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Abstract: The broad availability of smartphones and Inertial Measurement Units in particular brings
them into the focus of recent research. Inertial Measurement Unit data is used for a variety of
tasks. One important task is the classification of the mode of transportation. In the first step,
we present a deep-learning-based algorithm that combines long-short-term-memory (LSTM) layer
and convolutional layer to classify eight different modes of transportation on the Sussex-Huawei
Locomotion-Transportation (SHL) dataset. The inputs of our model are the accelerometer, gyroscope,
linear acceleration, magnetometer, gravity and pressure values as well as the orientation information.
In the second step, we analyze the contribution of each sensor modality to the classification score and
to the different modes of transportation. For this analysis, we subtract the baseline confusion matrix
from a confusion matrix of a network trained with a left-out sensor modality (difference confusion
matrix) and we visualize the low-level features from the LSTM layers. This approach provides useful
insights into the properties of the deep-learning algorithm and indicates the presence of redundant
sensor modalities.

Keywords: mode of transportation classification; explainability; deep neural network; SHL challenge;
feature visualization

1. Introduction

The broad acceptance of smartphones holds the potential for large-scale human-
centered sensing and research. Smartphones contain a variety of different sensors for
global localization and a body’s force. The data derived from smartphones enhances the
research focused on the challenges arising with the growing number of people in urban
and major metropolitan areas. One important challenge is traffic management in urban
areas, since traffic congestion occurs naturally during rush hours. Information on people’s
transport behavior can result in better routing and less congestion. Most smartphones can
position themselves in a global frame of reference, e.g., GPS, but the accuracy depends
on the signal quality and line of sight between the sensor and the satellites. The accuracy
decreases significantly indoors or underground, as well as the features derived from the
measurements. Inertial Measurement Units (IMU) are not reliant on external infrastructure.
On the one hand, the data quality of the IMU does not depend on whether the sensor is
underground or not, and on the other hand, the IMU data depend on the kinematic chain
between the sensor and the source of the force applied to the sensor.

As part of the SHL recognition challenge 2020 [1], we proposed a deep-learning-based
algorithm that combines augmentation and LSTM layers as well as several convolutional,
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and fully connected layers to perform transportation mode classification using IMU data
from smartphone sensors [2].

However, decisions made by deep neural networks are difficult to understand and
interpret due to their black box character. Explanatory Artificial Intelligence (XAI) tackles
this problem and allows more transparent decisions that can be explained in a certain level
of detail. This is essential since explanations can be used to ensure algorithmic fairness,
identify potential bias, and problems in the training data, and to validate that the algorithms
work as expected [3]. Compared to deep neural networks for image classification, where
learned features can be visualized more intuitively, and thus be interpreted more easily by
humans, visualizations in the time series domain are challenging. This is since the input as
well as the features are more abstract and include a time dimension. In this context, this
paper targets the basic understanding of what a deep neural network learns and which
inputs have the greatest influence on accuracy. For this purpose, we trained our network for
the SHL Challenge 2020 with a leave-one-sensor-out strategy and computed the difference
confusion matrices of the network and the baseline trained with all sensors. Moreover,
we used autoencoders to visualize the low-level features learned by the LSTM layers of
each sensor. By combining the two results, we were able to identify the contribution of
individual sensors to classification accuracy and detect redundancies.

The paper is structured as follows: Section 2 gives a brief overview of the state of
the art. Afterwards, in Section 3 we provide details regarding the used dataset, the pre-
processing pipeline and the used algorithm. Section 4 summarizes the results of our
analysis and we discuss the obtained results in the final Section 5.

2. State of the Art

For several years extensive work on understanding and sensing the mobility behavior
of people has been carried out. This section first introduces the state of the art regarding
mode of transportation classification using machine learning approaches based on smart-
phone sensor data. Subsequently, we examine explanatory visualization techniques that
provide a better understanding of deep neural networks and their decisions, as well as
methods that can be used to shed light on the influence of inputs.

