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Abstract: Research and development of active and passive exoskeletons for preventing work related
injuries has steadily increased in the last decade. Recently, new types of quasi-passive designs
have been emerging. These exoskeletons use passive viscoelastic elements, such as springs and
dampers, to provide support to the user, while using small actuators only to change the level of
support or to disengage the passive elements. Control of such devices is still largely unexplored,
especially the algorithms that predict the movement of the user, to take maximum advantage of the
passive viscoelastic elements. To address this issue, we developed a new control scheme consisting
of Gaussian mixture models (GMM) in combination with a state machine controller to identify and
classify the movement of the user as early as possible and thus provide a timely control output for the
quasi-passive spinal exoskeleton. In a leave-one-out cross-validation procedure, the overall accuracy
for providing support to the user was 86.72± 0.86% (mean ± s.d.) with a sensitivity and specificity
of 97.46± 2.09% and 83.15± 0.85% respectively. The results of this study indicate that our approach
is a promising tool for the control of quasi-passive spinal exoskeletons.

Keywords: pattern recognition; movement prediction; exoskeleton control; clutched elastic actuators

1. Introduction

Exoskeletons are recently being developed to solve issues of worker injuries and prevent
musculoskeletal disorders [1,2]. In particular, there has been a lot of development of spinal exoskeletons
to help alleviate the problems of low-back pain, and shoulder exoskeletons to assist users in overhead
working scenarios [3–5]. These exoskeletons exist predominantly in two categories: passive and active.
Active exoskeletons can add energy to the human motion using various types of actuators, ranging
from hydraulic, electric, pneumatic or a combination of these [6–8]. However, active exoskeletons
usually require a substantial energy storage that increases the weight of the system, and have a limited
amount of operational time. The additional weight of the exoskeleton increases the inertia of the
system which is difficult to compensate [9]. On the other hand, there are passive exoskeleton systems
that only use passive viscoelastic elements such as springs and dampers to provide assistance to
the user. Even though these devices do not add energy to the human, they have been proven to
effectively reduce muscular activity and fatigue, which can alleviate injuries or lower the risk of
musculoskeletal disorders [10–13]. Nevertheless, they usually suffer from a limited versatility as
they can restrict some of the user movement for tasks that do not require support, such as walking,
for spinal exoskeletons [14] and arm motion for shoulder exoskeletons.

One way of solving this issue is by using passive elements to provide the supporting torque and
small actuators to engage or disengage this support making these devices quasi-passive. Actuators
used for such purposes are called Clutched Elastic Actuators (CEA) [15]. By means of having the
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possibility to engage or disengage the passive support of the exoskeleton, unobtrusive movement of
the user can be achieved for tasks that do not require assistance. For all other tasks, the support is
engaged. One of the problems with such devices is the need for a controller that must determine when
to turn the support on and off.

Work regarding the control of devices implementing CEAs is sparse as it is usually limited to
the low-level control of forces and stiffness [15–17]. Most papers regarding control of exoskeletons,
deal with active devices [18–20]. Some studies were dealing specifically with controllers for active
spinal exoskeletons, where various techniques of lifting were being classified and based on this,
appropriate support was given to the user [19,21]. These studies focused on the detection and
classification of the upward lifting motion and neglected the initial part, when the body bends down
towards the load. This is appropriate only if the exoskeleton can actively generate mechanical power.
For a quasi-passive exoskeleton this is not a feasible approach, since the energy to assist the upward
motion needs to be stored in the viscoelastic elements already when performing the downward motion.
This is a more difficult task as some movements start similarly and only become different in later
stages (e.g., sitting down on a chair vs. bending down to lift an object from the ground). Arguably
this would imply that the initial part of the motion should be considered the same for both tasks (e.g.,
bending down is common to both sitting down and lifting an object). This would, however, require a
more complex acquisition of the ground truth information, such as video analysis of the performed
movements. In the scope of this work, we used clean and elementary ground truth information about
the performed movements in combination with a probabilistic classification algorithm, to develop a
controller that is able to handle the similarities between the movements and provide a control output
for the quasi-passive spinal exoskeleton.

