is not guaranteed that the desired results will be obtained.

Next, it will be compared whether, once the appropriate transformation has been
found, there are significant differences between the classical intervals obtained after the
change of variable and those obtained using robust statistics.

The robust confidence intervals and robust centralization estimators, based on the
biweight estimators (Tbi(9), sbi(9)), are represented in Figure 12 to the left of each of the
original variables, hi, i = 1, . . . , 12 (on the abscissa axis). Likewise, for the mean of the
adjusted normal distribution, the inverse confidence interval is shown on the right side of
the original variables, together with the mean of these variables.

Figure 12 shows that both confidence intervals (i.e., the robust confidence interval and
the classic confidence interval) are very similar, in terms of both their location and their
length. Furthermore, in the case of the variables h4 and h9, the mean is not included within
the classical intervals. This shows that the number of outliers makes the distributions of the
original variables have heavier tails than the normal distribution. Moreover, as in the other
variables (i.e., h1, . . . , h3, h5, . . . , h8, h10, . . . , h12) the mean falls within the classic confidence
interval, so the desired estimate can be found by using this type of confidence interval.

In order to conclude the study, an analysis similar to that performed previously will
be carried out below, but now said analysis is aimed at studying the hours with the highest
O3 concentration. Therefore, this new analysis will be carried out in the same time slot
used previously, depending on the day of the week and distinguishing between working
days (i.e., Monday to Friday) and weekends. These three new variables (i.e., Working
days, Saturday, and Sunday) have been chosen, because Sunday is the day of the week on
which there is the highest O3 concentration, and Saturday behaves as a transition period
between the days people normally have to work and Sunday. The skewness coefficient of
the variables Working days, Saturday, and Sunday is shown in Table 8, and their box plot is
shown in Figure 13.
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Figure 12. The 95% robust and classic confidence intervals. The robust confidence interval (in black)
and robust centralization estimator (at the center of the robust interval) are shown on the left-hand
side of hi, i = 1, . . . , 12. In addition, for the mean of the transformed variable (i.e., vi, i = 1, . . . , 12),
the inverse transformation of the interval is shown on the right-hand side of hi (in red). In the i-th
classic interval, the mean of the variable hi is represented by an x (in blue).

Table 8. Coefficient of skewness of the variables Working days, Saturday, and Sunday.

Variable Working Days Saturday Sunday

Skewness 0.4886 0.4596 0.6060
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represent the outliers and, according to the IAQ of Quito [23], vertical dashed lines have been
used to establish the separation between O3 concentration levels in µg/m3: Desirable (i.e., [0, 50)),
Acceptable (i.e., [50, 100)), and Caution (i.e., [100, 200)).
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In Figure 13, it is observed that the O3 concentration grows when going from working
days to Sunday and that Saturday is a transition category. Moreover, it is observed that these
variables seem to have come from heavy-tailed distributions, which can be inferred from
the values shown in Table 8 and the box plot diagrams shown in Figure 13. Figure 9 shows
statistical information on the transformations made to the variables to make them fit a
normal distribution. The transformed variables are shown in Table 9 and all transformations
have been carried out at a 0.05 level of significance.

Table 9. Statistical information on the transformed variables, ui, i = 1, 2, 3.

Variable u1 = 6
√

0.5·(Working days) + 30 u2 =
√

Saturday + 20 u3 =
√

Sunday + 10

Mean 1.9225 8.0651 7.6110
Variance 0.0026 1.0587 1.1559
p-Value 0.0524 0.2741 0.3501

Skewness 0.0469 0.0588 0.0976

When grouping the hours and working days, it turns out that the change of variable
is quite drastic. Furthermore, Table 9 shows that the p-value of the fit of the working days
to a normal distribution is the lowest of the three. Additionally, the grouping of the days
with a rather artificial, far-fetched transformation, u1, and a low p-value is an indicator that
a combination of different statistical populations is being analyzed.

If a far-fetched transformation and a low p-value indicate the existence of a mixture of
distributions, then the variables v6, v7, and v9 (see Table 7) tell us that the months of June
(h6), July (h7), and September (h9) could be analyzed for weeks or fortnights. However,
if this is the case, researchers should again start looking for a transformation similar to a
normal distribution; then they would have to find the confidence intervals for the mean
and, finally, they would have to undo the change of variable. In short, the whole process
would have to be repeated again, including what was done up to Section 5.2.

As in Figure 12, Figure 14 shows the robust confidence intervals and robust centraliza-
tion estimators, based on the biweight estimators (Tbi(9), sbi(9)), to the left of each of the
original variables. On the other hand, for the mean of the adjusted normal distribution, the
inverse transformations of the confidence intervals are represented on the right-hand side
of the original variables, together with the mean of these variables.

In this case, both types of confidence intervals (i.e., classic and robust ones) are similar
in length and, in the case of Saturday and Sunday, they have a nonzero intersection. On the
other hand, in the case of working days, the intersection of these intervals is zero, but these
intervals do not touch for less than 0.1 µg/m3. Additionally, the mean is not included
in any of the classic confidence intervals. Therefore, in this case, the classic confidence
intervals are not useful to find the desired estimate.