All approaches that include contextual information are not considered, since this
research focuses on the use of information derived from smartphone sensors. A common
approach is to understand the detection of the mode of transportation as a classification
problem. We have assigned related works to the following two categories: 1. tradi-
tional machine learning-based classification and 2. deep-learning-based classification.
Antar et al. [4] and Liono et al. [5] proposed random forest (RF) classifiers that achieved
an accuracy of 92% and 91% on the SHL dataset and Crowdsignals dataset. Yu et al. [6]
extracted features from three sensors (accelerometer, magnetometer and gyroscope) and
proposed support vector machines (SVM) as the best classifier for detecting a person’s
mode of transportation (i.e., standing still, walking, running, cycling, and in the vehicle).
Similar findings were also made by Fang et al. [7]. Another traditional approach only
based on acceleration data was proposed by Hemminski et al. [8] to detect five different
modes of transportation (i.e., bus, train, underground, tram and car). Recently, large-
scale datasets have been made available which enable the application of deep-learning
techniques. The deep-learning algorithms are outperforming the traditional approaches
which are using handcrafted features. Jeyakumar et al. [9] proposed a deep convolutional
bidirectional-LSTM ensemble trained directly on raw sensor data on the SHL dataset. Using
this approach, an F;-score on 96% was achieved for transportation mode classification.
Qin et al. [10] introduced a deep-learning-based algorithm that combines a CNN and
LSTM network. By using CNN-extracted and handcrafted features (i.e., segment and peak
features), the algorithm can distinguish the transportation modes with an accuracy of
98.1% on the SHL dataset. Vu et al. [11] proposed a gate-based recurrent neural network to
detect the transportation mode on the HTC dataset. This accelerometer-based approach
achieved an accuracy of 94.72%. Tambi et al. [12] presented a CNN that distinguishes four
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transportation modes (bus, car, subway, train) by using mobile sensor data derived from an
accelerometer and a gyroscope in the spectral domain. An accuracy of 91% was achieved.

Although there is a lot of work done on the development and modification of LSTM
architectures, the decisions made by deep neural networks are still difficult to understand
and interpret, due to their black box character. To provide a better understanding, different
explanatory techniques have been proposed.

One technique that visualizes decision-making in CNNss is the Class Activation Map
(CAM) [13]. It indicates the discriminatory image region used to identify a specific class.
Grad-CAM is a more versatile version of CAM. Using gradients applied to the last con-
volution layer of a CNN, Grad-CAM tries to find salient regions in the input space [14].
However, CAM is not only applied for a deeper understanding of the decision-making
process for image classification, but also for the classification of time series. In this context,
Wang et al. [15] introduced a one-dimensional CAM that highlights class-specific regions
that have contributed most to a particular classification of time series. This method gives
insights into the properties of the deep-learning algorithm or its decision-making process,
but does not provide the possibility to identify redundant features.

Several works have focused on interpreting the hidden states of LSTMs or hidden
layers of CNNs. Karpathy et al. [16] showed the existence of interpretable cells in LSTMs
that kept track of dependencies, such as line length, quotes and brackets in character-level
language models. Moreover, the hidden state of LSTMs on different inputs can be explored
interactively by the visual analysis tool LSTMVis [17] for recurrent neural networks. To
intercept the hidden layers of deep neural networks, Moreira et al. recently employed
autoencoders to provide information for the interpretation of classifiers, and to enable
the investigation of misclassifications in the dataset from emerging clusters [18]. These
methods offer the possibility to increase the explainability of the functionality of models,
whereas in this paper we mainly focused on the explainability of the input and on the
low-level features. Another area of research is feature selection, which not only aims to
gain a better understanding of the features, but also to improve the prediction accuracy and
speed of classification. With the intention of improving prediction accuracy, Liu et al. [19]
proposed a leave-one-feature-out wrapper method. The leave-one-covariate-out method [20]
aims at estimating the importance of local features. Furthermore, Azarbayejani et al. [21]
introduced an approach for the evaluation of the redundancy of sensor networks, which is
based on a leave-one-sensor-out analysis. These methods, which can be applied in a straight-
forward manner, improve the explainability of the features used and allow identification of
redundant features or sensor modalities. At this point we see the potential to extend these
methods and to introduce them into the area of explainability.

