
sensors

Review

Edge Machine Learning for AI-Enabled IoT Devices:
A Review

Massimo Merenda 1,2,* , Carlo Porcaro 1,2 and Demetrio Iero 1,2

1 Department of Information Engineering, Infrastructure and Sustainable Energy (DIIES),
University Mediterranea of Reggio Calabria, 89124 Reggio Calabria, Italy; porcarocarlo@libero.it (C.P.);
demetrio.iero@unirc.it (D.I.)

2 HWA srl-Spin Off dell’Università Mediterranea di Reggio Calabria, Via Reggio Campi II tr. 135,
89126 Reggio Calabria, Italy

* Correspondence: massimo.merenda@unirc.it; Tel.: +39-0965-1693-441

Received: 22 March 2020; Accepted: 25 April 2020; Published: 29 April 2020
����������
�������

Abstract: In a few years, the world will be populated by billions of connected devices that will be
placed in our homes, cities, vehicles, and industries. Devices with limited resources will interact with
the surrounding environment and users. Many of these devices will be based on machine learning
models to decode meaning and behavior behind sensors’ data, to implement accurate predictions
and make decisions. The bottleneck will be the high level of connected things that could congest
the network. Hence, the need to incorporate intelligence on end devices using machine learning
algorithms. Deploying machine learning on such edge devices improves the network congestion by
allowing computations to be performed close to the data sources. The aim of this work is to provide
a review of the main techniques that guarantee the execution of machine learning models on hardware
with low performances in the Internet of Things paradigm, paving the way to the Internet of Conscious
Things. In this work, a detailed review on models, architecture, and requirements on solutions that
implement edge machine learning on Internet of Things devices is presented, with the main goal to
define the state of the art and envisioning development requirements. Furthermore, an example of
edge machine learning implementation on a microcontroller will be provided, commonly regarded as
the machine learning “Hello World”.

Keywords: artificial intelligence; machine learning; Internet of Things; edge devices; deep learning

1. Introduction

The Internet of Things (IoT) scenario [1,2] has gained a lot of notoriety in recent years.
It encompasses an infrastructure of software and hardware that connects the physical world with the
Internet. Due to the explosive growth of interest in this paradigm, the number of IoT devices has
increased dramatically in recent years. It has been estimated that by 2025, more than 75 billion devices
will be connected to the Internet [3], leading to an economic impact on the global market. IoT devices
typically have limited computing power, small memories, and could generate large amounts of data.
Low-power and connected systems including mainly sensors will be used in our homes, cities, vehicles,
and industries. Cloud computing might be suitable for the IoT sector growth but the delay caused
by the data transfer is unacceptable for some tasks (e.g., health monitoring), in addition to possible
bandwidth saturation. So, due to the greater numbers of connected devices, the only-cloud processing
could become impractical and would lead to greater latency, bandwidth decrease, and privacy and
reliability problems [4]. Hence the need to bring the calculation as locally as possible, incorporating
intelligence on end devices to limit cloud traffic. This means giving a sort of “consciousness” to the
devices that become able to interact also in the absence of the connection, elaborating complex behavior,

Sensors 2020, 20, 2533; doi:10.3390/s20092533 www.mdpi.com/journal/sensors

http://www.mdpi.com/journal/sensors
http://www.mdpi.com
https://orcid.org/0000-0003-3668-8014
https://orcid.org/0000-0001-5478-6537
https://orcid.org/0000-0001-8499-7431
http://dx.doi.org/10.3390/s20092533
http://www.mdpi.com/journal/sensors
https://www.mdpi.com/1424-8220/20/9/2533?type=check_update&version=2

Sensors 2020, 20, 2533 2 of 34

and adapting to rapidly changing situations, a sort of “Internet of Conscious Things”. Unfortunately,
limitations in the computational capabilities of resource-scarce devices restrict the implementation of
complex machine learning (ML) algorithms on them, although several frameworks based on software
agents provide reliable and effective solutions for the optimizations of different edge computing
implementation [5–7]. The tasks that can be delivered to the edge elements are related to low-data
fusion [8], while for a deeper understanding of the data (e.g., decision-making purposes) it is necessary
to assign the calculation to more efficient systems. However, the transferring of raw data to cloud
servers increases communication costs, causes delayed system response, and exposes private data.
To address these issues, a practical solution is to consider processing data closer to its sources and
transmitting to remote servers only the data needed for further cloud processing. Edge computing
refers to computations being performed as close to data sources as possible, instead of remote locations.

Both search engines and libraries were used to write the review. As reported on Google Trends [9],
in these years there has been an increase of interest from the scientific community on the topic and issues
of edge computing (Figure 1) and a total of 6342 papers are reported from Scopus [10]. The keywords
employed to obtain the papers to be analyzed was edge computing.

0

10

20

30

40

50

60

70

80

90

100

2013 2014 2015 2016 2017 2018 2019 2020

Edge Computing Interest

Figure 1. Edge computing interest (Google Trends).

In order to discern which papers to use, only papers written in English were considered.
Furthermore, to observe the recent evolution in this field, the selected papers were published from the
years 2014 to the first months of 2020. Finally, a total of about 100 papers were utilized to compile
this review.

The distribution of the papers regarding the country of the first author providing the countries
that investigate edge computing systems are mainly China, USA, UK, and Italy. China is the country
with the highest number of papers with a total of 2193 papers, 34.7% of the total.

The solution paved from the usage of edge machine learning (eML) is a viable way to meet the
latency, scalability, and privacy challenges described earlier.

