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Abstract: Localization is one of the key components in the operation of self-driving cars. Owing
to the noisy global positioning system (GPS) signal and multipath routing in urban environments,
a novel, practical approach is needed. In this study, a sensor fusion approach for self-driving cars
was developed. To localize the vehicle position, we propose a particle-aided unscented Kalman
filter (PAUKF) algorithm. The unscented Kalman filter updates the vehicle state, which includes
the vehicle motion model and non-Gaussian noise affection. The particle filter provides additional
updated position measurement information based on an onboard sensor and a high definition (HD)
map. The simulations showed that our method achieves better precision and comparable stability in
localization performance compared to previous approaches.

Keywords: particle filter; sensor fusion; self-driving car; unscented Kalman filter; vehicle model;
Monte Carlo localization

1. Introduction

In recent years, research on self-driving cars has gained much prominence. The ultimate goal
of self-driving cars is to transport people from one place to another without any help from a driver.
A self-driving system must control numerous parameters, including speed, orientation, acceleration,
and maneuvering, in order to drive without any human assistance. All of these control parameters
are controlled by the decision-making module, which handles all perception data from the vehicle
and sensors. The perception module determines the relationship between the ego vehicle and the
surrounding environment. One of the most important algorithm modules is vehicle localization
because all the sensors sense the environment based on local vehicle coordinates [1]. The typical
perception sensors of a self-driving car are the camera, radar, light detection and ranging (LIDAR),
2D laser scanner, global positioning system (GPS), and inertial measurement unit (IMU) [2]. GPS is
the most commonly used navigation system in self-driving cars. However, because of issues with
multipath routing and poor signal availability in cities, relying entirely on GPS is not suitable for
localizing vehicles in urban environments. Although differential GPS systems can be used, the high
cost and size of these systems limit their implementation [3]. Furthermore, GPS systems cannot be
used in tunnels or indoor environments. Vision-based localization has been proposed as a method
for localizing vehicles using a low-cost camera. However, the vision-based localization algorithm is
easily affected by weather and light conditions, leading to insufficient accuracy and stability [4–8].
LIDAR-based map matching can yield highly precise results with the help of a high definition (HD)
map. By contrast, matching requires the environment to be accurately mapped such that the point
cloud of the environment does not change. Point cloud matching is expensive and requires considerable
power and computation resources [9–16]. Thus, developing a low-cost localization method that can
utilize the vehicle’s sensors and road infrastructure to achieve precise and stable location performance
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is necessary for furthering research on self-driving cars. One of the localization solutions that can
be used in complex urban environments is vehicle localization based on local sensor systems and
information from the HD map. Matching an entire point cloud with an HD map is inefficient; therefore,
only the ground truth location map of infrastructures is used in this study, for computational efficiency.
In previous research, vehicle localization based on vehicle-to-vehicle (V2V) and vehicular ad-hoc
network (VANET) communication was proposed. The basic condition is that these algorithms require
surrounding vehicles to be equipped with V2V communication equipment, which are then referred to
for the infrastructures [17–23]. In this study, we only consider the case of a single vehicle. Moreover,
because the vehicle data contain a large amount of noise, an efficient filtering algorithm is needed to
obtain precise localization results.

The methods for vehicle localization have improved considerably over the years. The primary
methodology that was used is the probabilistic approach. The Kalman filter (KF) is an optimal
estimator that is designed for processing Gaussian noise with mean and variance, and it is an important
component in several such approaches [24]. One of the assumptions of the KF is that the noise should
be Gaussian. However, in practice, a function like the trigonometric filter renders the Gaussian noise
non-Gaussian. Therefore, an extended Kalman filter (EKF), which uses a low order Taylor expansion
to linearize the nonlinear (e.g., trigonometric) function, has been proposed. It uses a partial derivative
to represent the rate of change of the nonlinear functions, which aims to keep the noise Gaussian. If
the state is a vector, then the partial derivative parameters can be assembled into a new matrix, which
is called a Jacobian matrix. Generally, in order to localize the vehicle’s position, researchers derive
the Jacobian matrix based on the transition and measurement models for handling the vehicle’s noisy
sensor data [25–30]. If an EKF based on a Jacobian matrix approximates a nonlinear function using a
high order of Taylor series, it also works well in transforming nonlinear functions into linear ones.
The critical problem, however, is that the Jacobian matrix is difficult to derive for complex dynamics.
Therefore, a new, sample region-based Kalman filter, which is called the unscented Kalman filter
(UKF), was proposed. The UKF performs better than the EKF and KF when the system model is highly
nonlinear [31–33]. The UKF uses some key points, which are called sigma points, to approximate
the non-Gaussian noise into Gaussian based on the unscented transform. In this way, it can properly
capture the nonlinearity. Furthermore, because the UKF approximates the non-Gaussian noise with
sigma points, it is easy to combine other information when selecting the sigma points and there is no
need to calculate the Jacobian matrix.