3. Materials and Methods

The provided part of the Sussex-Huawei Locomotion-Transportation (SHL) dataset [22,23]
contains data from smartphones carried on the body in various positions. The dataset was
collected with three participants over 31.6 d, each of them carrying four phones positioned
at the four different locations hand, bag, hips, and torso. The values of the hardware sensors
accelerometer, gyroscope, magnetometer, and pressure, as well as the software sensor values of
linear acceleration, gravity and orientation. A virtual, i.e., software sensor is constructed by
using the values of one or more hardware sensors to compute the value of the software
sensor. The measurement frequency was 100 Hz. Each individual sensor value was labelled,
i.e., 100 labels are available for 1 s.

The dataset includes eight different modes of transportation still, walk, run, bike, car,
bus, train, and subway. The samples are consecutive in time for the training and validation
set, as opposed to the test set. The training data comprises the values of all four phone
locations from one participant. The validation data comprises of the values of the other
two participants from all locations as well. The test set contains data from the same users
in the validation set, but only from one unknown phone location. Overall, there are
196,072 training samples, 28,789 validation samples, and 57,573 test samples. Moreover,
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the dataset has a large class imbalance. The Figures 1 and 2 show the label distribution in
the training, validation and challenge test set.
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Figure 1. The histogram of the distribution of the labels in the training and validation set.
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Figure 2. The histogram of the distribution of the labels in the challenge test set .

3.1. Pre-Processing

Before pre-processing, we performed some data integrity checks. We found that the
labels for some samples are not uniform, i.e., the samples contain transitions of modes of
transportation. Since the number of samples containing a transition was less than 1%, we
assigned the label by majority decision. Thus, our dataset has only one label instead of
500 for each sample. Then, the training set has been merged with the validation set. To
overcome the class imbalance, we followed a simple approach and oversampled by copying
random samples and undersampled by deleting random samples. We used 30,000 samples,
because the number of classes in which samples had to be deleted equals the number of
classes in which samples had to be copied. Before balancing, the full dataset was split into
new training, validation, and test sets in a stratified way. Since the samples in the challenge
test set are not in a consecutive order, the samples were chosen at random. 75% of the
full dataset was assigned to the training set, 15% to the validation set, and the remaining
10% to our private test set. Finally, the data from all phone locations were merged. The
training set contains 720,000 samples, the validation set 144,000 samples, and the test set
96,000 samples.
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Two pre-processing steps were applied on the balanced dataset. The first one was to
apply a low-pass filter on all data. We used a second order filter with a cut-off frequency
of 25 Hz. The second step was standard scaling by subtracting the mean and dividing by
the variance. Standard scaling was applied to each feature in each dimension separately.
Augmentation was applied with a probability of 50% during runtime. Figure 3 shows the
difference in the acceleration between a raw sample and the augmented sample of the
class still.
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Figure 3. The difference between the raw sample and the augmented sample. The blue line is the
raw sample and the orange line the augmented sample.

The activations of the LSTM layers were not preprocessed. The activation function
of the LSTM layers were tanh, and therefore the output was already scaled to [-1, 1]. The
output dimension were (batch size, 500, 64), and the last 64 values of the output sequences
were used. For visualization we transformed each encoded value by

y = sign(x) x In(|x| +1) 1)

where sign denotes the signum function, In the natural logarithm and x the input variable.
The natural logarithm is not defined for 0, but if the activation is —1 the input variable to
the natural logarithm is 0. Our implementation returns the input value if the input value is
so small that the natural logarithm function cannot compute the result. This happens for
0 and for very small values close to 0, because computers have only a limited number of
bytes for storing values (floating point arithmetic).