Sensors 2020, 20, 2533 3 of 34

In order to make possible this scenario, efficient artificial intelligence (AI) algorithm could be
deployed on the devices as SVM (support vector machine) [11,12], deep learning (DL) [13,14] and,
inter alia, neural networks (NNs) [15,16]. It is noteworthy that NNs require less computational power
in the application phase than in the training phase. This feature can be exploited to execute algorithms
of AI on devices with limited resources, as microcontrollers (MCUs), allowing local data processing.
In fact, in the learning phase, a large amount of data is used to calculate the weights and biases of
the network, thus requiring a performing machine in this phase. Once the learning phase has been
completed and the network has been trained, the model can be used for inference (in statistic field, it is
the process of using data analysis to deduce properties of an underlying probability distribution) with
a lower computational request. In fact, once the coefficients have been calculated, they are stored in the
program memory and the AI algorithm can be executed on a device with a low capacity in terms of RAM
(random access memory). ML algorithms are used for different topics such as smart cities [5,17–22],
computer vision [23–27], health care [28–33], automotive [34–37], and others. Concerning these fields,
there are different examples of how machine learning could be brought on edge devices. Anandhalli
and Baligar in 2017 proposed in [18] a video processing algorithm that identified and counted the
vehicles on a road. The algorithm was run on a Raspberry Pi3 (1.2 GHz quad-core ARMv8, 1 GB of
RAM) with a built-in camera, using the library OpenCV5 (Open Source Computer Vision Library [38]).
In [23], the authors developed a face recognition algorithm for law enforcement agencies within a smart
city. A portable wireless camera mounted on the uniform of a police officer is used to capture the images
that are then passed on to a Raspberry Pi3 to perform facial recognition. The Viola-Jones algorithm [39]
is first used to identify faces in the images, then the ORB algorithm [40] extracts the peculiar features
from the faces that are then transmitted to an SVM algorithm in the cloud to identify people. Therefore,
for IoT purposes, the devices must be sufficiently powerful to perform certain tasks, even though,
in general, it is possible to insert AI even in any embedded devices by exploiting a certain class of
algorithms. The use of ML algorithms also allows the extension of the average battery life of the device,
with power saving one of the fundamental tasks of the IoT world. For example, authors in [28] focused
on increasing the battery life of a device used for e-health purposes by optimizing sampling times and
data transfers using ML algorithms. Any unnecessary data that are transferred, stored, and processed
appear to be a potential waste of energy. Using an SVM algorithm, based on the RBF (radial basis
function) [41], kernel function, and varying the sampling frequency, it was possible to increase the life
of the device from 2 weeks to years (997 days). In the same scenario considered, the wearable sensor
platform for health-care in a residential environment (SPHERE) [42] is used to classify human activity
into three categories: Sedentary, moderate, and sportive. The data measured by an accelerometer are
sent to the MCU using Serial Peripheral Interface (SPI) protocol. After processing the data, they are
packed by the microcontroller and sent using advertisement mode to a Bluetooth Low Energy (BLE)
radio, which transmits data outside the smart home to a central unit. The use of SVM can also be found
in [43], which highlights how the use of ML algorithms allows greater efficiency and low consumption
in predicting patients’ seizures. In fact, crisis prediction is a difficult task due to the variability of the
electroencephalography (EEG) signal depending on the patient. A neurostimulator able to identify
and react to a principle of crisis can facilitate applications that would not otherwise be feasible, such as
the possibility of generating a stimulus to suppress the crisis itself. The article demonstrates how ML
techniques like SVM can be used to identify possible crises in each patient. The use of NN on embedded
devices can be found in [44], which deals with the use of learning algorithms on an inexpensive robot
built to perform sense-motor tasks. The robot, in particular, learns to trace objects by identifying the
peculiarities of the object itself. The algorithm uses a CNN (convolutional neural network) to combine
color, brightness, motion, and audio information while training is carried out using supervised ML
algorithms. The images are properly analyzed to eliminate redundant input data. A Motorola board
populated with a 68HC11, an 8-bit MCU with Complex Instruction Set Computer (CISC) architecture is
used, which converts and processes the gyroscope outputs and generates sound feedback and timing
signals for 14 servomotors that allow 3 degrees of freedom for each of the four legs and two degrees of

Sensors 2020, 20, 2533 4 of 34

freedom for the robot’s head. A Charge-Coupled Device (CCD) camera is mounted on the top of the
robot, which acts as the robot’s eye.

As seen from the previous papers, ML algorithms can be implemented on devices with limited
computational power and this can be used to improve the IoT field [45,46], thus enabling the edge
computing. A related term, fog computing, describes an architecture where the cloud is extended to be
closer to the IoT end devices, thereby improving latency and security by performing computations
near the network edge [4]. Therefore, also for the fog computing, the task is to bring the processing
phase closer to where the data are generated but the main difference is where the “intelligence” is
located. In fog computing the processing phase is at the LAN (local-area network) level, in a fog node
or IoT gateway. In edge computing, data are mainly processed directly on the devices to which the
sensors are attached (physically very close to the sensors). The closer to the sensor, the better it is in
terms of privacy and power consumption because of the reduction of the energy request related to
data transmission. In this scenario, a variety of possibilities of energy harvesting from different sources
paves the way for AI-enabled passive or semipassive IoT sensor platforms [47–51].

This survey focused on ML systems deployed on edge devices. Section 2 provides a comparison
between the ML algorithms implementable in edge computing. In Section 3, the process of bringing
ML to the edge is analyzed. Section 4 describes edge server-based architectures while in Section 5
the wireless standards for AI-enabled IoT devices are introduced. Section 6 provides edge-specific
solutions for offloading techniques, detailing the differences of the joint computation alternatives.
Section 7 deals with privacy issues and how to protect user privacy in uploading data. Section 8
describes the edge implementations of the training phase, in ML design. In Section 9, an example
of edge machine learning implementation is provided, commonly regarded as the machine learning
“Hello World”. The conclusions are, finally, drawn in Section 10.

2. Machine Learning Algorithms

We now discuss ML algorithms that could be used in resource-constrained settings at the edge of
the network. The machine learning algorithms introduced in the next paragraphs are the most used in
the papers that afford the problem of bringing AI in devices with resource-constrained hardware.

2.1. Deep Learning

A deep learning model can be thought as a combination of weights and biases [52].
These parameters are varied by an optimization function (ADAM [53] optimization algorithm is
generally used) based on an objective function (loss function or reward function, if the learning is,
respectively, supervised or reinforcement) that measures the predictive power of the model. Following
a training phase, the AI algorithm identifies an underlying pattern between the data, predicting
a value as a function of the inputs’ data. Depending on the training phase, we can distinguish various
learning techniques: (1) Supervised learning (both inputs and outputs are provided to the algorithm),
(2) unsupervised learning (only inputs are provided), and (3) reinforcement learning (an objective
reinforcement function is maximized). During the inference, the inputs’ data pass through the layers
and each layer performs matrix multiplications. The output of the final layer is either a number or
a classification output. A deep neural network (DNN) [13] (Figure 2) is an artificial neural network
(ANN) with multiple layers between the input and output layers and the operations include linear or
nonlinear functions. A special case of DNNs involves the usage of the matrix multiplications with
convolutional filter operations, which is common in DNNs that are designed for image and video
analysis. This type of models is known as convolutional neural networks (CNNs) [54] and they are
used when the numbers of input variables are high. The DNNs designed especially for time series
prediction are called recurrent neural networks (RNNs) [55], characterized by having loops in their
layer connections to keep state and enable predictions on sequential inputs.

There are many possible choices on how to design a NN model, provided that different
hyperparameters of the network bring a different level of accuracy. In particular, a model with

Sensors 2020, 20, 2533 5 of 34

high accuracy requires more memory than a model with low accuracy due to the number of parameters.
The metric used to measure accuracy depends on the domain in which the ML algorithm is applied.
For example, in object detection, the accuracy may be measured by the mean average precision
(mAP) [56], which measures how well the predicted object location overlaps with the ground-truth
location, averaged across multiple categories of objects.
Sensors 2020, 20, x FOR PEER REVIEW 5 of 33

Figure 2. Deep Neural Network (DNN) example.