The basic assumption of the Kalman filter family is that noise is Gaussian. In the real world, most
noise does not have a Gaussian property. For processing non-Gaussian noise, a Monte Carlo-based
localization approach, called particle filter (PF), has been proposed [34,35]. The particle filter uses
several samples, referred to as particles, to approximate the non-Gaussian property. Because the
particles are generated randomly, they can represent the properties of non-Gaussian noise precisely
if there are sufficient numbers. However, a vehicle has limited computational resources; therefore,
it cannot allow the particle filter to approximate the number of particles. Therefore, there is a
trade-off between precision and computational resources when generating an effective particle-based
system model. Thus, an extended Kalman filter-aided particle filter, called an extended particle filter
(EPF), and an unscented particle filter (UPF), called the Kalman filter-aided particle filter, have been
proposed [36–38]. Both the EPF and the UPF use system models to generate and update the particles.
It should be noted that each particle should compute the sigma points or Jacobian matrix; therefore,
both the EPF and UPF are computationally inefficient and difficult to implement [39–41].

In this study, we propose a new method, the particle-aided unscented Kalman filter (PAUKF),
for vehicle localization. With the help of the particle filter, the unscented Kalman filter can estimate a
system with high nonlinearity and various sources of nonlinear noise more precisely. Because each
particle does not have to update the sigma points or share the prediction model, this method requires
fewer computational resources. The computational burden and precision of PAUKF can be easily
tuned by tuning the quantity of the sigma points and particles. The results of the simulation show that
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the PAUKF estimates the vehicle’s position and state more accurately than other methods that use a
limited number of particles. Section 2 illustrates the methodology of the PAUKF. Section 3 details the
simulation conditions, and Section 4 presents the analysis of the simulation results. Finally, Section 5
presents the conclusion of this paper.

2. Particle-Aided Unscented Kalman Filter

This section describes the implementation of the PAUKF, including particle implementation and
PAUKF implementation. Both the PF and UKF are Bayesian-based filters, and the environment is
assumed to be Markov, which means that the PAUKF also has a Markov assumption.

2.1. Particle Filter Algorithm

The particle filter is a Monte Carlo-based method that can handle both Gaussian noise and
non-Gaussian noise [42]. Because the vertical movement of the vehicle is small, we only consider the
vehicle in a two-dimensional Cartesian space with the vehicle heading θ. A bicycle model is used
in this study to represent the motion of the vehicle because a complex vehicle model aggravates the
computational burden, and many parameters cause additional noise [43]. The state of the vehicle is
represented by <x, y, and θ>, as shown in Figure 1.
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Figure 1. Vehicle state in two-dimensional Cartesian space.

The inputs that we use are the range sensor and the ground truth of the infrastructures in the HD
map. The final position of the vehicle should be the best posterior belief based on past data and the
current state. The particle filter is a nonparametric implementation of the Bayes filter, which uses a
finite number of samples to approximate the posterior. Thus, the final belief bel(x) should be generated
for each particle by using each important factor (weight), as shown in Equation (1). The x[1,2...N] means
the state vector of each particle and w[1,2...N] is the weight of each particle. The size of each particle
X was 3 × 1. W is a non-negative factor termed as the importance factor. In this study, we used
100 particles for simulation, which means that N is 100. The larger the importance factor, the more it
affects the final estimation result.

bel(x) =
∑N

i=1
xNwN. (1)

The particle filter for localization can be divided into four parts, which are introduced in the
following subsections.