A variety of classification techniques exist that were used for human movement classification
from body mounted sensors. These range from simple algorithms like threshold-based classification,
k-nearest neighbors, decision trees, to probabilistic approaches such as Gaussian mixture models,
hidden Markov models, or support vector machines, fuzzy logic and artificial neural networks [22].
Regarding exoskeleton control, Gaussian mixture models (GMM) have already been implemented for
EMG and EEG signal classification for the purpose of controlling an exoskeleton [23–25]. GMM are
also an effective tool for probabilistic classification of user movements [26,27]. The main advantage
of GMM is that they provide a probability estimate for classification rather than assigning new input
data to one specific class. As such, the classification of the model is not discrete, which allows us to
use this information to condition the transitions of a state machine in order to modulate the control
output for the quasi-passive spinal exoskeleton. In this paper, we present an exploitation of the GMM
probabilistic classification expanded with a state machine to control the quasi-passive exoskeleton in
such a way that it supports the user when needed and is unobtrusive when the support is not necessary.

2. Materials and Methods

2.1. Experimental Setup

We used a quasi-passive spinal exoskeleton [28] (Figure 1) that can provide support to the
subject by unloading the spine when performing lifting movements. It is comprised of two main
components: the upper spinal module and the bottom spring mechanism. The upper part is a spinal
elastic module with carbon fibers beams that transfers the extension torque generated by the passive
spring mechanism at the hip to the trunk of the subject. Additionally, it provides passive support
when the subject is performing a trunk flexion. In the bottom part of the exoskeleton there is a spring
mechanism that is compressed during hip flexion of the subject which generates an extension torque at
the hip. The mechanical design is presented in greater detail in the work of Näf et al. [28]. The spring
mechanism can be engaged or disengaged via a clutch located at both hip joints. If the clutch is
disengaged, the springs do not provide any support as the mechanism freely rotates around the hip
joint. This means that the exoskeleton does not hinder the subject when performing movements like
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walking or sitting down. It is important to note that the mechanical design of the clutch enables a
transition from engaged to disengaged or vice versa only when the forward rotation around the hip
joint of the exoskeleton is lower than 25◦. The rotation around the hip joint of the exoskeleton is
directly correlated with the subject’s hip angle.

Figure 1. Lateral view of a subject wearing the exoskeleton. Red arrows indicate the locations of key
components of the device.

To automatically engage or disengage the clutch, one small servo motor (KST X15-908, KST Digital
Technology Limited, Meihzou, Guangdong, China) is used on each side of the exoskeleton. Each servo
motor is attached to the lever arm of the clutch and can engage or disengage the clutch in 0.05 s. For a
regular motion of the user, the expected rotational velocity of hip flexion is around 100◦/s. Based on
the servo actuation timing, the subject can move for 5◦ during the activation of the clutch. This limits
the actual engagement window of the clutch down to 20◦ of hip flexion.

The exoskeleton is equipped with sensors to monitor the configuration of the exoskeleton and
therefore the pose of the subject wearing it. It has built-in rotational encoders in both hip joints to
monitor the hip flexion or extension (AS5048A, ams AG, Premstaetten, Austria). In addition to the
encoders, an IMU (Xsens, Enschede, the Netherlands) is attached on the chest straps of the exoskeleton.
The IMU provides information of the orientation of the subject’s trunk in space. For the experiment
performed in this study, we recorded the orientation of the subject’s trunk in the sagittal plane.

The exoskeleton includes on-board electronics to read sensor data and send commands to the servo
motors. The main computing module consists of a Raspberry Pi Model 3B+ (Raspberry Pi Foundation,
Cambridge, UK). It allows the programming of a controller in MATLAB Simulink (Mathworks,
Natick, MA, USA) which deploys the compiled code on the target hardware. The power supply for
the raspberry Pi is an off-the-shelf product PiJuice HAT (Pi Supply, East Sussex, UK). It provides
uninterrupted power supply for the Raspberry Pi from a 4.2 V, 1820 mAh battery. The servo motors
are powered from a separate 7.4 V, 1000 mAh Li-Poly battery.