2.2. RNN, GAN, K‐NN

A particular type of NN are the RNNs (recurrent neural networks) [57]. In this type of NN, the

output values of a high layer are used as input for a lower one. This interconnection allows the use

of one of the layers as state memory. Providing a temporal sequence of values as input, it allows us

to model also dynamic temporal behavior. This makes them applicable to predictive analysis tasks

on data sequences, such as handwriting recognition or speech recognition [58]. A particular RNN is

LSTM (long short‐term memory) [59]. A LSTM unit is composed of a cell, an input gate, an output

gate, and a forget gate. The cell remembers the values over the time and the gates regulate the flow

of information into and out of the cell. In particular, the forget gate can learn what information is kept

or forgotten during training.

Another type of NN is the generative adversarial network (GAN) [60]. They consist of two

networks: Generator and discriminator. The first generates data after it learns the data distribution

from a training dataset of real data. The second one is in charge of classifying the real data from the

fake ones generated by the generator.

K‐nearest neighbors algorithm (K‐NN) [61] is an algorithm used in the field of patterns

recognition, based on the characteristics of the objects close to the one considered. This method is

used both for classification and regression problems. There are different modified versions of k‐NN

that helps to implement the algorithm in hardware‐constrained devices and the most innovative is

ProtoNN [62]. It is a k‐NN‐based algorithm. The main problems of the K‐NN for the computation at

the edge are: The training data size (the algorithm generates prediction using the entire datasets), the

prediction time, and the choice of the distance metric. To address these issues, ProtoNN works on a

smaller training dataset excluding the unnecessary data. The dataset is then projected to a low

dimension matrix and jointly learned across all data points. Gupta et al. implemented ProtoNN on

an Arduino Uno to evaluate its performance using 14 datasets and reported almost the same

classification accuracy as the state of the art.

2.3. Tree‐Based ML Algorithms

Tree‐based ML algorithms are used for classification and regression problems that are a very

common practice in the IoT field. However, due to the limited resources of the devices, the usual tree

algorithms could not be brought on them. An emerging algorithm is Bonsai [63]. The tree algorithm

[64] is designed specifically for severely resource‐constrained IoT devices and it maintains prediction

Figure 2. Deep Neural Network (DNN) example.

2.2. RNN, GAN, K-NN

A particular type of NN are the RNNs (recurrent neural networks) [57]. In this type of NN,
the output values of a high layer are used as input for a lower one. This interconnection allows the use
of one of the layers as state memory. Providing a temporal sequence of values as input, it allows us
to model also dynamic temporal behavior. This makes them applicable to predictive analysis tasks
on data sequences, such as handwriting recognition or speech recognition [58]. A particular RNN is
LSTM (long short-term memory) [59]. A LSTM unit is composed of a cell, an input gate, an output
gate, and a forget gate. The cell remembers the values over the time and the gates regulate the flow of
information into and out of the cell. In particular, the forget gate can learn what information is kept or
forgotten during training.

Another type of NN is the generative adversarial network (GAN) [60]. They consist of two
networks: Generator and discriminator. The first generates data after it learns the data distribution
from a training dataset of real data. The second one is in charge of classifying the real data from the
fake ones generated by the generator.

K-nearest neighbors algorithm (K-NN) [61] is an algorithm used in the field of patterns recognition,
based on the characteristics of the objects close to the one considered. This method is used both for
classification and regression problems. There are different modified versions of k-NN that helps to
implement the algorithm in hardware-constrained devices and the most innovative is ProtoNN [62].
It is a k-NN-based algorithm. The main problems of the K-NN for the computation at the edge are:
The training data size (the algorithm generates prediction using the entire datasets), the prediction
time, and the choice of the distance metric. To address these issues, ProtoNN works on a smaller
training dataset excluding the unnecessary data. The dataset is then projected to a low dimension
matrix and jointly learned across all data points. Gupta et al. implemented ProtoNN on an Arduino
Uno to evaluate its performance using 14 datasets and reported almost the same classification accuracy
as the state of the art.

Sensors 2020, 20, 2533 6 of 34

2.3. Tree-Based ML Algorithms

Tree-based ML algorithms are used for classification and regression problems that are a very
common practice in the IoT field. However, due to the limited resources of the devices, the usual tree
algorithms could not be brought on them. An emerging algorithm is Bonsai [63]. The tree algorithm [64]
is designed specifically for severely resource-constrained IoT devices and it maintains prediction
accuracy while minimizing model size and prediction costs. It learns first a single sparse tree reducing
the size model, then it makes nonlinear predictions through the internal nodes and the leaf ones.
Eventually, Bonsai learns sparse matrix, projecting all data into a low dimensional space in which the
tree is learned. This allows the algorithm to be brought on tiny devices like IoT ones.

The referenced implementation was carried out on an Arduino board populated with an 8-bit
ATmega328P microcontroller with 16 MHz operating frequency, 2 kB of Static Random Access Memory
(SRAM), and 32 kB of read-only flash memory and on BBC Micro:Bit which has an ARM architecture
32-bit Cortex with an operating frequency of 16 MHz, 16 kB of SRAM and 256 kB of flash.

2.4. SVM

One of the most widely used ML algorithms at the embedded level is the SVM [28,29,43,52].
SVM is a supervised learning algorithm that can be used for both classification and regression problems.
The algorithm discriminates between two or more classes of data by defining an optimal hyperplane
that separates all classes (Figure 3a). The support vectors are the data closest to the hyperplane, which,
if removed, would result in a redefinition of the hyperplane itself. For these reasons they are considered
the critical elements of the dataset. Usually, the loss function used by the algorithm is the Hinge loss
and the optimization function is the descending gradient technique.

Sensors 2020, 20, x FOR PEER REVIEW 6 of 33

accuracy while minimizing model size and prediction costs. It learns first a single sparse tree reducing

the size model, then it makes nonlinear predictions through the internal nodes and the leaf ones.

Eventually, Bonsai learns sparse matrix, projecting all data into a low dimensional space in which the

tree is learned. This allows the algorithm to be brought on tiny devices like IoT ones.

The referenced implementation was carried out on an Arduino board populated with an 8‐bit

ATmega328P microcontroller with 16 MHz operating frequency, 2 kB of Static Random Access

Memory (SRAM), and 32 kB of read‐only flash memory and on BBC Micro:Bit which has an ARM

architecture 32‐bit Cortex with an operating frequency of 16 MHz, 16 kB of SRAM and 256 kB of flash.

2.4. SVM

One of the most widely used ML algorithms at the embedded level is the SVM [28,29,43,52].

SVM is a supervised learning algorithm that can be used for both classification and regression

problems. The algorithm discriminates between two or more classes of data by defining an optimal

hyperplane that separates all classes (Figure 3a). The support vectors are the data closest to the

hyperplane, which, if removed, would result in a redefinition of the hyperplane itself. For these

reasons they are considered the critical elements of the dataset. Usually, the loss function used by the

algorithm is the Hinge loss and the optimization function is the descending gradient technique.