3.2. Algorithm

For finding the best architecture, we started off with a very small neural network and
followed a Greedy approach. We subsequently added layers and adjusted parameters. If the
result improved, the adjustments were kept, if the result was worse, the adjustments were
reverted. The architecture, we propose (Figure 4) combines an augmentation and an LSTM
layer, as well as several convolutional and fully connected layers to perform transportation
mode classification. The input data is split into seven streams, one stream per sensor. To
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artificially increase the number of training samples, an augmentation layer is implemented,
which augments four windows of size 50 of each sample with a factor of 2. This is followed
by an LSTM layer that can store information about time to find temporal correlations of the
input sequences. The LSTM layer comprises 64 neurons, sigmoid recurrent activation and
tanh activation. It is followed by a dropout layer, with a dropout rate of 0.25, that is used
to avoid overfitting, a convolution layer, and at the end of each stream a maximum pooling
layer. The convolutional layer consists of 128 filters, a kernel size of 8, stride length of 2
and a Leaky ReLU activation function with « = 0.001. Maximum pooling was performed
with stride length of 2. Then, the seven streams are merged via a concatenation layer,
which allows us to combine all features to extract meaningful information. Afterwards, a
convolutional layer and a maximum pooling layer are used 4 times in a row, whereupon
a flatten layer completes the second block (see Figure 5). In all type 2 blocks, maximum
pooling, the convolutional stride and the Leaky ReLU activation with « = 0.001 were
the same. The number of filters and the filter size were arranged in ascending order 64,
64,128, 128, and 16, 32, 64, 64. The subsequent fully connected layers, each followed by
a dropout layer, recombine the representations learned from the convolution layer and
reduce the dimension. Both blocks of type 3 used the same parameters. The dense layer had
256 neurons, the dropout rate was 0.25 and Leaky ReLU was used as activation function,
as before. In the last step, the classification layer uses the SoftMax activation function for
the mode of transport classification. We used categorical cross-entropy loss and the F;
score as metric. The Adam optimization algorithm was used for gradient optimization and
we used a learning rate schedule with exponential decay after the first 10 epochs with an
initial learning rate of 0.001.
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Figure 4. The architecture of the model. Each sensor modality had its own input, and the intermediate
features were fused in the concatenation layer in the second dimension.
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Figure 5. A detailed view of the three different blocks of layers used in our architecture.

For dimensionality reduction and visualization we used a common autoencoder. The
basic idea of an autoencoder is to find the best representation of high-dimensional data in
a low-dimensional latent space. The best latent space representation is the representation,
where the input can be reconstructed with a minimal error. The autoencoder was trained
on all last activations of the LSTM layer of all samples. For each sensor modality a separate
autoencoder was trained. The autoencoders were comprised of five layers with 600, 150, 2,
150, 600 neurons. The architecture is shown in Figure 6. The autoencoder is reducing the
dimensionality from 600 dimensions to two. The upper part of the network is the encoder
and the lower part the decoder. The latent layer with two neurons and the output layer
were activated by a linear activation function and all other layers by the ReLU function.
The used optimizer was Adam with a learning rate of 0.001, and the mean squared error
as loss function. The number of training epochs was not uniform, because we used the
early stopping criteria with a minimum delta of 0 for the validation loss, and a patience of
5 epochs, i.e., the training was stopped after 5 epochs without any improvements.
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Figure 6. The autoencoder architecture used for dimensionality reduction. The first neuron of the
latent space is the x-value and the second neuron of the latent space is the y-value.
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3.3. Difference Confusion Matrix

The difference confusion matrices are computed by subtracting the confusion matrix
of the network trained with all sensor modalities from the confusion matrix of the network
trained without a certain sensor modality. A positive value in a cell means that the value is
larger for the network without one sensor modality. A negative value in a cell means that
the value is smaller for the network without one sensor modality and 0 means the values
are equal. A positive value on the diagonal means that the network without one sensor
modality is better classifying the corresponding class and a negative value means that
the network without one sensor modality is worse in classifying the corresponding class.
A positive value in a non-diagonal cell means the network without one sensor modality is
worse in distinguishing the corresponding classes and a negative value means it is better
in distinguishing. A value of 0 means equal classification performance.

4. Results
After some preliminary experiments, we found that the model has difficulties distin-
guishing between the classes train and subway. Therefore, we put a higher weight (3x) on
the gradient update for the class train. The Figures 7 and 8 show the graphs of the F; score
and the loss of the final training. In the beginning the score and the loss have a high slope
and later the slope is asymptotically approaching the limit 0. During the first 10 epochs the
validation score is slightly better than the training score and the validation loss is slightly
smaller than the training loss. The confusion matrix shows that the model performs best
on the classes walk and run and worst on the classes still and subway. An overview of
the best epochs, the score on our private test set, and on the challenge test set is given in
Tables 1 and 2. The best epoch was epoch 77 with a validation score of 98.93% and a score
of 98.96% on our private test set. The largest score difference for our private test set (0.77%)
is obtained by subtracting the score of the network trained without pressure from the score
of the network trained with all sensor modalities. Furthermore, the largest score difference
for the challenge test set (8.33%) is found by subtracting the score of the network trained
without orientation from the score of the network trained without linear acceleration. Only
two networks with one left-out sensor, gyroscope and orientation, have a worse score on
the challenge test set than the network trained with all sensor modalities.
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Figure 7. The progress of the score for the final training for 100 epochs. The progress shows an

asymptotic behavior after around about 40 epochs.
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Figure 8. The progress of the loss for the final training for 100 epochs. The progress shows an

asymptotic behavior after around about 40 epochs. The progress corresponds to the progress of the
score.