In view of the results, the following conclusions can be drawn: Obtaining confidence
intervals based on robust estimators has turned out to be more efficient than building classic
confidence intervals obtained by transforming the variables. As has been shown, in order
to obtain classical confidence intervals, transformations of variables must be sought that
make them fit a normal distribution. However, these transformations are not homogeneous
for all variables and, in some cases, admissible transformations are not obtained either.
In fact, in terms of statistics, several of the obtained transformations are rare, artificial,
and far-fetched.

Furthermore, something very important that must be highlighted is that, after having
done everything that has been done in this subsection (i.e., in Section 5.3), the results
obtained in the best of the studied cases are analogous to those previously obtained from
the robust estimators of the data provided by the primitive measurements.
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Figure 14. The 95% robust and classic confidence intervals. The robust confidence interval (in black)
and robust centralization estimator (at the center of the robust interval) are shown on the left of
the variables: Working days, Saturday, and Sunday. Additionally, for the mean of the transformed
variable (i.e., ui, i = 1, 2, 3), the inverse transformation of the interval is shown on the right of each
untransformed variable (in red). Above the i-th classic interval, the mean of the untransformed
variables is represented by an x (in blue).

6. Discussion

A preliminary analysis of the observations yielded that the ozone concentration at
Belisario is not a threat to human beings. Most of the samples are at an air pollution level
that is considered to be acceptable [23]. Only in specific cases is the level of caution reached,
and it happens in a nonsustained manner.

Nevertheless, it should not be forgotten that each city establishes its own criteria for
air quality, and what may be acceptable in some cities may not be acceptable in others.
However, the truth is that they all share a common goal: to improve the air quality that
citizens who live in them breathe every day.

As has happened in previous studies [48–51], the variables chosen for the analysis
present a large number of outliers. Therefore, this could indicate that these variables come
from heavy-tailed distributions. The foregoing justified the need to combine different types
of analyses, in order to explain precisely how the ozone concentration has behaved at the
station under study from 2008 to 2019.

The data smoothing process showed a tendency for the O3 concentration to be en-
trenched in a range of values. Likewise, for the months, a notable maximum occurred at
the end of the summer and, for the hours of the day, the maximum occurred at noon. In
this case, we observed notable reductions to the right and left; the concentration of O3
was then maintained at a stable level until a new rise began. In contrast, the differences
between days of the week were seen between weekends and working days, although the
ups and downs were not very pronounced.

Once all the previous analyses had been carried out, the authors tried to make the
variables under study fit a normal distribution by using variable transformations, because
the classic inferential analysis was attempted to be applied. However, the obtained results
were not as expected, because when a parametric distribution was attained using a variable
transformation for a particular time period, an acceptable fit was not achieved for the other
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periods. Therefore, the techniques used to carry out the analysis had to be nonparametric
and robust.

Here, it was possible to build different groups of variables by using the WSRT. More-
over, three strata were established to analyze the years by using nonparametric methods.
These strata were as follows: one stratum formed by 2019, another by 2015, and the third
by the other years. Nevertheless, in the last stratum 2008, 2011, and 2017 can be separated,
because these years have the lowest levels of O3 concentration.

Regarding the analysis carried out for the months using nonparametric methods,
seven classes were obtained. However, they were then decreased to four.

Regarding the nonparametric analysis of the days, they were grouped into the last four
working days of the week and Monday, Saturday, and Sunday, with Sunday forming one
class and Monday and Saturday forming another class. The reason for this classification is
the rise in the O3 concentration on weekends as opposed to working days, and Monday
and Saturday being transition categories.

Regarding the hours of the day, many groupings were obtained using nonparametric
methods. In this case, a maximum was obtained at noon, the transition categories between
the maximum and the minimum corresponded to the hours from 8:00 to 20:00, and in
the rest of the hours, from 21:00 on the present day to 7:00 the following day, the O3
concentration remained fairly unchanged.

Next, robust confidence intervals were built by using location and scale statistics that
are robust, because they are highly immune to the influence of extreme observations. The
analysis carried out using these confidence intervals showed that the concentration of
ozone stayed stable in the range of desirable air pollution level [23], decreasing in 2008,
2011, and 2017, and increasing in 2015 and 2019, with the last year being the one in which
the concentration rose much more.

The analysis showed a parallel between location and scale estimates. In short, an
increase in the value of the location estimate produced an increase in the value of the
scale estimate. One conclusion that can be drawn from this is that the location and scale
estimates have been determined by the outliers.

The robust analysis based on confidence intervals allowed us to observe that, in terms
of years, a maximum occurred in 2015 and a more pronounced maximum occurred in 2019.
In addition, in a more notable way than with the nonparametric analysis, with the robust
analysis, 2008, 2011, and 2017 created the lowest value category. Moreover, there were more
categories in which the variables were classified when robust intervals are used, because
the robust confidence intervals were narrower than the nonparametric ones.

