
sensors

Article

S6AE: Securing 6LoWPAN Using Authenticated
Encryption Scheme

Muhammad Tanveer 1 , Ghulam Abbas 2 , Ziaul Haq Abbas 3, Muhammad Waqas 2,4,
Fazal Muhammad 5 and Sunghwan Kim 6,*

1 Telecommunications and Networking (TeleCoN) Research Lab, GIK Institute of Engineering Sciences and
Technology, Topi 23640, Pakistan; tanveer.m@giki.edu.pk

2 Faculty of Computer Science and Engineering, GIK Institute of Engineering Sciences and Technology,
Topi 23640, Pakistan; abbasg@giki.edu.pk (G.A.); engr.waqas2079@gmail.com (M.W.)

3 Faculty of Electrical Engineering, GIK Institute of Engineering Sciences and Technology,
Topi 23640, Pakistan; ziaul.h.abbas@giki.edu.pk

4 Faculty of Information Technology, Beijing University of Technology, Beijing 100124, China
5 Department of Electrical Engineering, City University of Science and Information Technology,

Peshawar 25000, Pakistan; fazal.muhammad@cusit.edu.pk
6 School of Electrical Engineering, University of Ulsan, Ulsan 44610, Korea
* Correspondence: sungkim@ulsan.ac.kr; Tel.: +82-52-259-1401

Received: 29 March 2020; Accepted: 7 May 2020; Published: 9 May 2020
����������
�������

Abstract: IPv6 over Low Power Wireless Personal Area Networks (6LoWPAN) has an ample share in
the Internet of Things. Sensor nodes in 6LoWPAN collect vital information from the environment
and transmit to a central server through the public Internet. Therefore, it is inevitable to secure
communications and allow legitimate sensor nodes to access network resources. This paper presents
a lightweight Authentication and Key Exchange (AKE) scheme for 6LoWPAN using an authenticated
encryption algorithm and hash function. Upon successful authentication, sensor nodes and the
central server can establish the secret key for secure communications. The proposed scheme ensures
header verification during the AKE process without using IP security protocol and, thus, has low
communication and computational overheads. The logical correctness of the proposed scheme
is validated through Burrows–Abadi–Needham logic. Furthermore, automatic security analyses
by using AVISPA illustrate that the proposed scheme is resistant to various malicious attacks in
6LoWPANs.

Keywords: IPv6 over Low Power Wireless Personal Area Networks; security; authentication and
key exchange

1. Introduction

Low Power Wireless Personal Area Networks (LoWPANs) are an essential part of the Internet
of Things (IoT) and are composed of resource-constrained devices tractable with the IEEE 802.15.4
standard. LoWPAN is a promising technology [1,2] having potential applications in smart grids,
home automation, e-health-care, battlefield, and security surveillance. Such networks are constricted
in storage capacity, transmission range, computational capabilities, power resources, and data rate.
To provide Internet connectivity to LoWPAN devices, IPv6 is considered to be the most accordant
solution [3,4]. However, IPv6 is a resource-intensive protocol originally designed for desktop and
server environments and has a maximum frame size of 1280 bytes, whereas the maximum physical
layer frame size for IEEE 802.15.4 is 127 bytes [5,6].

To make IPv6 frame size tractable with the IEEE 802.15.4 physical layer, the Internet engineering
task force has standardized an IPv6 over LoWPAN (6LoWPAN) adaption layer [7]. This layer provides

Sensors 2020, 20, 2707; doi:10.3390/s20092707 www.mdpi.com/journal/sensors

http://www.mdpi.com/journal/sensors
http://www.mdpi.com
https://orcid.org/0000-0001-9836-9970
https://orcid.org/0000-0003-3836-1373
https://orcid.org/0000-0003-0405-0083
https://orcid.org/0000-0003-1762-5915
http://dx.doi.org/10.3390/s20092707
http://www.mdpi.com/journal/sensors
https://www.mdpi.com/1424-8220/20/9/2707?type=check_update&version=2

Sensors 2020, 20, 2707 2 of 23

IPv6 packet fragmentation, encapsulation, reassembly, and header compression mechanisms [5,8].
In addition, 6LoWPAN renders the functionality for seamless transmission of IPv6 packets across
networks and provides a mechanism for stateless addressing.

Sensor nodes deployed in a 6LoWPAN network are used to accumulate vital information from
surrounding environments and transmit the collected information to a central location. Thus, for a
streamlined operation of 6LoWPANs, confidentiality and integrity of the transmitted information
must be ensured [9,10]. However, the original 6LoWPAN design does not include security and privacy
features. The following subsection reviews eminent proposals for securing 6LoWPANs.

1.1. Related Work

Cryptographic encryption techniques and message validation mechanisms are applied for
securing communications in 6LoWPANs. For this purpose, an Authentication and Key Exchange
(AKE) scheme is essential before applying the cryptographic algorithms. An AKE scheme ensures the
legitimacy of sensor nodes deployed in 6LoWPANs and also establishes a secret session key to protect
communications between sensor nodes and the server from an attacker [11].

The authors in [12] propose a lightweight IP Security (IPsec) based scheme for 6LoWPANs to
achieve secure end-to-end communication. The scheme introduces a pre-shared key concept for
AKE, but it does not provide any information about the session initialization and secure mobility.
In [13], the authors present a scheme, called scalable security with symmetric keys, to achieve secure
communication among end-devices in IoT. However, the scheme is not feasible for large 6LoWPANs
because of its higher computational overhead and complex key management process. The authors
in [14] propose a Secure Password Authentication Mechanism (SPAM), which supports a secure
handover process in the proxy mobile IPv6 networks. However, the main drawback of the SPAM
mechanism is the higher transmission delay incurred as a result of the re-authentication process.
In [15], the authors propose a mechanism that renders security for wireless sensor networks by
deriving the key from a pre-distributed master key. However, the scheme is computationally expensive
for resource-constrained devices. The authors in [16] propose a Secure Authentication and Key
Establishment Scheme (SAKES), which is based on public-key cryptography, but it is computationally
expensive for resource constricted devices. Additionally, SAKES does not provide secure mobility and
is vulnerable to the node compromised attack. To reduce the computational burden on sensor nodes,
SAKES performs most of the computation at gateway nodes and sends the computed key to sensor
nodes in the 6LoWPAN environment. Therefore, to perform the handover, it is necessary for sensor
nodes to start the new key establishment process. Furthermore, SAKES assumes all sensor nodes
in the 6LoWPAN environment to be static. The authors in [17] propose an Efficient Authentication
Key Exchange for 6LoWPAN (EAKES6Lo) based on the Elliptic Curve Cryptography (ECC) and
Advance Encryption Standard Counter Mode (AES-CTR-128). EAKES6Lo ensures secure session key
establishment and provides mutual authentication between sensor nodes and the server. However,
EAKES6Lo is computationally expensive and does not provide privacy. In [18], the authors propose
a Lightweight Authentication Protocol (LAUP), which is based on the symmetric key cryptosystem
while using the pre-shared key mechanism. LAUP is time efficient and consumes low power during
the AKE process. However, the scheme does not provide effective measures for secure mobility.

The authors in [19] propose a communication security and privacy support based on the public
key cryptography and pre-shared key mechanism to achieve secure communication in 6LoWPANs.
The authors in [20] propose a 6LowPSec security protocol that provides end-to-end security among
6LoWPAN nodes using the existing hardware security mechanism specified by IEEE 802.15.4 Media
Access Control (MAC) sub-layer. However, their proposed security protocol does not provide mobility
support and header verification.

Sensors 2020, 20, 2707 3 of 23

1.2. Contribution and Paper Organization

This paper proposes a lightweight AKE scheme, called Securing 6LoWPAN using Authenticated
Encryption Scheme (S6AE), which provides mutual authentication between the server and sensor
nodes and also ensures header verification during the authentication process without employing
the IPSec protocol. S6AE employs the well-known ASCON algorithm for authenticated encryption
in 6LoWPANs. To the best of our knowledge, ASCON has never been employed in the literature
for securing 6LoWPANs. Additionally, S6AE employs SHA-256 hash function and bit-wise XOR
operations to achieve AKE in 6LoWPANs. SHA-256 is used to generate unique output strings by
using the S6AE secret parameters. To decrease the communication overhead by means of reducing
the message size, the length of the SHA-256 output string must be reduced to 64-bits with minimum
computational cost and without compromising performance. For this purpose, we use bit-wise XOR
operations. The key contributions of this paper are listed below.

• The proposed scheme provides end-to-end security, mobility support, and header integrity.
• Informal security analysis and formal validations using Burrows–Abadi–Needham (BAN) logic

and Automated Validation of Internet Security Protocols and Applications (AVISPA) illustrate
that S6AE secures 6LoWPANs against various malicious attacks.

• Comparative analysis with eminent existing schemes demonstrates that S6AE is more efficient
and provides better security features with less computational and communication overheads,
memory utilization, and energy consumption.

The remainder of the paper is organized as follows. System models and preliminaries are
discussed in Section 2. Section 3 details the proposed S6AE scheme, and Section 4 provides security
analysis of S6AE scheme. Performance evaluation is presented in Section 5. Finally, the paper is
concluded in Section 6.

2. System Models

This section presents the models and preliminaries used in the proposed scheme.

2.1. Network Model and Security Assumptions

This paper considers the network model shown in Figure 1 for the authentication process.
The 6LoWPAN network model consists of sensor nodes (SNs), domain router 6LDR, the access router
(6LAR), and the central server (CS). SNs are used to accumulate information from the surrounding
environment and transfer the collected data to CS for further processing. Moreover, 6LDR provides
Internet connectivity by SNs in a domain. 6LAR provides inter-connectivity with CS in IPv6 cloud. It
is assumed that the communications among 6LAR, 6LDR, and CS are secure. Besides, it is assumed
that CS is reachable by SNs, 6LDR, and 6LAR. 6LDR registers itself with CS through a secure channel.
Additionally, SNs and 6LDR exchange their pseudo-identities (SIDs) through neighbor discovery (ND)
protocol. Furthermore, each 6LDR registers itself with 6LAR. All the devices in 6LoWPAN learn about
the global routing prefix of CS through 6LAR. Moreover, each SN generates an IPv6 address using an
IEEE extended unique identifier mechanism or by using the personal area network identity [21].