(a) (b)

Figure 3. (a) Hyperplane that separate two classes of data, (b) kernel trick.

Sometimes the data are linearly separable, but this only represents a subset of cases. SVM can

efficiently perform a classification using the kernel trick. Suppose we face the problem represented

in Figure 3b: It is impossible to find a single line to separate the two classes in the input space. But,

after projecting the data into a higher dimension, it is possible to find the hyperplane which classifies

the data. Kernel helps to find a hyperplane in the higher dimensional space without increasing the

computational cost too much.

3. Bringing Machine Learning to the Edge

3.1. Architectures

To meet latency requirements, different architectures for quick‐performing model inference

have been proposed. The research focused on three important architectures (depicted in Figure 4): (1)

On‐device computation, where DNNs are executed on the end device; (2) edge server‐based

architectures (the data are sent from the end devices to edge servers for computation); and (3) joint

computation which includes the possibility to have cloud processing.

Figure 3. (a) Hyperplane that separate two classes of data, (b) kernel trick.

Sometimes the data are linearly separable, but this only represents a subset of cases. SVM can
efficiently perform a classification using the kernel trick. Suppose we face the problem represented in
Figure 3b: It is impossible to find a single line to separate the two classes in the input space. But, after
projecting the data into a higher dimension, it is possible to find the hyperplane which classifies
the data. Kernel helps to find a hyperplane in the higher dimensional space without increasing the
computational cost too much.

3. Bringing Machine Learning to the Edge

3.1. Architectures

To meet latency requirements, different architectures for quick-performing model inference
have been proposed. The research focused on three important architectures (depicted in Figure 4):
(1) On-device computation, where DNNs are executed on the end device; (2) edge server-based

Sensors 2020, 20, 2533 7 of 34

architectures (the data are sent from the end devices to edge servers for computation); and (3) joint
computation which includes the possibility to have cloud processing.Sensors 2020, 20, x FOR PEER REVIEW 7 of 33

Figure 4. (a) On‐device computation, (b) edge server‐based architectures, and (c) joint computation.

3.2. Model and Hardware

Several research papers focused on the possibility of bringing artificial intelligence to devices

with limited resources [44,65–67] and there have been efforts in decreasing the model’s inference time

on the device. To bring an AI model on embedded devices, ML developers should deal with the

proper hardware choice that fits model design and compression.

3.2.1. Model Design

ML developers focus on designing models with a reduced number of parameters in the DNN

model, thus reducing memory and execution latency, while aiming to preserve high accuracy. There

are several efficient models designed specifically to execute a NN on devices with low computational

capacity and power, such as MobileNets [68] or SqueezeNet [69], originally born for computer vision

tasks. MobileNets are based on a streamlined architecture that uses depth‐wise separable

convolutions to build light‐weight deep NNs. SqueezeNet downsamples the data using special 1 × 1

convolution filters.

3.2.2. Model Compression

The model compression allows us to run the model on tiny devices [70] and there are two main

ways to reduce the network: Lower precision (fewer bits per weight) and fewer weights (pruning).

Post‐training quantization reduces computing power demand and energy consumption at the

expense of a slight loss in accuracy. By default, the model weights are float32 type variables, which

lead to two problems: Firstly, the model is very large because 4 bytes are associated at each weight,

with a considerable memory requirement; secondly, the execution is remarkably slow compared to

uint8 type variables. It is possible to considerably reduce the weights from 32 bits to 8 bits, obtaining

a 4x reduction in the size of the NN. Note that post‐quantization is a technique that is carried out

after training the model, but it could be done even before training. ML libraries, such as Tensorflow

[71] or Keras [72], give the possibility to apply quantization. As stated above, the reduction of the

model size can be obtained not only with quantization, but also with pruning techniques that allow

the elimination of connections that are not useful to the NN (Figure 5); this leads to a decrease of the
computation request and program memory. Quantization and pruning approaches have been

considered individually as well as jointly [70]. These two techniques are the basis of NN compression,

from which further techniques have been developed. DeepIoT [73] presents a pruning method for

commonly used deep learning structures in IoT devices, and the pruned DNN can be immediately

deployed on edge devices without modification. Loss‐approximating Taylor expansion was used in

[74] as a gradient‐based importance metric used for pruning. Anwar et al. [75] selected pruning

Figure 4. (a) On-device computation, (b) edge server-based architectures, and (c) joint computation.

3.2. Model and Hardware

Several research papers focused on the possibility of bringing artificial intelligence to devices with
limited resources [44,65–67] and there have been efforts in decreasing the model’s inference time on
the device. To bring an AI model on embedded devices, ML developers should deal with the proper
hardware choice that fits model design and compression.

3.2.1. Model Design

ML developers focus on designing models with a reduced number of parameters in the DNN
model, thus reducing memory and execution latency, while aiming to preserve high accuracy. There
are several efficient models designed specifically to execute a NN on devices with low computational
capacity and power, such as MobileNets [68] or SqueezeNet [69], originally born for computer
vision tasks. MobileNets are based on a streamlined architecture that uses depth-wise separable
convolutions to build light-weight deep NNs. SqueezeNet downsamples the data using special 1 × 1
convolution filters.

3.2.2. Model Compression

The model compression allows us to run the model on tiny devices [70] and there are two main
ways to reduce the network: Lower precision (fewer bits per weight) and fewer weights (pruning).
Post-training quantization reduces computing power demand and energy consumption at the expense
of a slight loss in accuracy. By default, the model weights are float32 type variables, which lead
to two problems: Firstly, the model is very large because 4 bytes are associated at each weight,
with a considerable memory requirement; secondly, the execution is remarkably slow compared
to uint8 type variables. It is possible to considerably reduce the weights from 32 bits to 8 bits,
obtaining a 4x reduction in the size of the NN. Note that post-quantization is a technique that is
carried out after training the model, but it could be done even before training. ML libraries, such as
Tensorflow [71] or Keras [72], give the possibility to apply quantization. As stated above, the reduction
of the model size can be obtained not only with quantization, but also with pruning techniques that
allow the elimination of connections that are not useful to the NN (Figure 5); this leads to a decrease
of the computation request and program memory. Quantization and pruning approaches have been
considered individually as well as jointly [70]. These two techniques are the basis of NN compression,

Sensors 2020, 20, 2533 8 of 34

from which further techniques have been developed. DeepIoT [73] presents a pruning method for
commonly used deep learning structures in IoT devices, and the pruned DNN can be immediately
deployed on edge devices without modification. Loss-approximating Taylor expansion was used
in [74] as a gradient-based importance metric used for pruning. Anwar et al. [75] selected pruning
candidate by hundreds of random evaluations. Yang et al. [76] selected pruning candidate weighted by
energy consumption. Early pruning [77] and dynamic pruning [78] explored how to integrate pruning
with a better retraining, and saved the retraining time. A technique that is not among those of pruning
and quantization, but which has a significant value, is the knowledge distillation. This involves creating
a smaller DNN that imitates the behavior of a larger one [79]. This is done by training the smaller
DNN using the output predictions produced from the larger one and the smaller DNN approximates
the function learned by the larger one.