Table 1. An overview about the scores and best epochs of the networks trained with one sensor modality left-out. For the sake of
comparison, the first row shows the baseline values of the network trained with all sensor modalities.

Left-Out Sensor Best Epoch Validation Score Private Test Score Challenge Score
None 77 98.93% 98.96% 52.80%
Acceleration 50 98.73% 98.77% 52.83%
Gravity 50 98.58% 98.65% 56.49%
Gyroscope 50 98.21% 98.22% 52.51%
linear Acceleration 49 98.66% 98.68% 60.12%
Magnetometer 50 98.76% 98.80% 55.95%
Orientation 50 98.42% 98.45% 51.79%
Pressure 50 98.16% 98.11% 57.68%

Table 2. An overview about the change of the scores for each class and left-out sensor. The smallest
drop in accuracy is marked in green and the largest drop in red.

Left-Out Sensor Still Walk Run Bike Car Bus Train Subway Sum

Acceleration —14 —15 —6 —10 —23 12 —98 —25 —179
Gravity —4 -9 —6 1 —27 -8 —86 -19 —158
Gyroscope -24 -3 -1 =17 =37 =17 -104 -52 —295
linear Acceleration —42 —16 -3 0 —45 -21 —101 —44 —272
Magnetometer —205 =31 -7 —24 —66 —108 —142 —124 —707
Orientation —48 —61 -3 -19 —53 —-61 —150 —101 —496
Pressure —123 —62 -13 -33 —67 -93 -191 —247 —829

The difference confusion matrices are shown in Tables 3-10 and the plots of the
encoded last activations from the LSTM layers are shown in Figures 9-15. The color codes
are blue for the class still, orange for the class walk, green for the class run, red for the class
bike, violet for the class car, brown for the class bus, pink for the class train, and grey for the
class subway.

The diagonal values of the difference confusion matrix without acceleration are neg-
ative, except for class bus (min. —98, max. 12). The maximum difference is found in the
cell (train, train) and the minimum difference in the cell (run, run). Eleven of the remaining
56 non-diagonal cells contain a negative value (min. —18, max. —1), nine cells contain 0
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and 36 cells contain positive values (min. 1, max. 55). The plot of the last activations of the
acceleration LSTM layer shows that the activations of the classes bike (red) and run (green)
overlap the least. The activations of the class walk (orange) are not overlapping in the area
centered at (0, 1). Acceleration is an important feature for classifying run and bike, but that
the largest drop in accuracy is found for class train. In contrast, more bus samples (12) were
classified correctly without the accuracy features. Considering the scores in Table 1, we see
that the loss in the score on our private test set is the second smallest loss (0.19%) and there
is a very small increase of 0.03% in the score on the challenge test set.

The diagonal values of the difference confusion matrix without gravity are negative
except for the class bike (min. —86, max. 1). The maximum difference is found in the cell
(train, train) and the minimum difference in the cell (bike, bike). Fourteen of the remaining
56 non-diagonal cells contain a negative value (min. —21, max. —1), eight cells contain 0
and 34 cells contain positive values (min. 1, max. 47). The plot of the activations shows
overlapping activations for the gravity LSTM layer for all classes. The plot of the activations
of the gravity LSTM layer shows that the least overlapping activations are of classes bike
(red) and run (green). The activations of the class walk (orange) are non-overlapping in the
area centered at (0, 1). The features of the layer are overlapping for all classes. Accordingly,
the difference confusion matrix (Table 5) is the only one that has a positive value on the
diagonal. The score on the challenge test set increases by 3.69% and the score on the private
test set decreases by 0.31%.