2.1.1. Initialization

To localize the vehicle in global coordinates, it is essential to provide an initial location to the
vehicle. Otherwise, the vehicle will search for its position over the entire world. Therefore, we use the
GPS sensor for initialization. Even though the GPS signal is poor due to multipath and blocking issues,
it still provides a limited area for the vehicle to localize. Because the particle filter is recursive, after
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initialization, the noisy GPS signal data are filtered recursively. When a particle filter receives GPS
data, it generates N random particles for initialization.

2.1.2. Prediction

To obtain the prior belief, each particle at timestamp k − 1 should predict the current state based
on the system prediction model. The prediction model was constructed based on the vehicle model.
Complex models, such as a dynamic model with tires, can also be included. However, complex vehicle
models reduce computation efficiency. Such models also require detailed vehicle parameters, which
are difficult to set. Incorrect parameters can cause noisy estimations. Considering the computational
burden and precision, a kinematic model was used in this study [43]. We ignore the slip angle because
vehicle travel in cities is typically not fast.

Xk+1 =


x
y
θ


k+1

=


vk.

θk(∆t)
[sin(θk +

.
θk(∆t)) − sin(θk)]

vk.
θk(∆t)

[cos(θk) − cos(θk +
.

θk(∆t))]
.

θk(∆t)

+


x
x
θ


k

. (2)

As Equation (2) shows, the prediction contains several trigonometric functions, which correspond
to a highly nonlinear prediction model. The theta angle of each particle is critical because it changes
according to the local vehicle coordinates. The kinematic model incorporates several assumptions
such as the value of

.
θ being equal to zero.

2.1.3. Weight Calculation

Weight is also an important factor that can heavily influence particle motion. Measurements from
the range sensor were used to calculate the weight. We assume that the vehicle can receive all the data
from the vehicle-to-everything (V2X), HD map, and range sensor. Thus, the vehicle can receive the
distance data and orientation between the vehicle and every exterior infrastructure. Here, di is the
measured distance between the vehicle and infrastructure i, εd is the distance measurement noise, and
∆θ is the relative orientation angle of the vehicle and infrastructure i. As Equations (3) and (4) show,
the measurement model is nonlinear in nature.

Zk+1 = f(Xk+1) + Noisek+1, (3)

Zk+1 =

[
d[i]

∆θ[i]

]
k+1

=


√
(xk − xb,i)

2 +
(
yk − yb,i

)2

arctan
(

xk−xb,i
yk−yb,i

) 
k+1

+

[
εd

− θv + ε∆θ

]
k+1

. (4)

To evaluate the weight, a multivariable normal distribution function was used to assess the importance
of each particle. Thus, a multivariable normal distribution function returns the weight of a particle
based on the newest sensor measurement values and the predicted values from the model as

wi = p
(
xi, yi

)
=

1
2πσxσy

e
−(

(x−µx)
2

2σ2
x

+
(y−µy)

2

2σ2
y

)
i = 1, 2 . . .N. (5)

2.1.4. Resampling

After calculating the weight and prediction values, the particle filter should select the particle
along with its corresponding weight, which is the resampling step.

The entire PF part of the algorithm’s pseudo code is shown in Table 1.
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Table 1. Pseudo code of the particle filter.

Order Process

1 Start one sample time iteration
2 Initialization X1,2...N particles
3 For 1 to N do
4 Xk+1 = prediction model(Xk, ut)
5 End for
6 Zk+1 = measurent input
7 w[1,2...N] = multivariable normal distribution

(
Xk+1, Zk+1, σdistance, σorientation

)
Xk+1

8 Return X̂PF = f
(
X[1,2...N]

k+1 , w[1,2...N]

)
9 End one sample time iteration

2.2. Particle-Aided Unscented Kalman Filter Algorithm

The particle filter algorithm is introduced in Section 2.1. The particle estimates the position of the
vehicle by using the range sensor. The final results for each particle contain information about the
surrounding infrastructures and the position of the ego vehicle. Therefore, it can be concluded that this
sensor provides more accurate results. When the UKF estimates the state, the results from the particle
filter will be the measurement value of the vehicle. Subsequently, the PAUKF can extract a more precise
result based on the particle filter estimation results. A flowchart of the PAUKF is shown in Figure 2.
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The UKF is a Bayesian filter that has better performance than the EKF when estimating the state
of a discrete-time nonlinear dynamic system. Because it is based on a Kalman filter, the framework of a
UKF is almost the same as that of a KF. The difference is that a UKF performs stochastic linearization
by using the weighted statistical linear regression process, known as an unscented transform. Instead
of using a Taylor expansion, a UKF deterministically extracts the mean and covariance using the
sigma points.