2.2. Experimental Protocol

Seven healthy subjects participated in the study (age: 27.14± 2.12 years, height: 172.00± 9.27 cm,
weight: 69.86± 12.69 kg). The experiment was conducted at Jožef Stefan Institute in accordance with
the principles stated in the Declaration of Helsinki and approved by the Slovenian National Medical
Ethics Committee (No. 339/2017/7).
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Subjects performed a sequence of tasks while wearing the exoskeleton, representative of a typical
working environment, shown in Figure 2. The task sequence was predetermined and consisted of
random-number repetitions of the following movements: walking, sitting, squatting and lifting a 3 kg
box from the floor. In between every movement, the subjects came back to a normal upright stance
and awaited instructions on the next movement. The sequence of tasks was unknown to the subjects
and the instructions were given out verbally, only after every completed movement. Each subject
performed in total 20 walks, 20 squats, 20 box lifts and 20 chair sits. The subjects were not instructed
to perform any specific lifting technique such as stoop or squat lifting. They were free to use their
preferred lifting technique as well as perform all movements at their preferred speed. Data from the
sensors was recorded using the Raspberry Pi at a frequency of 100 Hz. For reference, the average
duration of the performed movements was 1.38 s ± 0.73 s, 4.64 s ± 0.86 s, 2.67 s ± 0.47 s, 2.98 s ± 0.39 s
and 5.61 s ± 1.57 s for the tasks of standing, walking, squatting, lifting and sitting, which corresponds
to an average of 138, 464, 267, 298 and 561 data samples. The total length of the experiment was on
average 460.5 ± 52.3 s. Prior to the start of each recording session, we recorded the orientation of the
IMU for 1 s. The mean value of this recording was used as a reference for normal upright standing
(0◦ of trunk inclination). During the experiment, the exoskeleton clutch was disengaged at all times.

Figure 2. Example of performed tasks during the experiment.

To have a ground truth label to train and validate our classification method, the recorded
dataset was segmented and hand-labeled. The set of possible labels was: 1—standing, 2—walking,
3—squatting, 4—lifting, 5—sitting. Labeling was based on the set of instructions given to the subjects
during the experiment. For example, the whole motion of performing the instruction “Sit”, “Stand up”,
was labeled as sitting. The start and end of the task were determined by the standing phase.

2.3. Classification Algorithm with GMM

The foundation of our control algorithm is based on GMM to discriminate between the various
tasks performed by the subject. This is done in two steps: fitting and predicting.

First, data belonging to each task j was modelled using a superposition of K Gaussian densities
(Gaussian mixtures) by

pj(x) =
K

∑
k=1

τkφk(x|µk, Σk), (1)

where x is a 6× 1 vector of input data (right encoder angle, left encoder angle, IMU orientation in
the sagittal plane, right encoder angular velocity, left encoder angular velocity, rate of change of IMU
orientation in the sagittal plane). Every k-th Gaussian density denoted as φk(x|µk, Σk) is a component



Sensors 2020, 20, 2705 5 of 13

of the mixture and has its own mean µk and covariance Σk. τk are the mixing coefficients of the
components. Both pj(x) and the individual Gaussian components are normalized such that:∫ ∞

−∞
pj(x) = 1 (2)

and
K

∑
k=1

τk = 1. (3)

To fit the Gaussian mixtures, we used the Expectation Maximization algorithm for fitting a
predefined number of mixtures to the selected data. The number of mixtures K used for fitting was
set to 1 for the standing task. For the tasks of walking, squatting, lifting and sitting, the value K was
determined in an iterative process [29], as follows. For each model with K Gaussians used, the Bayesian
information criterion (BIC) was calculated and compared to the value of the previous model (K− 1).
If the new value of BIC was lower, the new model was kept, and the iteration continued until the value
did not lower anymore or the set maximum value (K = 5) was reached. In Figure 3 we present an
example of the trained GMM in a reduced feature space for the lifting and sitting task.

Figure 3. GMM representation in a reduced feature space for the lifting (blue) and sitting task (red);
Kli f t = 5, Ksit = 5. The axis x1, x2 and x3 represent right hip angle, left hip angle and trunk inclination,
respectively. For reference, all movements start in the bottom right corner, continue towards the left
side of the graph and come back to the starting position.

To use the Gaussian mixture models for classification of new input data we calculate the posterior
probability of the new input data x belonging to each task j:

pj(x) =
K

∑
k=1

τk

( e−
1
2 (x−µk)

TΣ−1
k (x−µk)√

(2π)D|Σk|

)
, (4)

where D is the dimensionality of the model (6 in our case).
We can join these values in a vector p(x) that contains the posterior probabilities for each task.