The diagonal values of the difference confusion matrix without gyroscope are all
negative (min. —104, max. —11). The maximum difference is found in the cell (train, train)
and the minimum difference in the cell (run, run). Ten of the remaining 56 non-diagonal
cells contain negative values (min. —15, max. —1), seven cells contain 0 and 39 cells contain
positive values (min. 1, max. 66). The plot of the activations of the gyroscope LSTM layer
shows that the least overlapping activations are of classes bike (red) and run (green). The
activations of the class walk (orange) are non-overlapping in the areas centered at (0, —0.5),
(—1, —0.5) and (0, —1). Thus, the gyroscope is one sensor that is redundant for the classes
run and bike. The difference confusion matrix in Table 6 and the largest drop in performance
is found in the classes train and subway and not in run and bike. However, the gyroscope is
important for the other classes, because the test score has the second largest decrease of
0.74% for our private test set. The same holds for the challenge test set (0.29%).

The diagonal values of the difference confusion matrix without linear acceleration
are negative, except for the class bike (0). The maximum difference is found in the cell
(train, train) and the minimum difference in the cell (run, run). Sixteen of the remaining
56 non-diagonal cells contain negative values, eight cells contain 0 and 42 cells contain
positive values (min. 1, max. 59). The effect of leaving out the linear acceleration is
similar to leaving out the acceleration. The plots in Figures 9 and 12 look similar and the
distribution of the loss in accuracy in Tables 4 and 7 is similar as well. However, the score
on the challenge test set is the highest score for all left-out sensors and increases by 7.32%
and the score on the private test set decreases by 0.28%.

The diagonal values of the difference confusion matrix without magnetometer are
all negative. The maximum difference is found in the cell (still, still) and the minimum
difference in the cell (run, run). Five of the remaining 56 non-diagonal cells contain negative
values (min. —10, max. —1), eleven cells contain 0 and 40 cells contain positive values
(min. 1, max. 92). The plot of the activations for the magnetometer LSTM layer shows
the least overlapping activations are of classes subway (grey) and train (pink). A cluster
of activations of class run (green) can be found centered around (—0.4, 1.25) and clusters
of activations of class bike (red) can be found at (—1, 0.75) and (0.75, 0.75). The plot
indicates that the magnetometer is important for the classes train and subway. Considering
the difference confusion matrix Table 8 reveals that the second and third largest loss in
accuracy can be found in those two classes. The largest loss in accuracy is in class still, even
though only a few features of class still are visible in the plot ((—0.25, —1.0), (—0.4, 0.6),
(—0.4,1.2), (0.0, 1.2), and (0.4, 0.8)).
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The diagonal values of the difference confusion matrix without orientation are all
negative. The maximum difference is found in the cell (train, train) and the minimum
difference in the cell (run, run). Ten of the remaining 56 non-diagonal cells contain negative
values (min. —15, max. —1), seven cells contain 0 and 39 cells contain positive values (min.
1, max. 108). The plot of the activations shows overlapping activations for the orientation
LSTM layer for all classes and does not show any substantial contribution of the orientation
to any class, but the difference confusion matrix shows a large loss in accuracy for the
classes train and subway. Comparing the losses in performance in Table 1 shows that the
overall losses are moderate with 0.51% and 1.01% for the private test set and the challenge
test set, respectively.

The diagonal values of the difference confusion matrix without pressure are all neg-
ative. The maximum difference is found in the cell (subway, subway) and the minimum
difference in the cell (run, run). Five of the remaining 56 non-diagonal cells contain negative
values (min. —6, max. —1), nine cells contain 0 and 44 cells contain positive values (min. 1,
max. 167). The plot of the activations of the pressure sensor (Figure 15) is remarkable
because the structure is totally different to the other sensor activation plots. All other
activations are starting around (0, 0) and then evolve in all directions, whereas the pressure
activations look like a line with bulges. The lower right part of the plot shows that the
pressure features are useful to distinguish bike, car, and train. The difference confusion
matrix Table 10 is contradicting the plot. The false classifications of these three classes
differ slightly compared to using the sensor. The largest loss in performance is found in the
classes train and subway. Leaving out the pressure sensor results in a loss in accuracy by
0.85% on the private test set and an increase in accuracy by 4.88% on the challenge test set.