The sigma points are predefined by an empirical parameter λ that is calculated using Equation (6).
The sigma point is a symmetrical region around the mean value. Pk|k is the covariance matrix of the
state, which updates at every iteration. The state vector of the vehicle is xk, which is a 5 × 1 vector, as
shown in Equation (7). The state vector value is the mean of the sigma matrix. nx is the quantity of the
state vector with a size of 5. Then, the sigma points are generated using Equation (8).

λ = 3− nx, (6)
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xpaukf, k =
[

x y v θ
.
θ

]T
, (7)

Xpaukf, k = (µk, µk +
√
(λ + nx)Pk, µk −

√
(λ + nx)Pk). (8)

After it generates the sigma points, a UKF needs a prediction model to determine the prior
probability of the state. To obtain a more precise position regarding position, a UKF considers more
states of the vehicle and the effect of nonlinear noise on the states.

The constant turn rate and velocity magnitude (CTRV) vehicle motion model was used in this
study [44]. Based on the CTRV model, the discrete state transition model is derived by integrating
the differential equation of the state, which considers the nonlinear process noise vector. Considering
the underlying structure of the vehicle for a real-world test, the acceleration and yaw acceleration are
considered to be noise. In particular, the acceleration and yaw acceleration noise effects are nonlinear.
Therefore, the process noise cannot be handled by addition alone. In order to handle nonlinear noise, it
is considered to be a state, as shown in Equation (9). This means that the size of xukf becomes xk, aug,
which is a 7 × 1 vector.

xpaukf, k,aug =
[

x y v θ
.
θ wvelacc wyawacc

]T
. (9)

The process noises wvelacc and wyawacc are set as normal Gaussian distributions with variances of
σvelacc

2 and σyawacc
2, respectively, as shown in Equations (10) and (11).

wvelacc ∼ N(0, σvelacc
2), (10)

wyawacc ∼ N(0, σyawacc
2). (11)

The covariance matrix Pk is also augmented into Pk,aug, which has a size of 7 × 7, as shown in
Equation (12).

Pk,aug =


Pk 0 0
0 σvelacc

2 0
0 0 σyawacc

2

. (12)

The process model is derived based on the CTRV assumption and noise, as shown in Equation (13).
The model that we derive has highly nonlinear properties, as indicated in Equation (14).

xpaukf,k+1 = xpaukf,k +

∫ k+1

k

.
xpaukf,kdt, (13)

xpaukf,k+1,aug = f(xpaukf,k,aug,σvelacc,σyawacc) = xpaukf,k,aug +



v.
θ
[sin(θk +

.
θk∆t) − sin(θk)]

v.
θ
[cos(θk) − cos(θk +

.
θk∆t)]

0
.
θk∆t

0
0
0



+



v.
θ
[sin(θk +

.
θk∆t) − sin(θk)]

v.
θ
[cos(θk) − cos(θk +

.
θk∆t)]

0
.
θk∆t

0
0
0


+



1
2 ∆t2 cos(θk)·σvelacc
1
2 ∆t2 sin(θk)·σvelacc

∆tσvelacc
1
2 ∆t2
·σyawacc

∆t·σyawacc

σvelacc

σyawacc


.

(14)
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In the augmented prediction step, nx, should be the quantity of the augmented state nx,aug with
a size of 7, and λ also needs to be calculated as in Equation (15). Subsequently, the sigma points are
predicted using Equation (16).