Sensors 2020, 20, 2707 4 of 23

SN

IPv6 Internet cloud
CS

Domian-1 Domian-2

6LAR

6LDR1 6LDR2

SN 6LDR 6LAR Link

Mobile Node

Figure 1. 6LoWPAN network architecture.

2.2. Threat Model

The Dolev-Yao (DY) model [22] is the threat model used in S6AE. According to the DY model, an
intruder can intercept and record the messages exchanged between two communicating entities in
6LoWPAN. Communications among the entities in 6LoWPAN are public in nature. If an adversary
has the knowledge about the private key, it can encrypt and decrypt messages and perform unlawful
activities, such as modifying or forging the captured messages. The communicating entities, such
as SNs and 6LDRs, are considered to be untrusted under the DY model. An adversary can capture
an SN due to its hostile environment and can extract the sensitive information stored its memory by
employing the power analysis attack. However, CS is a central and vital component in the 6LoWPAN
environment, and it cannot be compromised by an adversary.

2.3. Preliminaries

2.3.1. Hash Function

A hash function can take a variable size input string, and return the output with a fixed size string.
Each hash function must obey the following properties.

• The output of the hash function with two different inputs, n and m, can never be the same,
i.e., H(n) 6= H(m).

• It is not possible to compute the input, z, from the output of a hash function, H(z),
i.e., (H(z))−1 6= z.

2.3.2. ASCON

ASCON is an authenticated encryption with associated data scheme [23] that works on the design
principle of duplex sponge architecture. Moreover, ASCON is a symmetric, inverse free, single pass,
and online block cipher. Broadly speaking, there are two versions of ASCON: (i) ASCON-128 that
takes 64 bits data block and generates 64 bits ciphertext along with 128 bits of authentication tag, and
(ii) ASCON-128a that takes 128 bits data block and generates 128 bits of ciphertext along with 128
bits of authentication tag. The architecture of ASCON is given in Figure 2, which works under the
following four stages [23]. Initialization: In this stage, ASCON computes the initial input to ASCON
state by combining the Initialization Vector (IV), nonce, and key. The size of ASCON state is 320
bits. Associated Data (AD) Processing: This stage processes AD that represents the data block to be
transmitted in an un-encrypted form, while at the same time ensuring the integrity of the transmitted

Sensors 2020, 20, 2707 5 of 23

data block. Plaintext Processing: In this stage, ASCON takes plaintext as an input and generates the
ciphertext as output. Finalization: In the final stage, ASCON generates the authentication tag, which
ensures the integrity and authenticity of the ciphertext and AD. Furthermore, the substitution and
permutation network of ASCON comprises 5-bit S-Box, bit-wise XOR, and rotation operations. Thus,
ASCON is suitable for resource-constrained devices, such as embedded systems and radio frequency
identifier tags, because of its lightweight property and minimal overheads [24–26]. For securing
6LoWPANs, the proposed S6AE scheme in this paper borrows the standard ASCON encryption design,
which provides confidentiality and authenticity of data simultaneously. Additionally, S6AE employs
SHA-256 hash function, and bit-wise XOR operations to achieve AKE in 6LoWPANs.

0*|| k 0*|| 1

IV || K || N
pa papbpbpbpb

AD1 AD2 P1 C1

K || 0*

Cn-1 CnPn-1

K

tag

Pn

Initialization phase Associative data processing phase Plain-text processing phase Finalization

Figure 2. ASCON architecture.

3. The Proposed S6AE Scheme

S6AE verifies the legitimacy of SNs at the CS, and validates the integrity and authenticity of
messages exchanged between SNs and the CS in 6LoWPANs. In S6AE, after verifying the authenticity
of SNs, CS and SNs establish secret keys using ASCON as the encryption scheme. SHA-256 is used to
generate unique output strings by using the S6AE secret parameters, and bit-wise XOR operations are
used to reduce the computational and storage costs. S6AE consists of the registration phase, the AKE
phase, and the handover phase. It is necessary for a static or mobile SN to execute the first two phases,
whereas only a mobile SN requires to execute the handover phase. The notations used in this paper
are listed in Table 1.

Table 1. List of notations.

Notation Description

CS, SN Central server and 6LoWPAN sensor node

SIDsn, SIDldr, Pseudo-identities of sensor node and 6LDR, respectively

IDsn, SP1, SPn
1

Secret real-identities of 6LoWPAN sensor nodes and secret parameter used
in authentication process

Ek(x), Dk(x) Encryption and decryption of message “x” using the secret-key “k”

〈Tagsn, Tag
′
sn〉, 〈Tagg, Tagcs〉

Authentication parameter generated by encryption and decryption algorithm
at SN and CS, respectively

Tsn, Tcs, Tlar Timestamps at SN, CS and 6LAR, respectively.

〈IVsn, IV
′
sn〉, 〈IVcs, IV

′
cs〉 Initialization vectors at SN and CS, respectively

〈Sk, S
′′′

k 〉, 〈S
′

k, S
′′

k 〉 ASCON initialization states at SN and CS, respectively

Sh
k , S

′h
k Initialization states at CS and SN in the handover phase, respectively.

Ksn, Rn and Rs1, Rs2 Keys for SN and random number used in authentication process

MACsn, MACcs MAC addresses of SN and CS, respectively

Th, Rh Timestamp and random number used in handover phase, respectively

H(.), ⊕, ‖ Cryptographic hash-function, bit-wise XOR, and concatenation, respectively

Sensors 2020, 20, 2707 6 of 23

3.1. Sensor Registration Phase

This phase deals with the registration of SN before its deployment in 6LoWPAN. CS performs
the following operations to register SNs. It

• calculates the master key Km by computing Km = H(IDcs ‖ rcs), where IDcs is the real identity of
CS and rcs is a random number. CS divides Km into four equal chunks of 64 bits, namely K1

m, K2
m,

K3
m, and K4

m, and computes Kcs = K1
m ⊕ K2

m ⊕ K3
m ⊕ K4

m, where Kcs is a temporary key for CS.
• assigns a unique IDsn of 64 bits for SN.
• picks a key Ksn of 64 bits for SN and computes the pseudo-identity SIDsn = IDsn ⊕ Ksn ⊕ Kcs.
• computes Hr = H(Km ‖ Ksn ‖ IDsn) and derives security parameter SP1 by computing SP1 =

H1
r ⊕ H2

r ⊕ H3
r ⊕ H4

r , where H1
r , H2

r , H3
r , and H4

r are four equal chunks of 64 bit Hr.

Finally, CS stores SN related secret information, i.e., {IDsn, SP1, Ksn, Kcs, MACsn} into its database
and {IDsn, SP1, SIDsn, Ksn, MACcs} in the memory of SN while making use of a secure channel. CS
also stores SIDsn into 6LDR memory through a secure channel.

3.2. Sponge State Generation

The initialization phase Sk of ASCON consists of 320 bits, known as initialization states Sk. In the
proposed scheme, Sk can be derived as follows. SN

• generates a random number R1 of 64 bits and time stamp Tsn of 32 bits,
• computes IVsn = R1 ‖ SIDsn, where IVsn is an initialization vector for SN,
• computes Hs = H(IDsn ‖ SIDsn ‖ SIDldr ‖ Tsn) and derives Sk = IVsn ‖ H24

s , where H24
s is the

first 24 bytes of Hs. The size of Sk is 320 bits (H24
s = 24 bytes + IVsn = 16 bytes), which is served

as input to the encryption algorithm during the initialization phase.

3.3. Associative Data Generation

The proposed S6AE scheme generates AD while incorporating the compressed IPv6 and User
Datagram Protocol (UDP) headers [8,21]. The header size is 10 bytes after compression. The subsequent
Immutable Fields (IF) are used to generate AD. This includes parameters such as dispatch, internet
protocol header compression, context identifier, next header compression, destination interface
identifier, UDP Ports, UDP Checksum, Global routing prefix of 6LoWPAN (G6), and Global routing
prefix of CS (GC). CS stores the MAC of SN and SN stores the MAC of CS. Moreover, the hop limit
parameter is mutable, which is not incorporated in AD generation. The following operations are
performed to generate AD.

• SN computes Had = H(IFsn ‖ G6 ‖ GC ‖ MACsn). It then divides Had into two equal parts, i.e.,
H1

ad and H2
ad each of 128 bits.

• SN computes AD = H1
ad ⊕ H2

ad and divides AD into two equal parts, i.e., AD1 and AD2, each of
64 bits.

• The encryption algorithm takes AD1 and AD2 as the inputs at the associative data processing
phase to preserve their integrity.

Remark 1. During the registration process of SN, CS stores the credential information in SN’s memory. Based
on this secret, S6AE computes Sk, which is the initialization phase of the encryption algorithm as discussed
in Section 3.2. The unencrypted information, such as IPv6/UDP information, is used for the associative data
processing phase of the encryption algorithm, which is described in Section 3.3. The same process is repeated at
the receiver side for decryption.

3.4. Authentication and Key Exchange

In this phase, SN achieves the anonymous authentication and key agreement with CS via the
intermediate nodes, 6LDR and 6LAR. After establishing a secret key, SN and CS can exchange data

Sensors 2020, 20, 2707 7 of 23

securely. S6AE exchanges four messages to accomplish the authentication process. The detail of the
messages exchanged in the proposed scheme is given below.

3.4.1. Step AKE-1

SN generates a random number Rs1 of 64 bits and timestamp Tsn of 32 bits for computing
X = IDsn ⊕ Rs1 ⊕ SP1, and Y = IDsn ⊕ Rs1, where the sizes of X and Y are 64 bits. The encryption
algorithm takes Sk as shared secret inputs during the initialization phase, 〈AD1, AD2〉 at the associative
data processing phase, which is computed in Section 3.3, 〈X ‖ Y〉 at the plaintext processing phase,
and produces ciphertext C1 = ESk{AD1, AD2, 〈X ‖ Y〉} and Tagsn that is generated automatically
by ASCON. C1 ensures the confidentiality of the plaintext 〈X ‖ Y〉. The generated Tagsn guarantees
the authenticity and integrity of the ciphertext C1 at the receiving end. Tagsn provides the same
functionality as Message Authentication Code (MAC). SN also computes Z = SIDsn ⊕ SIDldr, where
SIDldr is the temporary identity of 6LDR. After performing the above operations, SN constructs a
message M1 :〈Tsn ‖ Z ‖ 〈C1 ‖ Tagsn〉 ‖ R1〉 and forwards it to 6LDR to be processed further.