Sensors 2020, 20, x FOR PEER REVIEW 8 of 33

candidate by hundreds of random evaluations. Yang et al. [76] selected pruning candidate weighted

by energy consumption. Early pruning [77] and dynamic pruning [78] explored how to integrate

pruning with a better retraining, and saved the retraining time. A technique that is not among those

of pruning and quantization, but which has a significant value, is the knowledge distillation. This

involves creating a smaller DNN that imitates the behavior of a larger one [79]. This is done by

training the smaller DNN using the output predictions produced from the larger one and the smaller

DNN approximates the function learned by the larger one.

Figure 5. Pruning effect on the network.

3.2.3. Hardware Choice

The choice of the algorithm to be used is important to run a model on an edge device. However,

this must also be coupled to an optimal choice of hardware. The metric to be used for choosing the

hardware is based on accuracy, energy consumption, throughput, and cost [67]. The accuracy of ML

algorithms must be measured on a dataset large enough to be able to affirm that the obtained result

is valid. Energy efficiency, on the other hand, is closely related to the programmability and size of

the NN. By “programmability” we mean the adaptation of the model to the variation of the context,

i.e., the model varies the weights as the scenario varies. By “NN size” we mean, instead, the number

of layers that the processor must support. The high size and the variability of the scenario imply an

increase in terms of computation. In particular, the high size of the NN increases the number of data,

and, instead, the programmability involves the need to access the memory, read the weight value,

and modify it. This generally involves an increase in energy consumption. By “throughput” we mean

the number of operations required in the unit of time and with “cost” the amount of memory

required.

Microcontrollers can be used for AI but implementing the algorithm on them is challenging.

They are excellent choices in IoT applications and may run networks that are not too large for low‐

data fusion tasks. A good tool to facilitate the implementation of a DNN on a microcontroller is the

X‐CUBE‐AI [80], suitable only for STMicroelectronics MCUs. It is an expansion of the STM32CubeMX

environment that extends the potential of the tool, allowing an automatic conversion of pretrained

NNs to low‐resource hardware. X‐CUBE‐AI also optimizes libraries by modifying layers and

reducing the number of weights to make the network more “memory‐friendly”.

Tiny hardware that can be used for IoT purposes and recommended on the Tensorflow lite

website [81] are:

‐ Arduino Nano 33 BLE Sense [82]
‐ SparkFun Edge [83]
‐ STM32 microcontrollers [84]
‐ Adafruit EdgeBadge [85]

Figure 5. Pruning effect on the network.

3.2.3. Hardware Choice

The choice of the algorithm to be used is important to run a model on an edge device. However,
this must also be coupled to an optimal choice of hardware. The metric to be used for choosing the
hardware is based on accuracy, energy consumption, throughput, and cost [67]. The accuracy of ML
algorithms must be measured on a dataset large enough to be able to affirm that the obtained result
is valid. Energy efficiency, on the other hand, is closely related to the programmability and size of
the NN. By “programmability” we mean the adaptation of the model to the variation of the context,
i.e., the model varies the weights as the scenario varies. By “NN size” we mean, instead, the number
of layers that the processor must support. The high size and the variability of the scenario imply
an increase in terms of computation. In particular, the high size of the NN increases the number of
data, and, instead, the programmability involves the need to access the memory, read the weight value,
and modify it. This generally involves an increase in energy consumption. By “throughput” we mean
the number of operations required in the unit of time and with “cost” the amount of memory required.

Microcontrollers can be used for AI but implementing the algorithm on them is challenging.
They are excellent choices in IoT applications and may run networks that are not too large for low-data
fusion tasks. A good tool to facilitate the implementation of a DNN on a microcontroller is the
X-CUBE-AI [80], suitable only for STMicroelectronics MCUs. It is an expansion of the STM32CubeMX
environment that extends the potential of the tool, allowing an automatic conversion of pretrained
NNs to low-resource hardware. X-CUBE-AI also optimizes libraries by modifying layers and reducing
the number of weights to make the network more “memory-friendly”.

Tiny hardware that can be used for IoT purposes and recommended on the Tensorflow lite
website [81] are:

- Arduino Nano 33 BLE Sense [82]

Sensors 2020, 20, 2533 9 of 34

- SparkFun Edge [83]
- STM32 microcontrollers [84]
- Adafruit EdgeBadge [85]
- Espressif ESP32-DevKitC [86]
- Espressif ESP-EYE [87]

Arm has provided its own solution for the IoT field [88]. Recently [89], they announced the
introduction of new features on their AI platform, among which new ML Intellectual Property,
the Arm® Cortex®-M55 processor that can be up to 15 times faster than the previous version, and Arm
Ethos™-U55 NPU, the first micro-NPU (neural processing unit) for Cortex-M architecture, which can
speed up ML performance by up to 480 times.

A selection of hardware used for IoT devices that implement edge computing is reported in Table 1.

Table 1. Hardware used for Internet of Things (IoT) devices that implement edge computing.

Work DNN Model Application End Devices Key Metrics

This work (Section 9) CNN Image Recognition STM32F401RE
(ARM® Cortex® -M4) fast inference

[23] SVM Image Recognition Raspberry Pi model 3
(ARM® v8) fast inference

[90] DNN Distributed Computing Raspberry Pi model 3
(ARM® v8) hierarchical

[91] SVM, CNN Video Analysis Raspberry Pi model 3
(ARM® v8) fast inference

[92] SVM Video Analysis Raspberry Pi model 3
(ARM® v8) fast inference

[28] SVM Battery Lifetime Estimation SPHERE energy

[44] CNN Image Recognition, Sensor
Fusion Motorola 68HC11 fast inference

[65] SVM Code execution ARM® v7 accuracy

[93,94] Logistic Regression Human Activity Recognition ESP32 accuracy

[95] CNN Speech Recognition Sparkfun Edge accuracy

4. Edge Server-Based Architectures

The solutions described in the previous sections allow us to run the AI algorithm on end devices
but implementing powerful DNNs on tiny devices is still challenging (e.g., decision making and
real-time execution). In some circumstances, it is necessary to transfer the computations from end
devices to more powerful entities [96]. Since the edge server is close to users, it could be the best
approach to solve the problems related to the calculation in optimal times. The easiest way to utilize the
edge server is to offload all the computation from end devices to the edge server: The end devices will
send their data to a nearby edge server and receive the corresponding results after server processing.
When sending data to an edge server, data preprocessing is useful to reduce redundancy and thus
decrease communication time. An example could be Glimpse [97] that is a continuous, real-time, object
recognition system for camera-equipped mobile devices. Starting from the video, Glimpse identifies
objects and labels and traces them. Because the algorithms for object recognition entail significant
computation, Glimpse runs almost always on server machines. It uses change detection to filter which
camera frames are offloaded. If no changes are detected, Glimpse will perform frame tracking locally
on the end device. This preprocessing makes real-time object recognition possible.