λ = 3− nx,aug, (15)

Xpaukf,k,aug =
(
µpaukf,k,aug, µpaukf,k,aug +

√(
λ+ nx,aug

)
Ppaukf, k,aug, µpaukf,k,aug −

√(
λ+ nx,aug

)
Ppaukf,k,aug

)
. (16)

The weight of each sigma point is calculated based on Equations (17) and (18). The predicted
mean and covariance were calculated using Equations (19) and (20). The predicted value is the prior of
the Bayesian distribution model. These predicted values should be updated when the measurement
data are incoming.

wpaukf,i =
λ

λ+ nx,aug
, when i = 0, (17)

wpaukf,i =
1

2
(
λ+ nx,aug

) , when i = 1. . . nx,aug, (18)

xpaukf,k+1|k =
∑na

i=0
wpaukf,iXpaukf,k+1|k,i, (19)

Pk+1|k =
∑2na

i=0
wpaukf,i(Xpaukf,k+1|k,i − xpaukf,k+1|k)(Xpaukf,k+1|k,i − xpaukf,k+1|k)

T. (20)

After predicting the new mean and covariance matrix based on the augmented sigma point, the
algorithm no longer needs to consider noise as the acceleration noise information is already included
in the state. Therefore, the augmented state changes back to a normal state with a size of 5. Until now,
the prior probability was calculated based on sigma points. When using a Bayesian filter, measurement
prediction can be implemented. Instead of using the original range sensor with noise from the vehicle,
x̂PF is used in this step. This means that x̂PF becomes a virtual sensor, which is more precise than
the original sensor. Since x̂PF already includes sensor information based on the particle filter, it
optimally provides a more precise belief of the state. The measurement vector of the sensor is shown
in Equation (21).

z =


x
y
θ

. (21)

The measurement model is shown in Equations (22) and (23). The particle filter measurement
provides x, y, and yaw data. This means that the number of rows in matrix A is 3. Because the
augmented state information is included in the state, the state of the UKF recovers to 5. This means
that the number of columns in matrix A is 5.

Zpaukf,k+1|k,i = AXpaukf,k+1|k,i + ωpaukf,k+1, (22)

A =


1 0 0 0 0
0 1 0 0 0
0 0 0 1 0

. (23)

The predicted measurement mean is calculated based on the weight of each measurement’s sigma
points, as shown in Equation (24).

zpaukf,k+1|k =
∑nx

i=1
wpaukf,iZpaukf,k+1|k,i. (24)
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The predicted measurement covariance is calculated using Equation (25). R is the measurement
noise covariance, as shown in Equation (26). The covariance is tuned according to the particle filter
estimation results.

Sk+1|k =
∑2nx

i=0
wpaukf,i

(
Zpaukf,k+1|k,i − zpaukf,k+1|k

)(
Zpaukf,k+1|k,i − z paukf,k+1|k

)T
+ R, (25)

R =


σxPF

2 0 0
0 σyPF

2 0
0 0 σθPF

2

. (26)

At this time, a measurement value is needed to calculate the posterior probability. The update
step is similar to that of the Kalman filter. The only difference is that the UKF needs to calculate the
cross-correlation value, according to Equation (27), between the sigma points in the state space and the
measurement space.

Tk+1|k =
∑2nx

i=0
wpaukf,i

(
Xpaukf,k+1|k,i − xpaukf,k+1|k

)(
Zpaukf,k+1|k,i − zpaukf,k+1|k

)T
. (27)

Based on the cross-correlation matrix and the measurement covariance, the Kalman gain is then
calculated as

Kk+1|k = Tk+1|kS−1
k+1|k. (28)

The state is updated using the measurement value x̂PF, which is obtained from the particle filter
estimation as

x̂paukf = xk+1|k+1 = xk+1|k + Kk+1|k

(
x̂PF − zk+1|k

)
. (29)

The covariance matrix is then updated based on the updated Kalman gain and the measurement
covariance matrix as

P̂paukf = Pk+1|k+1 = Pk+1|k − Kk+1|kSk+1|kKT
k+1|k. (30)

The terms xk+1|k+1 and Pk+1|k+1 are the final estimation results of the PAUKF, which combines the
bicycle model, CTRV motion model, Monte Carlo-based estimation, and unscented Kalman filter-based
estimation. The complete pseudo code of the PAUKF algorithm is shown in Table 2.