Remark 2. There are various encryption algorithms, such as the Advanced Encryption Standard (AES),
which provides confidentiality features. However, AES does not provide authentication of data. To achieve the
required authentication, another algorithm is required, such as the MAC algorithm. Thus, all authenticated
encryption schemes can be used to achieve confidentiality and authenticity of the communicated message because
these schemes generate ciphertext as well as authentication tag. The authentication tag renders the same
functionality as that of the MAC algorithm. This implies that an authenticated encryption scheme provides the
same functionality as that of the cumulative AES and MAC functionality. An AKE scheme, which is based on
AES, requires another cryptographic algorithm to achieve the authenticity of messages.

The main idea here is to use ASCON to achieve the cumulative functionality of AES + MAC by using a
single algorithm (i.e., ASCON), which generates its own MAC to be validated at the destination. To check the
integrity of transmitted messages, we do not to employ any other MAC. In this way, we are able to reduce the
computational cost, as shall be demonstrated in the performance evaluation section.

3.4.2. Step AKE-2

After receiving M1 from SN, 6LDR picks out Z from the received message and computes
SIDr = Z⊕ SIDsn. 6LDR compares SIDr with the stored SIDldr in its memory. If the contents of both
the SIDr and SIDldr are the same, 6LDR appends its SIDldr with the received M1 for generating and
forwarding the new message M2 :〈SIDldr ‖ M1〉 to 6LAR. Contrarily, 6LDR aborts the AKE process
and sends an error message back to SN.

3.4.3. Step AKE-3

6LAR receives the newly generated M2 from 6LDR and checks SIDldr in the current list of the
registered devices. If 6LAR does not find SIDldr in the list, it will abort the AKE process and add
unverified SIDldr in the blacklist. On the contrary, upon successful verification of the SIDldr for M2,
6LAR picks a timestamp Tlar and computes Hlar = H(M2 ‖ SIDlar ‖ Tlar ‖ Klar), where Klar is the
pre-shared key between 6LAR and CS, and SIDlar is the temporary identity of 6LAR. 6LAR then
generates and forwards message M3:〈SIDlar ‖ Tlar ‖ M2 ‖ Hlar〉 to CS for further processing.

3.4.4. Step AKE-4

Upon receiving M3 from 6LAR, CS retrieves secret information related to 6LAR, such as a Klar
using SIDlar. CS also checks the validity of Tlar by verifying if M3 is received within the maximum
transmission delay (Td) limit by computing Td ≥ Tr − Tlar, where Tr is the received timestamp of M3.
To verify the integrity of M3, CS computes H

′
lar = H(M2 ‖ SIDlar ‖ Tlar ‖ Klar). If the computed H

′
lar

and the received Hlar are not identical, CS aborts the AKE process and adds 6LAR to the current list of
fake devices. After checking the integrity of M3, CS retrieves M2 from M3, and checks if the condition

Sensors 2020, 20, 2707 8 of 23

Td ≥ Tr − Tsn holds. If the condition does not hold, then CS rejects M2. Moreover, CS also checks
whether a valid SIDldr exists in the current list of 6LDR devices. On successful verification of SIDldr,
CS picks Z from M2, derives SIDsn by computing SIDldr ⊕ Z, and checks if SIDsn exits in its database.
After the verification of the SIDsn, CS retrieves the information stored in its database, such as IDsn,
Kcs, Ksn, and SP1.

3.4.5. Step AKE-5

CS generates IVcs by concatenating R1 with SIDsn, which are attached with the received M2.
CS also computes H

′
s = H(IDsn ‖ SIDsn ‖ SIDldr ‖ Tsn) to derive S

′
k. It is important to mention

here that 320 bits of S
′
k is the concatenation of IVcs and H

′24
s , i.e., S

′
k = IVcs ‖ H

′24
s , where H

′24
s are

the first 24 bytes of the H
′
s (which is of 32 byte. The size of S

′
k is 40 bytes. Moreover, CS determines

AD by using the received header information and the stored MACsn in CS’s database by computing
H
′
ad = H(IFsn ‖ G6 ‖ GC ‖ MACsn), ADx = H

′1
ad ⊕ H

′2
ad and divides ADx into two parts, i.e., AD

′
1

and AD
′
2. AD is the input to the encryption algorithm and its purpose is to ensure the integrity of

header information. The detailed process of computing AD is given in the Section 3.3. In addition, CS
performs the decryption operation Ds′k

{〈AD
′
1, AD

′
2, C1〉}, where S

′
sk

is the input at the initialization

phase, AD
′
1 and AD

′
2 are the inputs at associative data processing phase, and C1 is the input at the

ciphertext processing phase, as shown in Figure 2. Moreover, the decryption algorithm generates Tagg

before extracting the plaintext information. ASCON generates the authentication tag automatically
after processing AD and ciphertext. Then CS checks the condition Tagsn = Tagg, where Tagsn is
received with M1. An inverse free authenticated encryption scheme generates the same authentication
tag during the encryption and decryption process, if there is no modification in AD and ciphertext.
However, if there is any modification in the communicated message, the generated authentication
tag will be different, which causes the failure of authentication process in the proposed AKE. If the
condition holds, decryption process will reveal the plaintext information. Otherwise, CS will abort
the AKE process. The revealed plaintext, after the decryption of C1, includes X and Y. CS picks the
retrieved IDsn and performs IDsn⊕Y operation to determine Rs1 for computing SP

′
1 = IDsn⊕ Rs1⊕X.

Furthermore, in order to check the legitimacy of SN, CS checks the condition SP1 = SP
′
1. If the

condition holds, CS registers SN as a legitimate device, otherwise, CS will abort the AKE process.

3.4.6. Step AKE-6

After verifying the legitimacy of SN, CS picks timestamps Ts of 32 bits. CS picks three random
numbers Rs2, R2, and Rn each of 64 bits. CS then computes H

′′
r = H(Kcs ‖ Rn ‖ IDsn) and calculates

a new security parameter SPn
1 by computing SPn

1 = H
′′1
r ⊕ H

′′2
r ⊕ H

′′3
r ⊕ H

′′4
r , where H

′′1
r H

′′2
r H

′′3
r

H
′′4
r are four equal chunks of H

′′
r each of 64 bits. CS calculates Y1 = Rn ⊕ Kcs, X1 = Y1 ⊕ Rs1, and

IV
′
cs = R2 ‖ X1, where IV

′
cs is the initialization vector at CS and R2 is the random number of 64 bits.

To generate S
′′
k , CS computes H

′′
s = H(IDsn ‖ Rs1 ‖ Ts ‖ Texp ‖ Y1), where the size of H

′′
s is 256

bits and calculates S
′′
k = H

′′24
s ‖ IVcs, where H

′′24
s are the first 24 bytes of H

′′
s . Next, CS calculates

AD by computing H
′′
ad = H(IFcs ‖ G6 ‖ GC ‖ MACcs), ADx1 = H

′′1
ad ⊕ H

′′2
ad and divides ADx1

into two parts, i.e., AD
′′
1 and AD

′′
2 . For secure communication in future, CS computes a session key

Kse by calculating Kse = H(IDsn ‖ Y1 ‖ SPn
1 ‖ Rs1 ‖ Rs2). Moreover, for secure handover from

one domain to another domain as shown in Figure 1, CS calculates a unique ticket Tsn
ic for SN by

computing Tsn
ic = IDsn ⊕ Rs2 ⊕ Rs1 ‖ Y1 ⊕ SPn

1). SN will make use of the generated Tsn
ic during

the handover process. CS also picks Tsn
ic ’s expiry time Texp (32 bits). In addition, the encryption

algorithm takes into account S
′′
k during the initialization phase, AD

′′
1 and AD

′′
2 during the associative

data processing phase, and 〈SPn
1 ‖ Rs2〉 during the plaintext information processing phase, in order

to generate C2 = ES′′k
{AD

′′
1 , AD

′′
2 , 〈SPn

1 ‖ Rs2〉} and Tagcs. Moreover, CS constructs the message

M4:〈Tcs ‖ Texp ‖ X1 ‖ 〈C2 ‖ Tagcs〉 ‖ R2〉, and forwards it to 6LAR. 6LAR and 6LDR simply relay M4
to SN. Furthermore, CS stores the parameters {IDsn, SP1, SPn

1 , Kcs, Tsn
ic , Texp } in its memory.

Sensors 2020, 20, 2707 9 of 23

3.4.7. Step AKE-7

After receiving M4, SN checks the validity of timestamp Ts by checking the condition Td ≥
Tr − Tsn, where Td is the maximum allowed time TD and Tr is the period in which M4 is received.
Significantly, SN will reject M4 if Ts exceeds the maximum allowed delay. SN picks R2, X1 from the
received M4 and calculates IV

′
sn = R2 ‖ X1. SN also computes Y1 = Rs1 ⊕ X1, H

′′′
s = H(IDsn ‖ Rs1 ‖

Ts ‖ Y1) and S
′′′
k = H

′′′24
s ‖ IV

′
sn, where H

′′′24
s is the first 24 bytes of H

′′′
s . Next, SN calculates AD by

computing H
′′′
ad = H(IFcs ‖ G6 ‖ GC ‖ MACcs), ADx2 = H

′′′1
ad ⊕ H

′′′2
ad and divides ADx2 into two parts,

i.e., AD
′′′
1 and AD

′′′
2 . The decryption algorithm takes S

′′′
k as the input during the initialization phase,

AD
′′′
1 and AD

′′′
2 during the associative data processing phase, C2 during the ciphertext processing

phase, and performs the decryption operation DS′′′k
{AD

′′′
1 , AD

′′′
2 , C2}, to generate Tag

′
sn. In the final

step, SN checks the condition Tagcs = Tag
′
sn. If the condition holds then decryption algorithm will

reveal the plaintext information, i.e., 〈SPn
1 ‖ Rs2 〉. Additionally, SN computes the session key Kse

by computing Kse = H(IDsn ‖ Y1 ‖ SPn
1 ‖ Rs1 ‖ Rs2) to secure future communications with CS.