At this point it is possible to compare all the probability values with each other and select the task with
the highest probability. To do this, we define a function imax(p) that selects the index j in the vector p
that has the maximum probability,

imax(p) =
{

j | pj = max(p)
}

, (5)
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which gives us the prediction to which state the new input data x belongs to. This approach already
provides valid and useful information about any new input data into the model. However, this can be
problematic when GMM of different tasks overlap. Such an overlap can be observed in the bottom
right corner of Figure 3. This is an outcome of the protocol used for acquiring the ground truth that
was used for training the model. In this case, the prediction using imax(p) is not stable as it can change
from one task to another for every new data sample acquired. To overcome this limitation and preserve
the clean acquisition of ground truth, we developed a state machine controller that is presented in
Subsection 2.4.

2.4. Integration of GMM with a State Machine

To complement the GMM probability outputs we developed a state machine controller which is
schematically presented in Figure 4. The states of the controller are the five tasks performed during
the experiment (standing, walking, squatting, lifting and sitting) along with a pre-lift state. We added
a pre-lift state, because of the similarity of the models in the early stages of performing the tasks of
squatting, lifting and sitting. By using this state, we conditioned the output of the state machine
to classify a pre-lift until the probability of squatting, lifting or sitting reaches a high enough value.
This limits the amount of transitions between states in the initial part of the downward movement
when the subject starts bending down.

Walking

Standing

Squating

Lifting

Sitting

Pr
e-
Li
ft

Figure 4. Structure of the state machine controller with all possible transitions between states. The states
of pre-lift, squatting, lifting and sitting are grouped inside a superstate which allows transitions back
to the walking or standing state. Arrows with circles denote initial transitions.

The transitions between the states are conditioned by probabilities of p(x), normalized based on
the sum of probabilities of all tasks (J = 5) for the current input x,

pn(x) =
p(x)

J
∑

j=1
pj(x)

. (6)

With this normalization, we simplify the comparison of probabilities for the current input x.
However, the normalized probabilities, do not include information of the actual value of the posterior
probability of x belonging to a task j. This is important, as it defines whether the current input data
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is similar to the data used for training the model or not. To account for this, we compare the current
probability value of each state pj(x) with the maximum probability of the model for that state:

mj(x) =
pj(x)

max(pj(x))
. (7)

If the current probabilities for all states are lower than 0.005 of their respective maximum,
the transitions between the states in the state machine are disabled. The initial state of the state
machine is denoted by the circle and arrow leading to the state standing. The transition to standing
occurs, when the sensors are calibrated in a normal standing pose of the user. After this, the state
machine controller can switch between all the different states based on the following transition rules.
The transition rule from standing or walking to the pre-lift state is defined as:

pn
3 (x) + pn

4 (x) + pn
5 (x) > h1. (8)

All other transitions in the state machine from a current state i to the next state i + 1 are defined as

pn
i+1(x) > h1, (9)

where h1 is a fixed threshold value set to 0.8. Additionally, we add a hold condition that holds the
current state of the state machine when the subject is in the middle of a sit, squat or lift. The rule for
the hold condition is abs(vT) < v1 AND (pn

3 (x) > h2 OR pn
4 (x) > h2 OR pn

5 (x) > h2), where h2 and v1

are fixed threshold values of 0.5 and 5 ◦/s respectively and vT denotes the rate of change of orientation
of the subject’s trunk. The hold condition ends when the probability of standing or walking satisfies
Equation (9).

2.5. Performance Evaluation of the Controller

We evaluated the performance of our controller for task recognition and for the activation of
support provided to the user. The methodology used to evaluate task recognition is presented in
Section 2.5.1. Activation of support provided to the user was evaluated based on the control signals
generated for clutch actuation which is presented in Section 2.5.2.