Table 2. Pseudocode of the particle-aided unscented Kalman filter (PAUKF).

Order Process

1 Start one sample time iteration
2 Initialization X1,2...N particles
3 For 1 to N do
4 Xk+1 = prediction model(Xk, ut)
5 End for
6 x̂PF = f

(
Xk+1, w[1,2...N]

)
7 For 1 to naug do
8 Xk+1 = unscented transform (λ, xk,σ)
9 xpaukf,k+1|k = CTRV model(based state prediction
10 zpaukf,k+1|k = A(xpaukf,k+1|k) for measurement prediction
11 x̂paukf, P̂paukf = state update

(
Tk+1|k, Sk+1|k, zpaukf,k+1|k, x paukf,k+1|k, x̂PF, R

)
12 End one sample time iteration

3. Simulation Environment

The simulation of the PAUKF algorithm was performed using MATLAB. The autonomous driving
toolbox is used for constructing the infrastructure, road structure, and vehicle kinematic model. The
update frequency of the GPS is 10 Hz, and the frequency of the range sensor and gyroscope is 100 Hz.
The noise of the GPS and the range sensor is simulated using the ground truth data appended with
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Gaussian noise and non-Gaussian noise. Gaussian noise is generated by using the normrnd function
in MATLAB, and non-Gaussian noise is generated using a sinusoidal function (we assume the noise
affected by the sinusoidal function) and a random number generator, as shown in Table 3 [45,46]. The
seed of the random number is set as 50, and the sample time is set as 0.01 s. The variances fed into
the PAUKF should be carefully tuned when applied to specific cases. It should be noted that even if
the random seed is the same, the random number is generated depending on the number of times
that it has been called. This means that any change in parameter changes the result because the input
value changes.

Table 3. Simulated noisy environment setting.

Noise Name Generate Method

GPS x error (Gaussian) ∼ N(9.65, 12.2) [46]
GPS x error (Non_Gaussian) ∼ 15 sin(N(0, 1)) + N(9.65, 12.2) + 5)

GPS y error (Gaussian) ∼ N(8.34, 12.33) [46]
GPS y error (Non_Gaussian) ∼ 15 sin(N(0, 1)) + N(8.34, 12.33) + 5)

Velocity error ∼ sin(N(0, 1))
Yaw error ∼ sin(N(0, 10))

Yaw rate error ∼ sin(N(0, 10))
Random seed 50

The road simulated with three geometries is shown in Figure 3. There are S-shaped roads and a
straight road in the X direction. An S-shaped road is used to verify the performance of each filter on a
curved road. The straight-line road in the X direction is used in order to verify the performance of each
filter on a straight road. There are 12 infrastructures around the road, and their positions are fixed,
even when the map changes. In order to prevent the position of the infrastructures from affecting the
performance of the filters, all the infrastructures are symmetrical. The velocity is set to a constant value,
and the values are 60, 80, 100, and 120 km/h.
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4. Analysis of Simulation Results

The simulation results are compared to evaluate the performance of the PAUKF. The evaluation
parameter is based on the Root Mean Square Error (RMSE) as Equation (31) shows. We choose RMSE as
an assessment parameter because the estimation performance of the filter can be compared intuitively
by the numerical value of RMSE alone. In Equation (31), N indicates the number of data points. The
trajectory of the estimated results and the ground truth of the vehicle’s trajectory are compared to
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verify the algorithm. The effect of the yaw angle is considered for both the x and y directions; therefore,
there is no additional comparison of the yaw angle. The unit for all position parameters is meters.

[
RMSEest

RMSEnoise

]
=


√
[
∑N

i=1

(
Positionesti − Positionmean_esti

)2
]/N√

[
∑N

i=1

(
Positionnoisei − Positionmean_noisei

)2
]/N

. (31)