In addition, SN calculates a unique ticket Tsn
ic = IDsn ⊕ Rs2 ⊕ Rs1 ‖ Y1 ⊕ SPn

1), which will be used
during the handover process. Finally, SN stores the parameters {IDsn, SPn

1 , SIDsn, Ksn, Tsn
ic , Texp} in

its memory. The AKE phase of the proposed scheme is summarized in Figure 3.

3.5. Handover Phase

In the proposed scheme, a sensor node can move from network Domain-1 to another Domain-2,
as shown in Figure 1. Hence, it is essential to verify the authenticity of a roaming SN with minimal
overhead complexity. Importantly, SN utilizes the ticket Tsn

ic , generated during the AKE phase, to
accomplish fast authentication. More specifically, SN performs the following operations during the
handover process.

3.5.1. Step HP-1

When an SN moves from the communication range of 6LDR1 in Domain-1 to the communication
range of 6LDR2 in Domain-2, SN sends a handover request to 6LDR2. SN checks Texp of Tsn

ic , which
is stored in SN′s memory. If Tsn

ic is not expired then SN picks the timestamp Th and computes
Hh = H(Tsn

ic ‖ Th ‖ SIDsn). SN then constructs a message Mh1:〈SIDsn ‖ Th ‖ Tsn
ic ‖ Hh〉 and forwards

Mh1 to 6LDR2. 6LDR2 checks if Th is fresh or not. To check integrity of Mh1, 6LDR2 computes
Hh2 = H(Tsn

ic ‖ Th ‖ SIDsn) and checks the condition Hh2 = Hh. If the condition holds, 6LDR2 stores
SIDsn in its memory and forwards Mh1 to CS. Contrarily, CS aborts the handover process and adds
SIDsn into blacklist in its database. After receiving Mh1, CS computes Hh3 = H(Tsn

ic ‖ Th ‖ SIDsn) and
checks the condition Hh3 = Hh. If the condition holds, CS checks if SIDsn exists in its database and
verifies the condition Tsn

ic = Tsn
ic . If the condition holds, CS continues the handover process, otherwise

CS marks IDsn as a compromised node and broadcasts IDsn in the network. CS also sends a message
to 6LDR1 to delete SIDsn from its memory. 6LDR1 sends an acknowledgment to CS. Tsn

ic is the stored
ticket at SN and CS.

Sensors 2020, 20, 2707 10 of 23

6LAR6LDRSN CS

M1:〈Tsn ‖ Z ‖ 〈C1 ‖ Tagsn〉 ‖ R1〉
M2:〈SIDldr ‖ 〈M1〉〉

M3:〈IDlar ‖ Tlar ‖ M2 ‖ Hlar〉

M4:〈Tcs ‖ Texp ‖ X1 ‖ 〈C2 ‖ Tagcs〉 ‖ R2〉

M4:〈Tcs ‖ Texp ‖ X1 ‖ 〈C2 ‖ Tagcs〉 ‖ R2〉

M4:〈Tcs ‖ Texp ‖ X1 ‖ 〈C2 ‖ Tagcs〉 ‖ R2〉

Step AKE-1

• picks timestamp Tsn , Rs1, and R1
• computes X = IDsn ⊕ Rs1 ⊕ SP1
• calculates Y = IDsn ⊕ Rs1
• computes 〈AD1, AD2〉
• computes Hs = H(IDsn ‖ SIDsn ‖ SIDldr ‖ Tsn)
• derives IVsn = R1 ‖ SIDsn and Sk = IVsn ‖ H24

s
• computes C1 = ESk {AD1, AD2, 〈X ‖ Y〉} and Tagsn

• Forwards M1 to 6LDR

Step AKE-2

6LDR
• compute SIDr = Z⊕ SIDsn

• checks SIDr
?
= SIDldr

• appends SIDldr and forwards
M2 to 6LAR

Step AKE-3

6LAR
• picks IDlar and secret key Klar
• computes Hlar = H(M2 ‖ IDlar ‖ Klar)

• forwards M3 to CS

Step AKE-4

CS
• computes H′lar = H(M2 ‖ IDlar ‖ Tlar ‖ Klar)

• checks H′lar
?
= Hlar , if H′lar = Hlar , if so, then

• checks Td ≥ Tr − Tlar and Td ≥ Tr − Tsn
• computes SIDldr ⊕ Z = SIDsn and if SIDsn is found in its databse, then
retrievs IDsn , Kcs , Ksn , and SP1
Step AKE-5

• calculates H′s = H(ID′sn ‖ SIDsn ‖ SIDldr ‖ Tsn)

• IVcs = R1 ‖ SIDsn and S′k = IVcs ‖ H′24
s

• computes 〈AD′1, AD′2 〉, D
S
′
k
{〈AD′1, AD2

′
, C1〉} and Tagg

• if Tagg = Tagsn , then
• computes Rs1 = IDsn ⊕Y and SP1 = IDsn ⊕ Rs1 ⊕ X

• checks if SP1 = SP′1 , otherwise CS aborts the AKE process

Step AKE-6

CS
• picks R2, Tcs , Rs2, and Rn

• calculates H′′r = H(Kcs ‖ Rn ‖ IDsn)

• computes SPn
1 = H′′1r ⊕ H′′2r ⊕ H′′3r ⊕ H′′4r

• computes Y1 = Rn ⊕ Kcs , X1 = Y1 ⊕ Rs1, and IV ′cs = R2 ‖ X1

• calculates H′′s = H(IDsn ‖ Rs1 ‖ Tcs ‖ Y1)

• computes S′′k = H′′24
s ‖ IV ′cs and 〈AD′′1 , AD′′2 〉

• computes C2 = E
S
′′
k
{AD′′1 , AD′′2 , 〈SPn

1 ‖ Rs2〉} and Tagcs

• computes Tsn
ic = IDsn ⊕ Rs2 ⊕ Rs1 ‖ Y1 ⊕ SPn

1)
• derives Kse = H(IDsn ‖ Y1 ‖ SPn

1 ‖ Rs1 ‖ Rs2)
• forwards M4 to SN

• stores 〈SIDsn , IDsn , SP1, SPn
1 , Ksn , Kcs , Tsn

ic 〉

Step AKE-7

• if Td ≥ Tcs − Tn
sn , then

• computes Y1 = X1 ⊕ Rs1 and IV ′sn = R2 ‖ X1

• calculates H′′′s (IDsn ‖ Rs1 ‖ Ts ‖ Y1) and S′′′k = H′′′24
s ‖ IV ′sn

• computes 〈AD′′′1 , AD′′′2 〉
• computes D

S
′′′
k
{AD′′′1 , AD′′′2 , 〈C2〉} and Tagsn

• checks Tagsn = Tagcs , if so, then derive 〈SPn
1 ‖ Rs2〉

• computes Tsn
ic = IDsn ⊕ Rs2 ⊕ Rs1 ‖ Y1 ⊕ SPn

1)
• computes Kse = H(IDsn ‖ Y1 ‖ SPn

1 ‖ Rs1 ‖ Rs2)

• stores 〈IDsn , SPn
1 , SIDsn , Ksn , Tsn

ic 〉

Figure 3. S6AE authentication and key establishment phase.

Sensors 2020, 20, 2707 11 of 23

3.5.2. Step HP-2

CS picks two random numbers Rn, R1 each of 64 bits, and timestamps Tn
exp and Th1 each of 32

bits. It also computes Sh
k = (Kes ‖ Rh ⊕ IDsn) and P = Rn ⊕ SPn

1 , where the size SPn
1 is 64 bits.

CS calculates Ch = ESh
k
(P ‖ Tn

exp ‖ Th1) and Tagcs by using the encryption algorithm. The Tagcs

ensures the authenticity of the transmitted information. It also computes the new session key as
Kn

se = H(IDsn ‖ Rn ‖ Kse). CS constructs a message Mh2:〈SIDsn ‖ Ch ‖ Tagcs〉 and forwards Mh2
to 6LDR2. Upon receiving Mh2, 6LDR2 looks up SIDsn in 6LDR2’s memory. If SIDsn exists in the
memory of 6LDR2, 6LDR2 forwards Mh2 to SN.

3.5.3. Step HP-3

After receiving the message Mh1 from CS, SN performs the decryption using DS′hk
{Ch}, where

S
′h
k = (Kes ‖ Rh ⊕ IDsn). The decryption process reveals the plaintext, which is (P ‖ Tn

exp ‖ Th1) and
also it generates the Tagsn. SN checks the condition Td ≥ Tr − Th. If the condition holds then SN
considers Mh1 valid, otherwise it rejects Mh1. Tn

exp indicates new expiry time of the Tsn
ic . SN checks the

condition Tagsn = Tagcs. If the condition holds, then SN computes R
′
n = SPn

1 ⊕ P and SP
′n
1 = P⊕ R

′
n.

Authentication will be successful if the stored SPn
1 and the computed SP

′n
1 are the same. SN generates

a symmetric key between SN and CS by computing Kn
se = H(IDsn ‖ Rn ‖ Kse). Finally, SN replaces

the stored session key Kse with the new session key Kn
se in the memory and updates the expiry time

Tn
exp in the tuple {IDsn, SPn

1 , SIDsn, Kn
se, Tsn

ic , Tn
exp}. Figure 4 shows the message exchange during the

handover phase.

Step HP-1: 〈SIDsn〉
Step HP-1: 〈SIDsn , ACK〉

SN 6LDR26LDR1 CS
Step HP-1: 〈SIDsn ‖ Th ‖ Tsn

ic ‖ Hh〉
Step HP-1: 〈SIDsn ‖ Th ‖ Tsn

ic ‖ Hh〉

Step HP-2: 〈SIDsn ‖ Ch ‖ Tagcs〉
Step HP-3: 〈SIDsn ‖ Ch ‖ Tagcs〉

Figure 4. The S6AE handover process.

4. Security Analysis

This section analyzes the security properties of our proposed S6AE scheme in three different
phases. In the first phase, the characteristics and capabilities of the S6AE scheme against malicious
attacks are described. In the second phase, BAN logic is incorporated to show the logical correctness
of the S6AE scheme. In the final phase, AVISPA tool is used for automatically verifying the security
properties of the proposed strategy.