Obviously, if the data processing is outsourced to an edge server, more edge devices will belong to
it. This should bring the problem of the shared resources. So, the developer should look for the right
trade-offs between accuracy, latency, and other performance metrics, such as a number of requests
served. A practical solution [98] could be to assign the computation across a hierarchy of edge and
cloud servers jointly tuning all the DNN hyperparameters. Mainstream [99] considers a similar scenario

Sensors 2020, 20, 2533 10 of 34

but the proposed solution uses transfer learning to reduce the computational resources consumed by
each request. Transfer learning enables multiple applications to share the common lower layers of the
DNN model and computes higher layers unique to the specific application, thus reducing the overall
amount of computation.

5. Wireless Standards for AI-Enabled IoT Devices

Most of the energy in the IoT device is wasted due to the communication protocol. Indeed, any
unnecessary data that are transferred, stored, and processed appear to be a potential waste of energy.
Consequently, excellent algorithms must also be accompanied by efficient communication protocols.
According to the specific scenario, the developers can use different communication protocols (Table 2).
This is because we can distinguish protocols that allow us to transmit a small amount of data over
long distances with a low energy consumption and protocols that can transmit a great amount of
data over long distances with a high consumption. If the spectrum band use is considered, we can
also classify them into technologies that use the licensed or the unlicensed spectrum, e.g., Industrial,
Scientific and Medical (ISM) bands [100]. Among the many communication technologies, we include
BLE [101], an example [102] that presents the design and optimization of a smart sensor supplied
by 2.4 GHz Radio Frequency (RF) power and performing infrared-based motion detection and BLE
communication. Bluetooth wireless technology is widely used, including the introduction of Bluetooth
5 [103,104] that uses less power and supports mesh topology, enables large-scale device networks,
and many-to-many communications. Bluetooth 5 meets the requirements for recent IoT devices with
its good range, increased speed up to 2 Mbps, and a long-range mode with higher sensitivity at lower
bit rates.

ZigBee [105] is one of the main IoT communication standards. It is based on IEEE 802.15.4 [106]
standard for WPAN (wireless personal area network) and its primary application is in the field of
wireless sensor networks (smart energy and home automation) [107]. It could be used in different
fields: Smart cities [108,109], agriculture [110,111], automotive [112,113], and health care [114,115].
ZigBee operates mainly in the 2.4 GHz, but also supports the 868 MHz and 916 MHz ISM bands.

Another solution is Z-Wave, a sub-GHz mesh network protocol often used for security systems,
home automation, and lighting controls [116]. Like Zigbee, Z-Wave is a low-power technology based
on IEEE 802.15.4 that transfers small amounts of data over short and medium distances. Z-wave uses
a proprietary radio system and has a strictly regulated product ecosystem targeting smart homes,
while Zigbee devices can be used for a variety of applications and are not fully interoperable.

ANT [117] is a proprietary protocol operating in the 2.4 GHz band designed for low bit rate and
low-power networks. It supports point-to-point, star, tree, and mesh networks and up to 65,533 nodes
for each of the available channels. It was originally used in sports and fitness sensors but later used
for home automation and industrial applications. ANT+ is a standardized layer on top of the ANT
protocol allowing devices’ interoperability [118].

In the wake of the market demands of direct IP-based connectivity, new wireless mesh networking
standards have been developed. The 6LoWPAN (IPv6 over low-power wireless personal area
networks) [119] is a light-weight, IP-based communication and is an open IoT network protocol,
primarily used for home and building automation. However, the standard only defines an efficient
adaptation layer between the 802.15.4 data link layer and the TCP/IP stack. Thread [120] is a secure
and reliable mesh protocol for home automation running over 6LoWPAN and IEEE 802.15.4 radio.
The stack is an open standard built as a collection of existing standards and is optimized for low-power
operation, but the application layer is not standardized.

The aforementioned WPAN solutions require an application-level gateway that runs the TCP/IP
stack via Ethernet or WiFi. Instead, 6LoWPAN-based solutions use an edge router that only forwards
packets at the network layer and does not implement an application layer state, allowing low-cost
bridging to other IP networks.

Sensors 2020, 20, 2533 11 of 34

WiFi networks (IEEE 802.11) use an access point (AP) as an Internet gateway and have good
data capacity and coverage inside buildings. Until recently it was quite expensive to integrate
WiFi connectivity into devices with low computing performance, due to the size and complexity of
WiFi and TCP/IP software and the high power consumption that make it not suitable for use with
battery-powered devices. Now, however, new devices support WiFi and TCP/IP software and have
reduced power consumption. The power consumption of these devices can be further reduced by
activating the radio section only for short periods, allowing them to operate for over a year with two
AA batteries [121].

Many different WiFi protocols are available and operate at either 2.4 GHz or 5 GHz. IEEE 802.11n
and IEEE 802.11ac are the most widely used protocols but different versions have been developed
in the past years for higher versatility. WiFi HaLow (IEEE 802.11ah) is designed for low data rate
and long-range devices [122]. It operates in the sub-GHz ISM band and implements power-saving
techniques, such as target wake time (TWT) that wake up the device at defined intervals for a very short
time. HaLow was released in 2016, but is not yet widely used in commercial products. The 802.11af [123]
has the same target applications of HaLow but it relies on unused TV spectrums in UHF and VHF
bands and never took off.

The 802.11ax [124] is a more recent version of WiFi technologies that support higher transfer speed
and also introduce power-saving features such as TWT, making it more attractive for IoT applications.
It also includes features that allow it to extend the range and allows the partition of the channel into
smaller subchannels to reduce the data rates while extending the number of devices that can be reliably
connected to an access point, allowing it to scale up to thousands of devices.

Radio-frequency identification (RFID) is a technology that uses sub-GHz ISM bands, designed
specifically so devices without batteries could send a signal [125]. NFC (near-field communication) is
a protocol used for very close communication [126]. It operates in the 13.56 MHz and is designed to
exchange data with another NFC device, allowing bidirectional communications. The low data rate
and short communication distance make it suitable only for niche IoT applications.