4.1. Filter Performance on the S-Shaped Road

Figure 4 shows the trajectory results of the PF, UKF, and PAUKF, and noise in the S-shaped road.
As the legend shows, the green line with a green circle is the ground truth trajectory, the dashed line
with a red upward-pointing triangle is the noisy vehicle trajectory, the black dashed line with a black
square is the PF estimated trajectory, the blue dashed line with a blue square is the UKF estimated
trajectory, and the yellow dashed line with the yellow star marker is the PAUKF estimated trajectory.
The data in Figure 4 are generated when the vehicle velocity is 60 km/h, and the noise is Gaussian,
as shown in Table 3. The PF estimated trajectory is near the ground truth trajectory. However, the
PF-estimated trajectory is not smooth, and the error is still large. This is because the PF localizes the
vehicle position with noisy relative distance to each infrastructure and noisy vehicle data. Since there
is no other measurement, it must be considered that the measurement is correct. Compared to that
with the PF, the UKF-estimated trajectory is relatively smooth; however, it cannot filter the noise of
the GPS data. Because the GPS measurement of the UKF has high variance and the UKF does not
use range sensor data, the UKF believes the vehicle model more than the measurement. The noisy
measurement also makes the UKF less sensitive to the changes in the position and yaw. Compared to
that with the PF and UKF, the trajectory estimated by the PAUKF is more accurate and smoother. As it
combines the smoothness of the UKF and the accuracy of the PF, the PAUKF reacts more quickly and
precisely when the position and yaw change. Moreover, the PAUKF does not depend completely on
either of the filters, trades off the filters, and generates even better results.
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The filter performance results are shown in Table 4. Since the UKF does not use range sensor
information, it is not appropriate to compare it with the PF and PAUF. Thus, there are no RMSEs for
the UKF in Table 4. To compare with other literature, we calculate the mean value of estimation. The
mean of estimation error for the PAUKF is 1.08 m and the variance is 0.7147 m, which is more precise
than the mean of 1.69 m and variance of 1.63 m obtained by GANGNAM for similar noise [47]. In
order to determine the performance of the filters in an extreme environment, the algorithm is tested
under different velocity and noise environments. As mentioned in Section 3, even if the random
seed is the same, the random number still changes depending on the number of times it has been
called. Therefore, we analyzed the trend of every filter. It can be observed that the PF and PAUKF
estimation errors increase slightly when the velocity increases. However, if we consider the magnitude
of the RMSE of the changes in noise from 21.336 to 21.712 m, it can be found that the RMSE of the
estimation error does not change even when the velocity increases from 60 to 120 km/h. Compared
to the Gaussian noise, the non-Gaussian noise generated a larger mean value. Even so, the precision
of the PF does not change even when the noise increases, and the precision is almost the same as
the RMSE range of 5.489–5.959 m. The PAUKF has an RMSE range of 1.440–1.772 m, even when the
noise increases and velocity increases. This is because PAUKF takes the PF estimation results as input
and trades off the measurement and predicted value from the UKF. The trade-off is done using the
cross-correlation function in Equation (27). Therefore, the PAUKF combines the recursiveness of the
UKF and the location information of the infrastructures based on the PF. The PAUKF improves the
accuracy by 4.028–4.049 m compared to the PF.

Table 4. Total Root Mean Square Error (RMSE) of filters in different conditions (unit: m).

With Gaussian Noise With Non-Gaussian Noise

Velocity Noise PF PAUKF Noise PF PAUKF

60 km/h 21.336 5.634 1.451 29.796 5.959 1.655
80 km/h 21.310 5.600 1.651 29.730 5.579 1.440

100 km/h 21.154 5.720 1.501 29.430 5.631 1.616
120 km/h 21.712 5.800 1.772 29.934 5.489 1.454

4.2. Filter Performance on a Straight Road in the X Direction

Figure 5 shows the trajectory results of the PF, UKF, and PAUKF, and the noise on a straight road
in the X direction. The data in Figure 5 are generated when the vehicle velocity is 60 km/h, and the
noise is Gaussian. The algorithm for a straight line is used to determine the performance when the
vehicle only moves in the X direction. From Figure 5, it can be seen that the PAUKF converges to the
ground truth better than the PF and UKF. Because the vehicle only moves in the X direction, there is no
information about the movement in the Y direction. Therefore, even though the PAUKF estimation is
better than that of the UKF, in order to improve the response time, the PAUKF tends to believe more
about noise in the Y direction. As a result, the PAUKF is not sufficiently precise in the Y direction, as
Figure 5 shows.