4.1. Informal Security Analysis

4.1.1. Header Verification

Header Verification (HV) is an effective mechanism to mitigate the replay and Denial-of-Service
(DoS) attacks. In the proposed scheme, to provide IPv6/UDP header verification, SN computes
Had = H(IF ‖ G6 ‖ GC ‖ MACsn), AD = H1

ad ⊕ H2
ad, where H1

ad and H2
ad are the two equal chunks

each of 128 bits of Had. SN divides AD into two equal parts, i.e., AD1 and AD2 each of 64 bits, which
are the inputs at the associative data processing phase of the encryption algorithm. After receiving
the message M1, CS computes 〈AD

′
1, AD

′
2〉 and the decryption algorithm takes 〈AD

′
1, AD

′
2〉 at the

associative data processing phase. If there is no modification in the IPv6/UDP header, then the
condition Tagsn = Tagg will hold. This condition will not hold if an adversary modifies the IPv6/UDP
header during the AKE process. The same procedure holds for the message transmitted from CS to
SN. In this way, the proposed scheme ensures IPv6/UDP header integrity (origin verification).

Sensors 2020, 20, 2707 12 of 23

Remark 3. In this paper, HV means verification of the IPv6 header at the receiving end. We achieve HV by
generating AD through the Hash function SHA-256, as discussed in Section 3.3. If A tries to modify the
the IPv6 header, the generated authentication tag will not match the authentication tag attached with the
received message.

4.1.2. DoS Attack

By a DoS attack, an attacker can perform malicious activities and prevent a legal user from
accessing the network resources [11]. A DoS attack can degrade the performance of the network. An
IP spoofing attack is used to launch the DoS attack in the network by generating a large amount of
data packet with fake IP addresses. S6AE can provide protection against the IP spoofing attack by
ensuring the integrity of the IPv6 header. To perform a DoS attack, an adversary needs to calculate
H
′A
s = H(ID

′A
sn ‖ SIDAsn ‖ SIDAldr ‖ TAsn), IVcs = R1 ‖ SIDsn, S

′A
k = IVAcs ‖ H

′24A
s , 〈AD

′
1, AD

′
2

〉, DS′k
{〈AD

′
1, AD2

′A, CA1 〉}, and TagAg . Then A checks the condition TagAg = Tagsn. The condition

TagAg = Tagsn will not hold after capturing the IPv6/UDP header information because A requires the
parameters, such as IDsn, SP, and Ksn, which are secrets to SN and CS. Thus, S6AE can protect against
DoS attacks.

4.1.3. Replay Attack

A sort of network attack in which attacker wiretaps or captures the valid transmitted data and
retransmits the seized data in the network for harmful intention [27]. During the authentication process
(Section 3.4), all the transmitted messages M1:〈Tsn ‖ Z ‖ 〈C1 ‖ Tagsn〉 ‖ R1〉, M2:〈SIDldr ‖ M1〉,
M3:〈IDlar ‖ Tlar ‖ M2 ‖ Hlar〉, and M4:〈Tcs ‖ Texp ‖ X1 ‖ 〈C2 ‖ Tagcs〉 ‖ R2〉 include timestamps, and
random numbers. The verification of the timestamps, such as Tsn, Tcs, and Tlar, ensure the freshness
of the received message. Usually, Td is very small. Therefore, within Td, the probability of replaying
M1, M2, M3, and M4 for adversary A is negligible. A similar situation holds for the handover phase
messages. S6AE also prevents the replay attack by ensuring the IPv6/UDP header integrity. Any
modification in the IPv6/UDP header during the transmission of a message through the public Internet
makes the decryption and authentication unsuccessful at the respective communicating entities, such
as CS and SN. Hence, S6AE is secure against the replay attacks.

4.1.4. Man-in-the-Middle (MITM) Attack

MITM is an action of an intruder in which the intruder somehow conjoins the communication
between the two communicating network nodes while both the nodes believe that they are
communicating directly [28]. Let an adversary A captures all the transmitted messages M1, M2,
M3, and M4 during the communication between SN and CS. Suppose A attempts to forge M1 to
generate a valid message to force CS to believe that the forged message is from an authentic source.
For this purpose, A needs to guess the real identity IDsn of SN, which is an infeasible task for A.
Therefore, it not possible for A to generate a bogus message M1. A similar condition holds for all other
transmitted messages. This clearly indicates that S6AE is protected against MITM attack.

4.1.5. Sensor Impersonation Attack

By using an impersonation attack, the attacker can impersonate as an authentic SN to perform
malicious activities in the network [11]. To execute this attacks, an adversary A picks the current
timestamp T

′
sn, ID

′
sn and random number R

′
s1 and then attempts to transmit the message M1 to CS on

behalf of SN. However, to construct a legitimate M1
′
, Amust know the real identity IDsn of SN, Rs1

and SP1. Without knowing these parameters, it is hard for A to generate valid Sk = IVsn ‖ H24
s and

C1. For A, it is computationally hard to generate IDsn, SP1 and Rs1. Therefore, A cannot generate a
legitimate M1 and, thus, the proposed scheme provides protection against the impersonation attack.

Sensors 2020, 20, 2707 13 of 23

4.1.6. Server Impersonation Attack

In this attack, adversary A can send M4 to SN on behalf of CS . To compute a valid S
′′
k = H

′′24
s ‖

IV
′
cs and C2, it is necessary for A to know the secret parameters IDsn, Kcs, Rn, and Rs1. However, for

A, it is computationally hard to generate these parameters, which are known only to CS. Therefore,
S6AE can mitigate CS impersonation attacks.

4.1.7. Identity Privacy Preservation

Normally, SN utilizes the pseudo-identity SIDsn during the transmission of the authentication
messages, which is computed as SIDsn = IDsn ⊕ Ksn ⊕ Kcs, where all the parameters are secret
to CS and SN. Therefore, it is hard for A to generate SIDsn without knowing these parameters.
This demonstrates that the proposed scheme ensures the identity privacy of SN.

4.1.8. Unlinkability/Anonymity

S6AE renders the unlinkable and anonymous session during the AKE process. Each time when
a new session starts, SN picks a fresh random number R1 and generates an IVsn = R1 ‖ SIDsn.
The newly generated IVsn is the input to the initialization phase of the encryption algorithm.
The encryption algorithm produces different ciphertext each time even with the same secret parameters
SP1, Rs1, and IDsn. The ciphertext also includes another fresh random number Rs1, which in turn
enhances the randomness of the ciphertext. Therefore, it is hard for an adversary to correlate the two
sessions form the same node. S6AE is untraceable, and it is not possible for an attacker to create a link
between two different AKE processes. Since each AKE session utilizes a new SIDsn, this makes the
AKE session anonymous. Hence, S6AE ensures unlinkability and anonymity during the AKE process.

4.1.9. Sybil Attack

In a Sybil attack, the adversary can generate multiple counterfeit identities of real nodes. S6AE
can prevent the Sybil attack because each SN in the network authenticates itself with CS [11]. If CS
discover any duplicate IDsn of an SN during the AKE process in the database, then CS considers
that particular ID as a compromised node. CS adds these IDs to the blacklist and forwards the list to
6LDR1 and 6LDR2, which in turn broadcast these IDs in the network. Thus, S6AE protects against the
Sybil attack.

4.1.10. Forward/Backward Secrecy

Forward/backward secrecy means that if an adversary reveals the current session key, it does
not enable an intruder to compromise the privacy of the past and future session keys [11]. S6AE
determines session key by computing Kse = H(IDsn ‖ Y1 ‖ SPn

1 ‖ Rs1 ‖ Rs2) for each AKE session.
A new AKE process establishes a session key by incorporating fresh parameters, such as Y1, SPn

1 , Rs1,
and Rs2. If an adversary A breaches the security of the current session key Kse, it does not allow A to
compromise the future session key. Therefore, it is hard for an adversary to construct the past or future
session keys.

4.1.11. Ephemeral Secret Leakage (ESL) Attack

Pre-computed Ephemeral Secrets (ES), which are stored in insecure memory, can be compromised
byA. By using these compromised ES (short term) and long term parameters,A can breach the session
key security. Such types of attacks are known as ESL [29]. In S6AE, SN and CS establish a secret
session key Kse during the AKE process for the future secure communication. The established session
key Kse = H(IDsn ‖ Y1 ‖ SPn

1 ‖ Rs1 ‖ Rs2) incorporates ephemeral terms, such as Rs1, Rs2, and long
terms, such as IDsn. If A compromises the ephemeral terms Rs1 and Rs2, A still requires the long term
SIDsn to breach the the security of the session key Kse. To compromise the security of Kse, A must

Sensors 2020, 20, 2707 14 of 23

know the valid long and ephemeral terms, which are hard for A to know. Therefore, the proposed
S6AE is resilient to the ESL attack.

4.2. Crypt-Analysis Using BAN Logic

The BAN logic [30] is a logic of belief and action. It is a well defined formal method to test the logic
correctness of a security protocol and determines the trustfulness of agreement among the participants
in the AKE process of S6AE. The BAN logic is employed here to validate the mutual authentication
properties of the proposed S6AE scheme as a whole. The notations used in the BAN logic are listed in
the Table 2, which are used to describe different inference rules. A list of BAN logic inference rules are
listed in Table 3, which are used to determine the goal of the proposed scheme.

Table 2. Ban Logic notations.

Feature Description

S |≡ X S believes if the formula X is true

S |∼ X S once said X

SC X S sees X

S k↔ H k is a shared-secret between S and H

S K⇐⇒ H
K is a secret parameter known only S

and H
#(X) X is fresh.
{X}k X is encrypted with the secret key k

〈X〉Y X is combine with secret Y

S⇒ X S has jurisdiction over X
S
H

If S is true then H is also true

Table 3. Ban Logic inference rules.

Notation Description

Message-Meaning-Rule S|≡S k↔H,SC{X}k
S|≡H|∼X

Jurisdiction-Rule S|≡H→X,S|≡H|≡X
S|≡X

Belief-Rule S|≡(X,Y)
S|≡X

Nonce-Verification-Rule S|≡#(X),S|≡H|∼X
S|≡H|≡X

Freshness-Rule S|≡#(X)
S|≡#(X,Y)

4.2.1. Assumptions

S6AE makes the following assumptions at the outset to investigate the AKE properties of our
scheme.