LoRa (long range) [127,128] is a low-power, wide-area network (LPWAN) technology. It is
based on spread spectrum modulation techniques and it could be used for empowering the IoT
scenario [129]. In [130], it is presented a solution of machine learning on edge devices with the use
of LoRa as a low-power transmission protocol. Implementing machine learning with LoRa allow it
to reduce transmitted data by 512 times and extend battery life by 3 times for that specific scenario.
Nowadays, the most common strategy for processing data is the use of the cloud, but the transmission
of large amounts of data requires frequent recharging of the devices, thus negating the prerogatives
of the IoT. In addition, IoT applications could require long-distance data transmission, such as for
traffic monitoring. IoT devices must, therefore, have a low-energy profile and sometimes be able to
transmit over great distances for a given scenario [125,130,131]. Furthermore, IoT devices require edge
processing for bandwidth, latency, and privacy issues. Under these conditions, the efficient use of data
reduction and local processing must be coupled with long-range and small-bandwidth transmission
protocols and this could be obtained using LoRa.

SigFox [132] is another LPWAN solution. It is a narrowband technology and allows the use
of simpler devices that are available from different manufacturers. However, it requires the use of
sophisticated and expensive gateways and access points and the network is controlled by SigFox
and has a fee. On the contrary, LoRa is open and its use is free with no subscriptions and no
constraints on installation of gateways and network servers. However, the production of LoRa radio is
a Semtech exclusive.

LTE (long-term evolution), commonly known as “4G LTE”, is a standard for wireless broadband
communication based on GSM/EDGE and UMTS/HSPA technologies [133]. After the LTE introduction,
it began to compete with the emerging technologies for IoT field such as BLE, narrowband Internet of
Things (NB-IoT), ZigBee, and LoRa. The 4G has improved the capabilities of cellular networks but it is
not fully optimized for IoT applications [134,135].

Sensors 2020, 20, 2533 12 of 34

NB-IoT [136], has been introduced to provide low-cost, low-power, wide-area cellular connectivity
for the Internet of Things. NB-IoT is a standards-based low-power wide-area (LPWA) technology
developed to enable a wide range of new IoT devices and services. NB-IoT significantly improves
the power consumption of user devices, system capacity, and spectrum efficiency, especially in deep
coverage. NB-IoT is built [137] from existing LTE functionalities with essential simplifications and
optimizations. At the physical layer, it occupies 180 kHz of spectrum, which is substantially smaller than
LTE bandwidths of 1.4–20 MHz. At the higher layers, simplified LTE network functions are supported.
Compared to other LPWAN solutions, NB-IoT has the great advantage of eliminating the need for
a specific gateway, so sensor data is sent directly to the cloud server, reducing infrastructure costs.

LTE Cat-M1 [138] is a LPWAN that enables cellular services for the IoT world. Compared to
NB-IoT, this technology provides higher data rate and the ability to use voice over the network,
but requires more bandwidth and, therefore, the devices are more complex and expensive. NB-IoT and
Cat-M1 have different and somewhat complementary target applications with the former suitable for
small sensors and meters and the latter for devices that require higher data rates and have a higher
power budget.

The 5G networks and standards are expected to solve challenges that are facing 4G networks.
The 5G is the fifth generation of mobile, cellular technologies, networks, and solutions. Although not
just ‘built’ for the Internet of Things (IoT), it will be the major driver of the growth of IoT. The 5G IoT is
a novel [139], intelligent network based on 5G communication, which is designed to connect sensing
regions (sensors) and processing center (cloud) provided by AI algorithms. It presents the different
emerging technologies, involving massive Multiple Input Multiple Output (MIMO) networks, dense
static small-cell networks, and mobile small-cell networks. The 5G fulfills the needs of the IoT [135]:

- high data rate;
- high scalable and fine-grained networks, to increase network scalability;
- very low latency;
- long battery lifetime, to support billions of low-power and low-cost IoT devices.

Reducing the latency in the communications, 5G eliminates part of the bottleneck related to the
remote execution of ML algorithms [140].

ML developers should properly define the communication technology based on specific design
requirements, as well as architectures, hardware, latency, and strategy of computation [141–143].

Table 2. Main communication technologies used in IoT.

Group Technology Data Rate Distance (Indoor/Outdoor) Works

Contactless NFC 424 kbps 0–4 cm [126]
Contactless RFID 640 kbps 10–20 m [125]

LPWAN LoRa 0.3 to 50 kbps 5–10 km [127,128,144–148]
LPWAN SigFox 100 or 600 bps 30–50km [143,148–151]
WPAN Zigbee 250 kbps 10–100 m [152–155]
WPAN Z-Wave 100 kbps 100 m [116,156]
WPAN Bluetooth LE 1 Mbps 10 m/50 m [102,157–159]
WPAN Bluetooth 5 2 Mbps 40 m/200 m [160–162]
WPAN ANT 60 kbps 30 m [163]

WiFi IEEE 802.11n 600 Mbps 70 m/250 m [164]
WiFi IEEE 802.11ax 9600 Mbps 30 m/120 m [124]
WiFi IEEE 802.11af 570 Mbps 280 m/1 km [165,166]
WiFi IEEE 802.11ah 347 Mbps 140 m/500 m [122,166,167]

Cellular NB-IoT 200 kbps 280 m/1 km [136,137,150,168]
Cellular LTE-M1 1 Mbps 5–100 km [138]
Cellular 4G/LTE 150 Mbps 15 km [169]
Cellular 5G 10–50 Gbps 2 km [170–172]

Sensors 2020, 20, 2533 13 of 34

6. Joint Computation

Although the edge server can accelerate DNN processing, it is not always necessary to have the
edge devices executing DNNs on edge servers. We will introduce three offloading scenarios (Figure 6):
(1) partial offloading of partitioned DNN (the decision is what fraction of the DNN computations
should be offloaded), (2) hierarchical architectures (offloading is performed across a combination
of edge devices, edge servers, and cloud), and (3) distributed computing approaches (the DNN
computation is distributed across multiple peer devices).

Sensors 2020, 20, x FOR PEER REVIEW 13 of 33

Although the edge server can accelerate DNN processing, it is not always necessary to have the

edge devices executing DNNs on edge servers. We will introduce three offloading scenarios (Figure

6): (1) partial offloading of partitioned DNN (the decision is what fraction of the DNN computations

should be offloaded), (2) hierarchical architectures (offloading is performed across a combination of

edge devices, edge servers, and cloud), and (3) distributed computing approaches (the DNN

computation is distributed across multiple peer devices).

Figure 6. Joint computation among devices, edge, and cloud servers.

6.1. Partial Offload

In model partitioning approaches, some layers are computed on the device and the others are

computed by the edge server or the cloud. This approach can potentially offer latency reductions

thanks to the compute cycles of other edge devices. Indeed, after the first few layers of the DNN

model have been computed, the size of the intermediate results is relatively small and the output can

be sent over the network to an edge server in a faster way than the original raw data [90]. Critical is

the choice of the point where the network needs to be partitioned and one algorithm that can be used

is Neurosurgeon [173]. It is a light‐weight scheduler used to automatically partition DNN

computation between mobile devices and datacenters at the granularity of NN layers. So, it decides

where to partition the DNN, layer‐wise, while accounting for network conditions.