2.5.1. Evaluation of Task Recognition

To evaluate the performance of task recognition, we performed a leave-one-out cross-validation
procedure on the dataset. Data of all except one subject was used to train the GMM and the remaining
subject’s data was used as the test dataset. This was repeated for each subject, using every subject
once as the testing dataset. To emphasize the importance of the state machine we calculated the
performance metrics for the case of using only GMM and the combination of GMM with the state
machine (GMM+S). First we looked at the overall accuracy, sensitivity and specificity of classification
for GMM+S considering all input data samples collected during the experiment. We defined these
classification metrics as:

Accuracy =
TP + TN

TP + TN + FP + FN
, (10)

Sensitivity(k) =
TPk

TPk + FNk
, (11)

Speci f icity(k) =
TNk

TNk + FPk
, (12)

where TP, TN, FP, FN denote the number of true positives, true negatives, false positives and false
negatives. For the calculation of specificity for the 5 states, the TN and FP values were calculated for a
one vs. all comparison.
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More important in our case, are classification results for binary conditions of support ON and
support OFF. In this case, we define a true positive result (TP) as a classification of support ON for
lifting or squatting movements. A true negative result (TN) is considered a classification of support
OFF for standing, walking and sitting movements. The definitions of the performance metrics of
accuracy, sensitivity and specificity remain the same as defined in Equations (10)–(12). Since the
calculation of these metrics across all input data is too general, we additionally calculated their values
over the course of the performed movements. To do this, we normalized each individual repetition of
a task over time. We then calculated the performance metrics for each 5% of the normalized movement
trajectories for each subject. The final results are presented with the mean and standard deviation of
the performance metrics across all the test subjects.

2.5.2. Evaluation of Support Activation

To evaluate the efficacy of our controller for support activation we performed a simulation of
the actuation of the exoskeleton’s clutch. As stated in Section 2.1, the clutch of the exoskeleton needs
some time to actuate. We have taken into account this actuation time, by reducing the angle at which
successful engaging of the clutch is deemed possible. For an average motion of the user, this angle
corresponds to 20◦. The exoskeleton should support the lifting and squatting movements, therefore
the clutch needs to successfully engage at the beginning of these movements. In contrast to this,
the clutch should be disengaged for the standing, walking and sitting tasks to allow free movement to
the user. The results of this evaluation are presented based on the binary state of the exoskeleton’s
clutch. A true positive result (TP) is considered a successfully engaged clutch for lifting and squatting
movements. A true negative result (TN) is considered a disengaged clutch for standing, walking and
sitting movements.

3. Results

3.1. Task Recognition

Using GMM+S, the overall recognition accuracy of all 5 tasks (standing, walking, squatting,
lifting, sitting) for all input data samples was 81.26± 2.89% (mean ± s.d.). The average sensitivities
across 7 subjects for standing, walking, squatting, lifting and sitting were 92.82± 5.38%, 91.09± 3.15%,
65.42± 24.34%, 89.29± 6.60%, 67.54± 3.02% respectively. Whereas the specificities were: 78.83± 3.78%,
77.70± 2.99%, 84.82± 4.78%, 88.39± 3.12%, 76.67± 3.69%.

However, in our case, it is more important to look at results of support ON vs support OFF
classification. For this binary case of support ON/OFF, the overall classification accuracy for all
input data samples was 88.57± 0.94% and the sensitivity and specificity were 95.72± 2.62% and
86.23 ± 1.57% respectively. The results of the performance metrics of accuracy over normalized
trajectories are presented in Figure 5. We can observe that there is a very high accuracy for both
cases (GMM and GMM+S) in the middle of the movement (at 0.5 of the normalized time). The GMM
only (black error bars) shows a higher accuracy of recognition at an earlier stage of the movement
(accuracy > 90% at normalized time 0.3).

Sensitivity and specificity for ON/OFF classification are presented in Figure 6a,b. Here we can
observe that using GMM only we obtain higher specificity of classification in the first half of the
performed movements. This indicates a higher success rate of classifying support OFF when no
support is required. However, the sensitivity of classification using GMM only is lower, with a higher
standard deviation, compared to using the combinations of GMM with the state machine (GMM+S).
This means that using the approach of GMM+S, we can reduce the number of misclassified movements
when the support of the exoskeleton is required.
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Figure 5. Mean and standard deviation of accuracy over the course of the performed movement for
ON/OFF classification. Using only the maximum GMM probability (black) and using GMM+S (grey).
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(a) Sensitivity
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(b) Specificity

Figure 6. Mean and standard deviation of sensitivity (a) and specificity (b) over the course of the
performed movement for ON/OFF classification. Using only the maximum GMM probability (black)
and using GMM+S (grey).