Last Activations from Acceleration LSTM Layer

still
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Run : g

Bike . . .. to. . .|'.-'.
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Bus ot .,.'.’ o e ed o .
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Figure 9. The 2D encoded representation of the last activations of the LSTM layer for the acceleration
sensor. Color codes: blue (still), orange (walk), green (run), red (bike), violet (car), brown, (bus), pink
(train), grey (subway).
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Table 3. The Confusion Matrix for the private test set. The classes with the most false classifications
still and subway. The classes with the best true classifications are run and walk. t = true label,
p = predicted label.

t\p Still Walk Run Bike Car Bus Train Subway
still 17,619 75 0 28 15 75 117 71
walk 95 17,825 9 15 4 10 17 25
run 6 7 17,981 1 0 2 3 0
bike 30 39 5 17,900 3 9 10 4

car 11 6 1 4 17,857 59 44 18
bus 56 31 0 11 31 17,711 103 57
train 49 39 1 10 19 52 17,685 145

subway 52 35 0 2 21 42 274 17,574

Table 4. The difference confusion matrix of the network trained without the acceleration sensor. The
largest loss in classification occurred in the class bus and the smallest in class run. t = true label,
p = predicted label.

t\p Still Walk Run Bike Car Bus Train Subway
still —14 6 2 8 2 2 —16 10
walk -1 —15 0 0 1 5 5 5
run 4 2 —6 1 0 -3 -1 3
bike 8 7 0 —10 —4 2 1 —4
car 0 5 0 2 —23 20 -2 -2
bus 4 7 0 0 3 12 -32 6
train 17 —4 1 0 1 28 -98 55
subway 18 6 0 2 -1 18 —18 —25

Table 5. The difference confusion matrix of the network trained without the gravity software sensor.
The largest loss in classification occurred in the class subway and the smallest in class run. t = true
label, p = predicted label.

t\p Still Walk Run Bike Car Bus Train Subway
still —4 10 0 1 7 2 -21 5
walk -1 -9 0 —4 1 3 12 -2
run -1 5 -6 2 0 -2 1 1
bike -1 5 4 1 -1 =5 1 —4
car 0 2 0 2 —27 19 -2 6
bus 9 6 0 -1 8 -8 —-16 2
train 13 4 0 1 12 9 —86 47
subway 11 2 0 1 5 9 -9 -19

Table 6. The difference confusion matrix of the network trained without the gyroscope. The largest
loss in classification occurred in the class subway and the smallest in class run. t = true label,
p = predicted label.

t\p Still Walk Run Bike Car Bus Train Subway
still —24 4 1 2 12 1 -15 19
walk -1 -33 2 0 2 12 5 13
run -3 8 —11 1 5 -1 1 0
bike 9 4 2 -17 -1 8 -1 —4
car 7 4 1 1 —37 22 0 2
bus 5 3 0 3 21 -17 -13 -2
train 15 1 0 -1 12 11 —104 66
subway 10 6 0 0 1 21 14 —52
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Last Activations from Gravity LSTM Layer
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Figure 10. The 2D encoded representation of the last activations of the LSTM layer for the gravity
software sensor. Color codes: blue (still), orange (walk), green (run), red (bike), violet (car), brown,
(bus), pink (train), grey (subway).

Last Activations from Gyroscope LSTM Layer

2

Figure 11. The 2D encoded representation of the last activations of the LSTM layer for the gyroscope.
Color codes: blue (still), orange (walk), green (run), red (bike), violet (car), brown, (bus), pink (train),
grey (subway).
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Table 7. The difference confusion matrix of the network trained without the linear acceleration

software sensor. The largest loss in classification occurred in the class subway and the smallest in class

run. t = true label, p = predicted label.

t\p Still Walk Run Bike Car Bus Train Subway
still —42 7 1 9 9 22 -20 14
walk -5 —-16 4 -3 1 4 -2 17
run -1 5 -3 3 0 -3 -1 0
bike -2 1 0 0 0 6 -3 -2
car -2 4 0 2 —45 35 —4 10
bus 18 3 0 3 12 —21 —14 -1
train 7 1 0 -2 17 19 —-101 59
subway 18 -1 0 2 1 24 0 —44

Last Activations from linear Acceleration LSTM Layer

still
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Run
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Car

Bus
Train
Subway

15 “10 05 00 s 10 15 20

Figure 12. The 2D encoded representation of the last activations of the LSTM layer for the linear
acceleration software sensor. Color codes: blue (still), orange (walk), green (run), red (bike), violet
(car), brown, (bus), pink (train), grey (subway).