Furthermore, a certain periodicity was observed for the variables corresponding to
the months, days, and hours. The analysis of the months allowed us to observe notable
increases at the end of the summer, decreases in May and October, and stable behavior in
both the first quarter of the year and the last months of it.

The analysis of days allowed us to observe an appreciable difference between the O3
concentration on working days and the O3 concentration at weekends. Lastly, in the analysis
of the hours of the day, minimum values were observed at 7:00 and 21:00. Additionally, it
was observed that the maximum occurred at noon, the transition values were between 7:00
and 21:00, and stable O3 concentrations were obtained at the rest of the hours.

The existence of maximum and minimum values in the concentration of air pollutants
has also been observed in other research [50,51,86]. The reality is that anthropogenic
emissions have a great influence on the levels of air pollutants in urban cities.

Other air pollution variables have been shown to have possible periodic behav-
ior [50,51]. Nevertheless, everything seems to indicate that the way in which the data
are represented has a great influence on either the appreciation or not of said periodic
behavior. The in-depth mathematical modeling of the air pollution variable analyzed in
this research is not the objective of this paper. However, this is work to be carried out
in future research. The contribution of the present research is that it has been shown
that this periodic behavior can be represented by using 95% confidence intervals, both
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robust and nonrobust ones. Furthermore, the range of possible values of these signals has
been categorized with robust statistical precision, which is in agreement with what was
discovered in [50,51].

Through all these analyses, groupings of variables were obtained and differences
between categories were found. Here, the quantification of such differences was performed
by using confidence intervals.

Finally, it is worth mentioning one more contribution to this paper. The possibility
of forming new variables has been analyzed based on the hours of the day that have
been shown to have the highest ozone concentrations. Doing this is very important
because it allows researchers to optimize the data collection time and therefore save energy
when using battery-powered portable measurement equipment. However, the analysis
was complex because the new variables formed are different. Therefore, it is difficult to
establish predictions since the variables do not come from the same statistical populations.
Furthermore, using robust analysis methods was shown to be much more effective than
attempting to carry out variable transformations. Here, it was shown that, after having
made the variable transformations, the results were analogous at best to those that had
already been obtained with the robust methods.

Another thing to keep in mind is that several of the variable transformations achieved
are rare, artificial, far-fetched, or unrealistic and therefore do not clarify what the variable
does. In addition, the researcher has to first do the robust analysis and then form new
variables by grouping together the variables with the highest O3 concentration values.
Therefore, it is not worth doing these additional transformations of variables if the previous
robust analysis already allows for obtaining significant results. In other words, it is not
advisable to form new variables after having done the robust analysis, if the new results
are analogous, in the best of cases, to those already obtained with the robust methods.

7. Conclusions

A robust analysis of ozone concentration was conducted in this paper. This analysis
was performed at Belisario station for measurements taken from 1 January 2008 to 31
December 2019. This monitoring station is in Quito, Ecuador, and the set of measurements
was transformed into samples taken from several independent variables. The information
from these variables was then classified and categorized. In addition, similarities and
differences between variables were established with robust statistical precision.

The raison d’être of this study was to group the measurements into variables that
allowed us to describe the behavior of the O3 concentration in a more realistic manner. As a
matter of fact, people who live in cities are worried about air pollution in terms of hours,
weeks, and years, and they need precise information to keep themselves and their relatives
safe. The research presented in this paper can be used to know and predict how the O3
concentration behaves at Belisario station.

In a previous report [23], some general statements about tropospheric ozone levels
at Belisario station were made; for the descriptive analysis, the only statistical tools used
in [23] were the mean and maximum values. In addition, the report made reference
to the main air pollution sources in Quito and presented general environmental issues.
However, such a report lacks a robust, rigorous analysis that allows us to study the
ozone concentration in a comprehensive manner. Therefore, one possible application of
the research presented in this paper is that it can help us to study ozone concentration
measurements in a statistical manner and establish robust analysis procedures.

An important fact to highlight is that the city of Quito has greatly progressed in recent
years in terms of caring for the environment and improving air quality. However, much
remains to be done. The authors of [47] dedicated a few words to this and gave multiple
examples of things that still need to be done to improve the air quality in some areas of the
city. Moreover, in [50,51] several recommendations were made which, in conjunction with
those made in [47], suggested ways to decrease the level of pollution in Quito. The goal is
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to inform people about pollution levels in built-up areas and ensure that these pollution
levels are low and not harmful to the health of human beings.

The aforementioned entails investment by urban decision-makers, research centers,
universities, and so on in measuring equipment that can be located at areas of interest or
is portable and battery-powered. Therefore, in order to optimize the sampling process to
reduce power consumption, in this research, variables that represented the hours of the
day with the highest O3 concentration were created. These new variables were studied and
the results confirmed that, in some cases, it is essential to use robust methods to optimize
the data sampling process.

Finally, for some of the variables studied, behaviors that could imply a certain peri-
odicity were observed. However, when the researchers changed the way the data were
represented by using different partitions of the time domain, these behaviors were not
appreciated. Carrying out the in-depth mathematical analysis of these behaviors was not
the objective of this paper, but it is something to consider in future research.
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