AS-1: SN |≡ #(Tsn), #(Tcs)

AS-2: CS |≡ #(Tsn), #(Tcs)

AS-3: CS |≡ IDsn

AS-4: CS |≡ SP1

AS-5: SN |≡ IDsn

AS-6: SN |≡ SP1

AS-7: CS |≡ (CS IDsn↔ SN)

Sensors 2020, 20, 2707 15 of 23

AS-8: SN |≡ (CS IDsn↔ SN)

AS-9: SN |≡ #(Rs1)

AS-10: CS |≡ #(Rs1)

AS-11: SN |≡ CS |≡ (SN IDsn↔ CS)

AS-12: SN |≡ CS⇒ (SN Kse↔ CS)

AS-13: CS |≡ SN ⇒ (SN
SP1↔ CS)

AS-14: CS |≡ (CS
SP1↔ SN)

AS-15: SN |≡ (SN
SP1↔ CS)

4.2.2. Goals

To verify the AKE process of S6AE, it must achieve the following goals.

G1: CS |≡ SN |≡ (SN
SP1↔ CS)

G2: CS |≡ (CS
SP1↔ SN)

G3: SN |≡ CS |≡ (CS Kse↔ SN)

G4: SN |≡ (CS Kse↔ SN)

4.2.3. Protocol Idealized Form

The idealized form of the proposed scheme can be expressed as follow.

IF1: SN → CS: (Tsn, {SP1, Rs1}IDsn)

IF2: CS→ SN: (Tcs, Y1, {SPn
1 , Rs2, (CS Kse↔ SN)}IDsn)

4.2.4. Formal Verification

In this phase of the BAN logic, the inference rules, listed in Table 3, are used to determine if S6AE
has achieved its security goals.

VF-1: From IF1, AS-7, AS-8, and by applying Message-Meaning-Rules, it is possible to achieve

CS |≡ (SN IDsn↔ CS), CSC (Tsn, {SP1, Rs1}IDsn)

CS |≡ SN |∼ (Tsn, {SP1, Rs1}IDsn)
. (1)

VF-2: From IF1, AS-2 and by applying Freshness-Rule concludes

CS |≡ #(Tsn)

CS |≡ #(Tsn, {SP1, Rs1})
. (2)

VF-3: Using VF-1, VF-2 and by applying the Nonce-Verification-Rule, it is possible to obtain

CS |≡ #(Tsn, {SP1, Rs1}), CS |≡ SN |∼ (Tsn, {SP1, Rs1})
CS ≡ SN |≡ (Tsn, {SP1, Rs1})

. (3)

VF-4: From VF-3 and by applying the Belief-Rule, the goal G1 can be achieved as

CS |≡ SN |≡ (Tsn, {SP1, Rs1})

CS |≡ SN |≡ (SN
SP1↔ CS)

. (4)

Sensors 2020, 20, 2707 16 of 23

VF-5: The goal G2 can be accomplished by utilizing VF-4, AS-13, and by employing the
Jurisdiction-Rule from

CS |≡ SN |⇒ (SN
SP1↔ CS), CS |≡ SN |≡ (SN

SP1↔ CS)

CS |≡ (SN
SP1↔ CS)

. (5)

VF-6: From IF2, AS-11, and by applying Message-Meaning-Rules, it is possible to derive

SN |≡ (SN
IDsn
� CS), CSC (Tcs, Y1, {SPn

1 , Rs2, (CS Kse↔ SN)}IDsn)

SN |≡ CS |∼ (Tcs, , Y1, {SPn
1 , Rs2, (CS Kse↔ SN)}IDsn)

. (6)

VF-7: By using IF2, AS-1, and utilizing the Freshness-Rule, we get

SN |≡ #(Tcs)

SN |≡ #(Y1, {SPn
1 , Rs2, (CS Kse↔ SN)})

. (7)

VF-8: Using VF-6, VF-7 and by applying the Nonce-Verification-Rule, it is possible to obtain

SN |≡ #(Tcs, Y1, {SPn
1 , Rs2, (CS Kse↔ SN), (CS IDsn↔ SN)}), A∗

SN |≡ CS(Y1, {SPn
1 , Rs2, (CS Kse↔ SN)})

, (8)

A∗ = SN |≡ CS |∼ (Tcs, Y1, {SPn
1 , Rs2, (SN Kse↔ CS)}). (9)

VF-9: G3 can be achieved by using VF-8 and by employing the Belief-Rule from

SN |≡ CS(Tcs, Y1, {SPn
1 , Rs2, (CS Kse↔ SN)})

SN |≡ CS |≡ (SN Kse↔ CS)
. (10)

VF-10: From (11) G4 can be derived by utilizing AS-12 and by employing Jurisdiction-Rule

CS |≡ SN |⇒ (SN Kse↔ CS), SN |≡ CS |≡ (Tcs, Y1, {SPn
1 , Rs2, (CS Kse↔ SN)})

SN |≡ (SN Kse↔ CS)
. (11)

4.3. Crypt-Analysis Using AVISPA

Crypt-analysis of S6AE is conducted using the AVISPA tool [31], which obeys the DY attack
model and is commonly used by the research community to examine the capabilities of the security
algorithms. AVISPA comprises four back-end models, known as CL-AtSe, TA4SP, OFMC, and SATMC.
These back-ends perform various automatic analyses to detect vulnerabilities in the security scheme. It
uses perfect cryptography, which means that the adversary cannot derive the messages or plaintext
from ciphertext without perceiving the secret key. It uses formal language High-Level Protocol
Specification Language (HLPSL) to code a specified security algorithm. A translator known as
HLPSL2IF is used to convert the HLPSL code into the Intermediate Form (IF). AVISPA uses four
back-end techniques defined in [32] for the automatic analysis and the capabilities of a security
algorithm against various attacks. The XOR operation is not supported by SATMC and TA4SP
back-end. Therefore, the simulation of S6AE using these two back-ends is not possible.

Figure 5 shows the Output Format (OF) generated by AVISPA’s OFMC and CL-AtSe back-ends.
A generated OF has different sections, including SUMMARY, DETAILS, PROTOCOL, GOAL,
BACKEND and STATISTICS, as shown in Figure 5. SUMMARY shows whether a security scheme
being tested is safe or unsafe. PROTOCOL describes the HLPSL specification of the scheme in IF.

Sensors 2020, 20, 2707 17 of 23

GOALS is the analysis of the goals conducted by AVISPA as specified in HLPSL. BACKEND is used for
the backend analysis of the scheme. In S6AE implementation, there are 4 basic roles, i.e., SN, CS, 6LDR,
and 6LAR, and two compulsory roles, i.e., environment & goals and session defined in HLPSL. Figure
5 illustrates that the proposed S6AE scheme is secure and protects against MITM and replay attacks.

Figure 5. AVISPA OFMC and CL-AtSe back-end simulation results.

5. Performance Evaluation

This section presents the performance evaluation of S6AE in comparison with eminent 6LoWPAN
security schemes, namely, SAKES [16] and EAKES6Lo [17].

S6AE server-side has been implemented in Python 2.7 and each SN is consigned with a unique ID,
SID, and SP by CS utilizing a random number generator. Simulations are conducted on a computer
with Intel(R) Core(TM) i7-6700 CPU @ 3.40 GHz, Ubuntu (64-bit) and 8-GB RAM. A list of configuration
parameters is given in the Table 4.

Table 4. Simulation parameters.

Parameter Size (Bits)

Encryption Algorithm ASCON-128a
IDsn 64
SP 64

IDcs 64
SIDsn 64
SIDldr 64

timestamp 32
HASH Function SHA-256

Random numbers 64

5.1. Security Comparison

The security functionalities of the proposed scheme, compared with the existing security schemes,
are given in Table 5. EAKES6Lo and SAKES do not provide any header verification mechanism to
mitigates various malicious attacks, such as DoS and replay attacks. EAKES6Lo does not offer identity
privacy preservation of the sensor node. However, S6AE is more reliable than other security schemes
for 6LoWPAN, as can be seen in Table 5.

Sensors 2020, 20, 2707 18 of 23

Table 5. Comparison of security properties.

SAKES EAKES6Lo S6AE

Header Verification × × X

Replay attack X X X

Compromised attack × X X

IP-Spoofing attack × × X

Unlinkability × X X

Forward secrecy × X X

Sybil attack X X X

Impersonation attack X X X

DOS attack X X X

MITM attack X X X

Identity Privacy Preservation × × X

Mutual authentication X X X

Mobility × X X

5.2. Computational Overhead

The proposed S6AE scheme renders protection against well-known and various covert attacks.
However, during the AKE process, many unforeseen attacks, such as a jamming attack, may interfere
with the execution of S6AE and may introduce delay during the progress of the AKE process.
To estimate the computational overhead, the total execution time delay Td of S6AE can be calculated as

Td =
Tt

Nasp
,

where Tt = ∑5000
i=1 Ti

ex is the total time for 5000 runs, where Tex is the time required for the execution
of S6AE and Nasp = 5000× (1− attack success probability). SAKES is a hybrid security scheme and
applies the Diffie-Hellman (DH) key exchange mechanism. Four DH groups provide different levels
of security. To achieve the security level of 128-bits, we use the DH group 15 [33]. AES-CTR-128 bits,
SHA-256, and ECDSA-160, are the cryptographic operations used by EAKES6Lo during the AKE
process. S6AE utilized SHA-256 and ASCON cryptographic operations. The average time consumed
by S6AE, SAKES, and EAKES6Lo are 0.417 ms, 1.375 ms, and 0.868 ms, respectively, as shown in
Figure 6. Thus, S6AE has the lowest overall computational time.

Figure 6. Computational overhead.

Sensors 2020, 20, 2707 19 of 23

Furthermore, Table 6 presents the comparison of the computational overheads of SAKES,
EAKES6Lo, and S6AE. To compute the computational overheads, this paper considers the average
time required for SHA-256, i.e., Tsha = 0.0311 ms, and for the AES-128 is Taes = 0.125 ms.
The time needed for the signature generation/verification is Tsg = 5.20 ms and the time required
for ECC public/private key generation is Tg = 5.50 ms. The average time required for ASCON is
Tascon = 0.065 ms (10 MHz) [23,24] and 19.16 ms is the time required for the modular exponentiation
(DH). The computational costs of SAKES, EAKES6Lo, and S6AE are 3Texp + 8Taes + 4Tsha ≈ 58.6044 ms,
5Taes + 4Tsha + 2Tsv + Tsg ≈ 17.2494 ms, and 4Tascon + 13Tsha + 24Txor ≈ 0.6643 ms, respectively. Thus,
SAKES and EAKES6Lo are computationally more expensive as compared to the S6AE.