3.2. Support Activation

An example of the control outputs of the controller is presented in Figure 7. Lift and squat
movements, when the support of the exoskeleton is required, are highlighted with shaded grey areas.
The rest of the data represents sitting, standing and walking. In this example, all the movements
requiring support were correctly classified and the support was provided successfully, which is denoted
with a green highlight. Both sitting tasks are initially misclassified and are therefore highlighted in
red. The results of support activation for all movements and for all subjects are presented in the form
of a confusion matrix in Table 1. Accuracy of support activation was 86.72± 0.86% (mean ± s.d.).
The sensitivity and specificity of support activation were 97.46± 2.09% and 83.15± 0.85% respectively.
The specificity is reduced, due to the many sitting tasks being supported in the early part of the
movement as can be seen in the example presented in Figure 7, highlighted in red. However,
it is important to note that 95.05 ± 4.95% of sitting tasks were correctly classified in the middle
of the movement.
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35

Sit Lift SquatSit Lift SquatWalk

Trunk
Legs
FP
TP

Figure 7. Example of control output for the support of the quasi-passive spinal exoskeleton. Shaded
grey areas indicate when the support needs to be active. Highlighted trajectories represent the real-time
output of the controller for support ON state. True positive activation of the support is denoted in
green, False positive activation is denoted in red. Graph labels for the sections of standing are omitted
for clarity.

Table 1. Confusion matrix (mean ± s.d.) for support activation of exoskeleton.

Required Condition

Support ON Support OFF

Output Support ON 97.46± 2.09 16.85± 0.85
Support OFF 2.54± 2.09 83.15± 0.85

4. Discussion

We described our approach of using probability outputs of a GMM in combination with a
state machine to generate control signals in real time for a quasi-passive spinal exoskeleton device.
The inputs to the controller were limited only to the sensors embedded in the device. With this
approach we achieved a very high accuracy of task recognition in the middle of the movement,
when the support to the user is most critical for lifting movements. These results indicate that our
approach would be suitable also for active exoskeletons, where this method could be used to select
different types of support profiles for various lifting techniques. Additionally, based on the type of
lifting technique and an a priori knowledge of joint loading for each movement, the exoskeleton could
prevent human joint overloading, while still enabling a seamless execution of the task [30].

Using the state machine, we complemented the versatility of GMM by controlling transitions
between states during downward motion. With this, we achieved very good results with a sensitivity
of support activation of 97.46± 2.09%. The specificity of support activation was only 83.15± 0.85%,
which is mainly due to the many sitting tasks being initially misclassified. Due to the similarity
between lifting and sitting movements at the beginning of the motion (Figure 3), it is difficult to
disengage the support for sitting without compromising support for lifting. In this case, a more
feasible solution would be the use of a different clutch mechanism that can be disengaged under
load. Nevertheless, classification errors are inevitable and can greatly compromise the comfort or
safety of the wearable device. Striving for reducing these errors is important, but equally so is the
implementation of additional safety measures that prevent injuries or discomfort even in the unlikely
event of misclassified user movements or intentions.

The protocol used for determining the ground truth required to learn the GMM, could be easily
integrated in the wearable device itself, requiring user input for movement type along with the start
and end of movement. In our approach, the absolute values of GMM probability were used only to
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limit transitions in case of uncertainty (low mj(x) values). However, this information could also be
used to detect movements new to the model or give feedback to the user, prompting an update of the
learned model. Another possible extension could be to look at the repetitions of the same movement
to influence future predictions.

Even though much of the recent technological advances in spinal exoskeleton control are focused
on active devices [31], we believe that the emerging passive and quasi-passive versions are equally
important. The many benefits of passive devices are often limited by their poor versatility or the
discomfort imparted to the users for performing some tasks [32]. Therefore, the development of hybrid
style devices along with adequate control is very important to advance the field of spinal wearable
devices. Despite some limitations of this study, we believe our approach proved to be a promising tool
for control of quasi-passive spinal exoskeletons and thus provides a meaningful contribution to the
state of the art.
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