The results for filter performance are shown in Table 5 when the vehicle moves in the X direction.
It can be found that the PF and PAUKF estimation properties are the same as those of the vehicle
when it runs on an S-shaped road. The estimation results show that the performance of the algorithm
does not change even when the map changes. The RMSE of the PF is 5.384–5.692 m and the PAUKF
has an RMSE of 1.312–1.800 m even when the noise increases and the velocity increases. The PAUKF
improves the accuracy by 3.892–4.072 m compared to the PF.
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Table 5. RMSE of filters in different conditions (unit: m).

With Gaussian Noise With Non-Gaussian Noise

Velocity Noise PF PAUKF Noise PF PAUKF

60 km/h 21.411 5.655 1.486 29.376 5.658 1.659
80 km/h 21.518 5.546 1.312 28.987 5.491 1.526
100 km/h 21.848 5.692 1.800 29.274 5.615 1.482
120 km/h 21.363 5.383 1.710 30.078 5.617 1.719

5. Conclusions

In this work, we propose a novel approach for a vehicle estimation algorithm, called the PAUKF,
which combines the advantages of the PF and the UKF. The PAUKF combines the unscented transform
property of a UKF with a sample-based PF to handle the localization problem in a bad GPS environment
by using the range sensor and ground truth data of the infrastructure in an HD map. Owing to
properties of the UKF, the PAUKF becomes more robust and precise compared to the original PF, given
the same quantity of particles. The performance of the algorithm is stable and accurate (minimum
RMSE: 1.44 m) when vehicles move along an S curve or any straight road at speeds of 60 to 120 km/h.
The results of the simulation showed that the PAUKF has a significantly higher precision and stability
than the PF and in previous research. In future work, we will try to implement the PAUKF in a real
vehicle and incorporate the 3D range sensor data to upgrade the algorithm in the real world.
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Nomenclature

bel(x) Belief of state
x[1,2,3,...i] States of particle1, Particle 2, . . . Particle i
w[1,2,3,...i] Weights of particle1, particle 2, . . . particle i
Xk+1 State at sample time k + 1
K Timestamp
xk, yk Vehicle position in the x, y dimension at time k
vk Vehicles position in the x dimension at time k
θk Yaw angle at time k

.
θk(dt),

.
θ Yaw rate of vehicle at time k

∆t, dt Sample time
Zk+1 Measurement vector at time k + 1
d[i] Distance of ego vehicle to ith beacon
∆θ[i] Relative angle of vehicle orientation and ith beacon
xb,i, yb,i Relative distance of vehicle and ith beacon
εd Noise distance measurement
ε∆θ Noise of angle measurement
p
(
xi, yi

)
Multivariable normal distribution

σx, σy Covariance of sensor range noise in the x- and y-directions
xpaukf, k,aug State of PAUKF
wvelacc Noise of vehicle acceleration
wyawacc Noise of vehicle yaw acceleration
σvelacc Variance of noise of vehicle acceleration
σvelacc Variance of noise in vehicle yaw acceleration
Pk,aug Variance matrix of PAUKF.
Xpaukf, k+1,aug Augmented state with sigma points of PAUKF at time k + 1
µpaukf,k,aug Mean value of augmented state of PAUKF at time k
nx,aug Number of augmented states
wpaukf,i Weight of ith sigma point
λ Sigma point design parameter
xpaukf,k+1|k Predicted state based on the weight of sigma points and states
Pk+1|k Predicted variance based on sigma points and predicted state mean
ωpaukf,k+1 Measurement noise of PAUKF.
Zpaukf,k+1|k,i Measurement prediction based on sigma points.
Xpaukf,k+1|k,i Sigma points of state
A Measurement transition model.
zpaukf,k+1|k Predicted measurement based on sigma points and weights
Sk+1|k Predicted measurement covariance matrix.
R Variance matrix of the measurement noise.
σxpf Covariance of PF estimation in the x dimension
σypf Covariance of PF estimation in the y-dimension
Tk+1|k Cross-correlation matrix of PAUKF
Kk+1|k Kalman gain of PAUKF
x̂PAUFK Final state estimation of PAUKF.
P̂PAUFK Final state variance matrix of PAUKF
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