Table 6. Computational overheads.

Scheme SN 6LDR 6LAR CS Total Time

SAKES 3Taes + Tsha 2Texp + 2Taes + Tsha - Texp + 3Taes + 2Tsha 3Texp + 8Taes + 4Tsha ≈ 58.6044 ms

EAKES6Lo 2Taes + Tsha + Tsg Tsv Tsha + Taes 3Taes + 2Tsha + Tsv 5Taes + 4Tsha + 2Tsv + Tsg ≈ 17.2494 ms

S6AE 2Tascon + 5Tsha + 7Txor Txor Tsha 2Tascon + 7Tsha + 14Txor 4Tascon + 13Tsha + 22Txor ≈ 0.6643 ms

5.3. Communication Overhead and Energy Consumption

Optimization of energy consumption is a critical parameter of interest for 6LoWPAN. It is
imperative to minimize the transmitted message size to reduce the energy consumption of sensor
nodes. 6LAR, CS, and 6LDR are powerful devices with ample energy resources. Therefore, S6AE
considers the energy consumption in the wirelessly connected constrained devices, and the energy
consumption outside 6LoWPAN is not evaluated. To evaluate the transmission overhead in the
proposed scheme, we consider 10 bytes overhead of the compressed form of IPv6/UDP header defined
in [21]. The energy consumption during sending and receiving of a single bit is 0.72 µJ and 0.81 µJ,
respectively [34]. The transmission overhead of S6AE is given in Table 7 and energy consumption in
Table 8. S6AE has been compared with EAKES6Lo and SAKES. It is observed that S6AE utilizes fewer
energy resources.

Table 7. Communication overhead.

Security Schemes

Exchanged
Messages EAKES6Lo SAKES S6AE

SN → 6LDR 672 bits 688 bits 496 bits

6LDR→ SN 784 bits 2176 bits 528 bits

Table 8. Transmission energy consumption.

Proposed Scheme Energy Consumption

S6AE 0.785 mJ

EAKES6Lo 1.11888 mJ

SAKES 2.25792 mJ

The average energy cost for AES encryption/decryption is 9 µJ, SHA-256 needs 5.9 µJ/byte,
ECDSA-160 consumes 6.26 mJ in signature generation, and ASCON requires 0.0207 µJ [24]. Total
energy cost overhead of the EAKESLo, SAKES, and S6AE are 6.52 mJ, 2.51 mJ, and 1.48 mJ, respectively.
If an adversary interrupts the execution of the protocol, it may increase energy consumption. Figure 7
shows the total energy utilization in the presence of jamming attacks.

Sensors 2020, 20, 2707 20 of 23

Figure 7. Energy consumption overhead.

5.4. Storage Overhead Comparison

In the proposed scheme, SN is required to store the tuple {IDsn, SIDsn, SPn
1 , Tsn

ic , MACcs, Texp },
which requires (64 + 64 + 64 + 128 + 48 + 32) = 400 bits. CS needs to store the parameters {SIDsn, IDsn,
SP1, SPn

1 , Tsn
ic , MACsn, Texp}, which requires (64 + 64 + 64 + 64 + 128 + 48 + 32) = 464 bits. Table 9 shows

the comparison of storage cost of SAKES, EAKES6Lo, and S6AE. It is observed that the proposed
scheme requires more storage at the server and less storage at SN as compared to the EAKESLo and
needs less storage at SN and CS as compared to SAKES.

Table 9. Storage cost comparison.

Storage Cost SAKES EAKES6Lo S6AE

Sensor (SN) 272 bytes 88 bytes 46 bytes

Server (CS) 272 bytes 80 bytes 54 bytes

5.5. Handover Phase Comparison

This section presents the computational and communication overhead during the handover phase.
The computational overhead of EAKES6Lo and S6AE are 6Taes + Tsg + Tsv + 6Tsha ≈ 11.9366 ms, and
2Tascon + 4Tsha ≈ 0.2544 ms, respectively, during handover phase. Table 10 shows the communication
and computational overheads during the handover phase. The results manifest that the proposed
scheme is efficient as compared to the existing schemes.

Table 10. Handover overhead.

Computational Overhead Communication Overhead

Scheme Computational Time Time Cost (ms) SN → 6LDR2 6LDR2 → SN No. of Messages Energy Cost (mJ)

EAKES6Lo 6Taes + 4Tm + Tsg + Tsv + 2Tsha 11.9366 704 bits 672 bits 6 1.05
S6AE 2Tascon + 4Tsha 0.2544 480 bits 418 bits 6 0.68
SAKES n/a - n/a n/a n/a n/a

5.6. Discussion

6LoWPANs are at the core of IoT. However, the original 6LoWPAN design does not offer security
services, including data confidentiality, integrity and authentication. To address this issue, we have
presented an AKE scheme, called S6AE, for 6LoWPANs. For this purpose, we have employed ASCON,
which is a lightweight general-purpose encryption algorithm, in conjunction with SHA-256 hash
function, to enable the required confidentiality, integrity and authenticity in 6LoWPANs. To the best of
our knowledge, ASCON has never been employed in the literature for securing 6LoWPANs.

Sensors 2020, 20, 2707 21 of 23

In S6AE, after verifying the authenticity of SNs, CS and SNs establish secret keys using ASCON
as the encryption scheme. ASCON has been employed to achieve data confidentiality and authenticity
simultaneously without using a separate MAC. Using AES renders confidentiality, and to achieve the
authenticity of the encrypted information it is imperative to use MAC. The main idea in this paper is
to use ASCON to achieve the cumulative functionality of AES + MAC by using a single encryption
algorithm, i.e., ASCON, which generates its own MAC. To check the integrity of transmitted messages,
we do not need to employ any other MAC. In this way, we reduce the computational cost, as compared
with the benchmarks.

We use SHA-256 to generate unique output strings by using the S6AE secret parameters.
To decrease the communication overhead by means of reducing the message size, the length of
the SHA-256 output string must be reduced to 64-bits with minimum computational cost and without
compromising performance. For this purpose, we use bit-wise XOR operations. Through BAN
logic and AVISPA, we have validated S6AE to be logically complete and offering the required
security services in 6LowPANs. We have demonstrated that S6AE reduces the computational
and communicational overheads, energy consumption and storage costs, in comparison with the
benchmarks.

Results demonstrate that the proposed scheme provides better features in comparison with the
benchmarks, namely, EAKES6Lo and SAKES. EAKES6Lo is a hybrid scheme, which uses ECC and
AES-CTR and is computationally expensive as compared to S6AE because ECC is resource intensive
for the resource constrained 6LoWPANs. Table 6 and Figure 6 show that S6AE requires less resources
as compare to EAKES6Lo. Table 5 shows that EAKES6Lo does not provide the identity privacy and
header verification. Moreover, SAKES is insecure against the 6LAR gateway compromised attack
and does not ensure the header integrity in 6LoWPANs, as shown in Table 5. SAKES employs
DH key exchange mechanism and also uses AES as a encryption and decryption scheme, which is
computationally expensive in comparison to S6AE, as shown in Table 6 and Figure 6. Table 9 shows
that S6AE requires less memory as compared SAKES and EAKES6Lo. Moreover, Table 7 indicates
that S6AE is less expensive. Furthermore, S6AE requires less energy resources as compared to the
EAKES6Lo and SAKES because S6AE uses lightweight and authenticated encryption that requires less
energy and computational resources. In a nutshell, we have found that the implementation of ASCON,
in conjunction with SHA-256, in 6LoWPANs is promising to secure communications.

6. Conclusions

6LoWPAN is a providential technology having a vital share in IoT and is commonly deployed
in a variety of applications. Originally, 6LoWPAN does not provide any security and privacy
mechanism. To address this issue, this paper has presented an authentication and key exchange scheme.
The proposed scheme establishes a session key after the mutual authentication, which ensures secure
communication and prevents an attacker from accessing the transmitted information. The proposed
scheme also renders the header verification or origin verification of the message simultaneously
without using the IPSec protocol. The employed BAN logic analysis indicates that S6AE is logically
complete. Moreover, the security verification using AVISPA illustrates that the proposed scheme
is secure against various malicious attacks. Finally, the performance evaluation reveals that, as
compared to eminent schemes, S6AE has less communication, computational handover, energy, and
storage overheads. As a future work, S6AE can be extended to varying security levels using secure
cryptographic algorithms.

Author Contributions: Conceptualization, M.T.; Data curation, M.T. and G.A.; Formal analysis, M.T. and G.A.;
Funding acquisition, S.K.; Methodology, M.T., G.A., Z.H.A. and F.M.; Project administration, F.M.; Resources, S.K.;
Software, Z.H.A. and M.W.; Supervision, G.A. and M.W.; Validation, S.K.; Writing—review & editing, S.K. All
authors have read and agreed to the published version of the manuscript.

Funding: This work was supported by the Research Program through the National Research Foundation of Korea
(NRF-2019R1A2C1005920).

Sensors 2020, 20, 2707 22 of 23

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Miguel, M.; Jamhour, E.; Pellenz, M.; Penna, M. SDN architecture for 6LoWPAN wireless sensor networks.
Sensors 2018, 18, 3738. [CrossRef] [PubMed]

2. Nait Hamoud, O.; Kenaza, T.; Challal, Y. Security in device-to-device communications: A survey. IET Netw.
2018, 7, 14–22. [CrossRef]

3. Gomes, T.; Salgado, F.; Pinto, S.; Cabral, J.; Tavares, A. A 6LoWPAN accelerator for Internet of Things
endpoint devices. IEEE Internet Things J. 2017, 5, 371–377. [CrossRef]

4. Gomez, C.; Paradells, J.; Bormann, C.; Crowcroft, J. From 6LoWPAN to 6Lo: Expanding the universe of
IPv6-supported technologies for the Internet of Things. IEEE Commun. Mag. 2017, 55, 148–155. [CrossRef]

5. Hennebert, C.; Santos, J.D. Security protocols and privacy issues into 6LoWPAN stack: A synthesis.
IEEE Internet Things J. 2014, 1, 384–398. [CrossRef]

6. Li, Y.; Wang, X. Green content communications in 6LoWPAN. IET Netw. 2020, 9, 38–42. [CrossRef]
7. Kushalnagar, N.; Montenegro, G. Transmission of IPv6 packets over IEEE 802.15. 4 networks.