Table 8. The difference confusion matrix of the network trained without the magnetometer. The
largest loss in classification occurred in the class still and the smallest in class run. t = true label,
p = predicted label.

t\p Still Walk Run Bike Car Bus Train Subway
still —205 17 0 0 20 27 49 92
walk 16 -31 2 4 3 -1 2 5
run -2 5 -7 0 0 1 2 1
bike 0 7 1 —24 -1 7 10 0
car 7 3 0 12 —66 46 —6 4
bus 12 0 0 1 28 —108 14 53
train 50 9 0 4 12 30 —142 37
subway 63 9 0 6 5 51 -10 —124
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Last Activations from Magnetometer LSTM Layer
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Figure 13. The 2D encoded representation of the last activations of the LSTM layer for the magne-
tometer. Color codes: blue (still), orange (walk), green (run), red (bike), violet (car), brown, (bus),
pink (train), grey (subway).

Last Activations from Orientation LSTM Layer
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Figure 14. The 2D encoded representation of the last activations of the LSTM layer for the orientation
software sensor. Color codes: blue (still), orange (walk), green (run), red (bike), violet (car), brown,
(bus), pink (train), grey (subway).
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Last Activations from Pressure LSTM Layer
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Figure 15. The 2D encoded representation of the last activations of the LSTM layer for the pressure

sensor. Color codes: blue (still), orange (walk), green (run), red (bike), violet (car), brown, (bus), pink

(train), grey (subway).

Table 9. The difference confusion matrix of the network trained without the orientation software

sensor. The largest loss in classification occurred in the class subway and the smallest in class run.

t = true label, p = predicted label.

t\p Still Walk Run Bike Car Bus Train Subway
still —48 22 0 4 13 4 -15 20
walk 24 —61 3 -3 3 8 6 20
run -2 5 -3 1 1 -1 -1 0
bike 18 8 0 -19 -1 -2 -1 -3
car 6 5 0 1 —53 45 —6 2
bus 18 7 0 2 11 —61 4 19
train 4 1 0 4 4 29 —150 108
subway 35 3 0 3 2 20 38 —101

Table 10. The difference confusion matrix of the network trained without the pressure sensor. The

largest loss in classification occurred in the class subway and the smallest in class run. t = true label,

p = predicted label.

t\p Still Walk Run Bike Car Bus Train Subway
still —123 34 0 7 4 20 20 38
walk 23 —62 5 6 1 8 4 15
run 4 12 —13 0 0 -2 -1 0
bike 17 17 0 -33 5 -3 3 —6
car 3 4 0 1 —67 40 5 14
bus 17 18 0 3 19 -93 7 29
train 32 4 0 1 10 29 —191 115
subway 54 5 0 2 -3 22 167 —247
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5. Discussion and Conclusions

Considering all results, the classes train and subway are most affected by removing
one sensor modality. In six out of seven cases, these two classes have the highest loss in
performance. The sensors acceleration, gyroscope, and linear acceleration are redundant
for the two classes run and bike and the least important sensor seems to be the gravity
sensor. Furthermore, the pressure sensor seems to be the most important sensor, according
to Table 2 and the shape of the activations in Figure 15. The results also showed that the
software sensors linear acceleration and orientation do not give substantial contribution
to the performance. The network can internally learn the important information from the
hardware sensors. Moreover, the difference confusion matrices and the activation plots
helped to identify redundancies regarding the sensors and certain classes. Even though the
plots are supporting the findings in the confusion matrices, the use of the plots is limited.
The plots are useful to visualize the magnitude of activation of the different classes and the
general structure of the plots can be used to identify sensors that should be investigated
further. However, we showed that the difference confusion matrices are applicable in cases
where visualization methods are only partially useful.

Our contribution to explainable machine learning is the introduced difference confu-
sion matrices as a tool for analyzing deep neural networks. We showed that the insights
match the visualization and that the difference confusion matrices can be used when visu-
alization is limited. We also identified sensor redundancies and revealed that the network
internally learns most of the information provided by the software sensors.
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