IEEE Commun. Mag. 2007, 4944, 130.
8. Ishaq, I.; Carels, D.; Teklemariam, G.K.; Hoebeke, J.; Abeele, F.V.d.; Poorter, E.D.; Moerman, I.; Demeester, P.

IETF standardization in the field of the Internet of Things (IoT): A survey. J. Sens. Actuator Netw.
2013, 2, 235–287. [CrossRef]

9. Yeole, A.; Kalbande, D.; Sharma, A. Security of 6LoWPAN IoT Networks in hospitals for medical data
exchange. Procedia Comput. Sci. 2019, 152, 212–221. [CrossRef]

10. Sha, K.; Wei, W.; Yang, T.A.; Wang, Z.; Shi, W. On security challenges and open issues in Internet of Things.
Future Gener. Comput. Syst. 2018, 83, 326–337. [CrossRef]

11. Butun, I.; Österberg, P.; Song, H. Security of the Internet of Things: Vulnerabilities, attacks and
countermeasures. IEEE Commun. Surv. Tutor. 2019, 22, 616–644. [CrossRef]

12. Raza, S.; Duquennoy, S.; Chung, T.; Yazar, D.; Voigt, T.; Roedig, U. Securing communication in 6LoWPAN
with compressed IPsec. In Proceedings of the 2011 International Conference on Distributed Computing in
Sensor Systems and Workshops (DCOSS), Barcelona, Spain, 27–29 June 2011; pp. 1–8.

13. Raza, S.; Seitz, L.; Sitenkov, D.; Selander, G. S3K: Scalable security with symmetric keys-DTLS key
establishment for the Internet of Things. IEEE Trans. Autom. Sci. Eng. 2016, 13, 1270–1280. [CrossRef]

14. Chuang, M.C.; Lee, J.F.; Chen, M.C. SPAM: A secure password authentication mechanism for seamless
handover in proxy mobile IPv6 networks. IEEE Syst. J. 2012, 7, 102–113. [CrossRef]

15. Perrig, A.; Szewczyk, R.; Tygar, J.D.; Wen, V.; Culler, D.E. SPINS: Security protocols for sensor networks.
Wirel. Netw. 2002, 8, 521–534. [CrossRef]

16. Hussen, H.R.; Tizazu, G.A.; Ting, M.; Lee, T.; Choi, Y.; Kim, K.H. SAKES: Secure authentication and
key establishment scheme for M2M communication in the IP-based wireless sensor network (6LoWPAN).
In Proceedings of the 2013 Fifth International Conference on Ubiquitous and Future Networks (ICUFN),
Da Nang, Vietnam, 2–5 July 2013; pp. 246–251.

17. Qiu, Y.; Ma, M. A mutual authentication and key establishment scheme for M2M communication in
6LoWPAN networks. IEEE Trans. Ind. Inform. 2016, 12, 2074–2085. [CrossRef]

18. Roselin, A.G.; Nanda, P.; Nepal, S. Lightweight authentication protocol (LAUP) for 6LoWPAN Wireless
Sensor Networks. In Proceedings of the 2017 IEEE Trustcom/BigDataSE/ICESS, Sydney, NSW, Australia,
1–4 Auguest 2017; pp. 371–378.

19. Wang, X.; Mu, Y. Communication security and privacy support in 6LoWPAN. J. Inf. Secur. Appl.
2017, 34, 108–119. [CrossRef]

20. Glissa, G.; Meddeb, A. 6LowPSec: An end-to-end security protocol for 6LoWPAN. Ad Hoc Netw.
2019, 82, 100–112. [CrossRef]

21. Hui, J.; Thubert, P. Compression Format for IPv6 Datagrams over IEEE 802.15.4-Based Networks. Available
online: https://www.hjp.at/doc/rfc/rfc6282.html (accessed on 18 March 2020).

22. Dolev, D.; Yao, A. On the security of public key protocols. Trans. Inform. Theory 1983, 29, 198–208. [CrossRef]
23. Dobraunig, C.; Eichlseder, M.; Mendel, F.; Schläffer, M. ASCON v1. 2. Available online: https://competitions.

cr.yp.to/round3/asconv12.pdf (accessed on 18 March 2020).

http://dx.doi.org/10.3390/s18113738
http://www.ncbi.nlm.nih.gov/pubmed/30400194
http://dx.doi.org/10.1049/iet-net.2017.0119
http://dx.doi.org/10.1109/JIOT.2017.2785659
http://dx.doi.org/10.1109/MCOM.2017.1600534
http://dx.doi.org/10.1109/JIOT.2014.2359538
http://dx.doi.org/10.1049/iet-net.2018.5231
http://dx.doi.org/10.3390/jsan2020235
http://dx.doi.org/10.1016/j.procs.2019.05.045
http://dx.doi.org/10.1016/j.future.2018.01.059
http://dx.doi.org/10.1109/COMST.2019.2953364
http://dx.doi.org/10.1109/TASE.2015.2511301
http://dx.doi.org/10.1109/JSYST.2012.2209276
http://dx.doi.org/10.1023/A:1016598314198
http://dx.doi.org/10.1109/TII.2016.2604681
http://dx.doi.org/10.1016/j.jisa.2017.02.003
http://dx.doi.org/10.1016/j.adhoc.2018.01.013
https://www.hjp.at/doc/rfc/rfc6282.html
http://dx.doi.org/10.1109/TIT.1983.1056650
https://competitions.cr.yp.to/round3/asconv12.pdf
https://competitions.cr.yp.to/round3/asconv12.pdf

Sensors 2020, 20, 2707 23 of 23

24. Fivez, M. Energy Efficient Hardware Implementations of CAESAR Submissions. Master’s Thesis, KU Leuven,
Leuven, Belgium, 2016.

25. Diehl, W.; Abdulgadir, A.; Farahmand, F.; Kaps, J.P.; Gaj, K. Comparison of cost of protection against
differential power analysis of selected authenticated ciphers. Cryptography 2018, 2, 26. [CrossRef]

26. Adomnicai, A.; Fournier, J.J.; Masson, L. Masking the lightweight authenticated ciphers ACORN and
ASCON in software. IACR 2018, 2018, 708.

27. Pundir, S.; Wazid, M.; Singh, D.P.; Das, A.K.; Rodrigues, J.J.P.C.; Park, Y. Intrusion Detection Protocols in
Wireless Sensor Networks Integrated to Internet of Things Deployment: Survey and Future Challenges.
IEEE Access 2020, 8, 3343–3363. [CrossRef]

28. Yang, Y.; Wu, L.; Yin, G.; Li, L.; Zhao, H. A Survey on Security and Privacy Issues in Internet-of-Things.
IEEE Internet Things J. 2017, 4, 1250–1258. [CrossRef]

29. Khan, R.; Kumar, P.; Jayakody, D.N.K.; Liyanage, M. A survey on security and privacy of 5G technologies:
Potential solutions, recent advancements and future directions. IEEE Commun. Surv. Tutor. 2019, 22, 196–248.
[CrossRef]

30. Burrows, M.; Abadi, M.; Needham, R.M. A logic of authentication. R. Soc. Open Sci. 1989, 426, 233–271.
31. Armando, A.; Basin, D.; Boichut, Y.; Chevalier, Y.; Compagna, L.; Cuéllar, J.; Drielsma, P.H.; Héam, P.C.;

Kouchnarenko, O.; Mantovani, J. The AVISPA Tool for the Automated Validation of Internet Security Protocols and
Applications; Springer: Berlin/Heidelberg, Germany, 2005; pp. 281–285.

32. Automated Validation of Internet Security Protocols and Applications AVISPA. Available online: http:
//www.avispa-project.org/ (accessed on 20 March 2020).

33. Kivinen, T.; Kojo, M. More Modular Exponential (MODP) Diffie-Hellman Groups for Internet Key Exchange.
Available online: https://www.hjp.at/doc/rfc/rfc3526.html (accessed on 20 March 2020).

34. De Meulenaer, G.; Gosset, F.; Standaert, F.X.; Pereira, O. On the energy cost of communication and
cryptography in wireless sensor networks. In Proceedings of the 2008 IEEE International Conference on
Wireless and Mobile Computing, Networking and Communications, Avignon, France, 12–14 October 2008;
pp. 580–585.

c© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.3390/cryptography2030026
http://dx.doi.org/10.1109/ACCESS.2019.2962829
http://dx.doi.org/10.1109/JIOT.2017.2694844
http://dx.doi.org/10.1109/COMST.2019.2933899
http://www.avispa-project.org/
http://www.avispa-project.org/
https://www.hjp.at/doc/rfc/rfc3526.html
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Related Work
	Contribution and Paper Organization

	System Models
	Network Model and Security Assumptions
	Threat Model
	Preliminaries
	 Hash Function
	ASCON

	The Proposed S6AE Scheme
	Sensor Registration Phase
	Sponge State Generation
	Associative Data Generation
	Authentication and Key Exchange
	 Step AKE-1
	 Step AKE-2
	 Step AKE-3
	 Step AKE-4
	 Step AKE-5
	 Step AKE-6
	 Step AKE-7

	Handover Phase
	 Step HP-1
	 Step HP-2
	 Step HP-3

	Security Analysis
	Informal Security Analysis
	Header Verification
	 DoS Attack
	 Replay Attack
	 Man-in-the-Middle (MITM) Attack
	 Sensor Impersonation Attack
	 Server Impersonation Attack
	 Identity Privacy Preservation
	 Unlinkability/Anonymity
	 Sybil Attack
	 Forward/Backward Secrecy
	 Ephemeral Secret Leakage (ESL) Attack

	Crypt-Analysis Using BAN Logic
	Assumptions
	Goals
	Protocol Idealized Form
	Formal Verification

	Crypt-Analysis Using AVISPA

	Performance Evaluation
	Security Comparison
	Computational Overhead
	Communication Overhead and Energy Consumption
	Storage Overhead Comparison
	Handover Phase Comparison
	Discussion

	Conclusions
	References