The partition could also be applied to the input data (e.g., raw image) and this is useful for

hardware with constrained memory that is largely used in the IoT scenario, such as IoT sensors.

However, input‐wise partitioning can result in increased data dependence, as computing subsequent

DNN layers requires data results from adjacent partitions. DeepThings [90] uses input‐wise

partitioning.

6.2. Hierarchical Architectures

ML algorithm can be performed on edge devices and on the cloud. Entrusting the computational

task to the cloud could create a latency problem. Instead, the use of powerful computational cloud

resources can potentially decrease the total processing time. For example, Li et al. [45] divided the

DNN model into two parts: The edge server computes the initial layers (lower layers) of the DNN

model after it received the input data and then the cloud computes the higher layers of the DNN. The

cloud sends back the final results to the end devices after processing. In this way, the cloud helps the

edge server with the heavier computations. There are also other approaches like DDNN [174]

(distributed deep neural networks) in which the computing is distributed across an hierarchical

system, consisting of the cloud, the edge (fog), and end devices. DDNN also allows fast and localized

Figure 6. Joint computation among devices, edge, and cloud servers.

6.1. Partial Offload

In model partitioning approaches, some layers are computed on the device and the others are
computed by the edge server or the cloud. This approach can potentially offer latency reductions
thanks to the compute cycles of other edge devices. Indeed, after the first few layers of the DNN model
have been computed, the size of the intermediate results is relatively small and the output can be
sent over the network to an edge server in a faster way than the original raw data [90]. Critical is the
choice of the point where the network needs to be partitioned and one algorithm that can be used is
Neurosurgeon [173]. It is a light-weight scheduler used to automatically partition DNN computation
between mobile devices and datacenters at the granularity of NN layers. So, it decides where to
partition the DNN, layer-wise, while accounting for network conditions.

The partition could also be applied to the input data (e.g., raw image) and this is useful for hardware
with constrained memory that is largely used in the IoT scenario, such as IoT sensors. However,
input-wise partitioning can result in increased data dependence, as computing subsequent DNN layers
requires data results from adjacent partitions. DeepThings [90] uses input-wise partitioning.

6.2. Hierarchical Architectures

ML algorithm can be performed on edge devices and on the cloud. Entrusting the computational
task to the cloud could create a latency problem. Instead, the use of powerful computational cloud
resources can potentially decrease the total processing time. For example, Li et al. [45] divided the DNN
model into two parts: The edge server computes the initial layers (lower layers) of the DNN model after
it received the input data and then the cloud computes the higher layers of the DNN. The cloud sends
back the final results to the end devices after processing. In this way, the cloud helps the edge server
with the heavier computations. There are also other approaches like DDNN [174] (distributed deep

Sensors 2020, 20, 2533 14 of 34

neural networks) in which the computing is distributed across an hierarchical system, consisting of the
cloud, the edge (fog), and end devices. DDNN also allows fast and localized inference using shallow
portions of the NN at the edge and end devices. Due to the distributed nature, DDNNs improve the
fusion of the data from network sensors, system fault tolerance, and privacy for users. Generally,
a common feature for the edge approaches is that the edge server serves a limited geographical area,
so the input data and, thus, their DNN outputs may be similar.

6.3. Distributed Computing

Hierarchical scenario is based on the offload of the network to more powerful entities like edge
devices or cloud. In the distributed perspective the DNN computations can be distributed across
multiple peer edge devices, like in DeepThings [90]. It distributes the DNN executions between end
devices such as Raspberry Pi and Android smartphones. The DNN partition choice is based on the
computation capabilities and memory of the end devices.

7. Privacy

Both in edge server-based architectures and in joint computation, the data are exchanged over
the network (e.g., from end device to edge server or from edge server to cloud) and it may contain
sensitive information. This can lead to privacy issues. In fact, as already mentioned, edge servers
work locally in a geographically limited area. Therefore, the origin of the data is practically known.
Although ML on edge devices allows the data reduction on the network and, therefore, improving
privacy by itself, it is possible to improve the system through additional techniques, such as adding
noise to data or cryptographic techniques.

7.1. Add Noise to Data

A solution is to add noise to the samples uploaded on the network during inference.
Wang et al. [175] deployed a smaller DNN locally on the edge device to extract features, add noise
to the features, and then upload the features to the cloud for further inference processing by a more
powerful DNN. The DNN on the cloud is pretrained with noisy samples so that the noisy inference
samples uploaded from the end devices can still be classified with high accuracy at test time. This is
based on differential privacy mechanism [176–179].

7.2. Cryptographic Techniques

Cryptographic techniques can be used to compute the inference with a high level of privacy.
The target of secure computation [66] is to ensure that the end device receives an inference result
without learning anything about the DNN model on the edge server and vice versa. One method of
secure computation is homomorphic encryption, in which the communicated data are encrypted and
computation can be performed on the encrypted data, as done in CryptoNets [180–182]. The DNN is
converted in CryptoNets, approximating the common activation functions and operations in a DNN,
in a low-degree polynomial, which guarantees the homomorphic encryption. However, a bottleneck
of the homomorphic encryption tends to be its compute times. Multiparty computation is another
technique for secure computation. In secure multiparty computation, multiple machines work together
and communicate in multiple rounds to jointly compute a result. Secure multiparty computation
focuses on the privacy of the intermediate computation steps, but its bottleneck tends to be the
communication complexity.

8. Training

Thus far, edge computing and deep learning have mostly been discussed assuming that a deep
learning model has already been trained offline on a prebuilt dataset. This section presents a discussion
on training algorithms and hardware for the edge field. Usually, training data produced by end devices

Sensors 2020, 20, 2533 15 of 34

would be sent to the cloud, which would then perform the training and finally distribute the trained
model back to the edge devices. Leaving data at the edge is useful when privacy is highly desired and
also helps to reduce the network bandwidth requirements.

8.1. Training Algorithms

Exchanging model parameters and other data between edge devices and cloud servers is mandatory
for training an edge–cloud-based DL model. However, as the size of the training model increases, more
data needs to be exchanged between edge devices and servers. The high network communication cost
is a bottleneck for a training model, and a local edge training implementation is required. An example
of local networks is a mobile computing system for DNN applications (MoDNN). MoDNN [183] uses
a pretrained DNN model and scans each layer of the DNN model to identify layer types. If the layer is
a convolutional one, the input layer is divided by biased one-dimensional partition (BODP) method.
BODP decreases the computing by reducing the input size. If a fully connected layer is detected,
the layer input is assigned to different work nodes (mobile devices) to achieve the minimum total
execution time. In this case the network does not change the weights as the external scenario varies
because it is pretrained. However, the structure of the edge system is hierarchical and the training
can be distributed among peer edge devices and the cloud. In-edge AI [6] is a framework which
allows better collaboration among devices and edge nodes to exchange the learning parameters for
a better training and inference of the model. It integrates deep reinforcement learning techniques and
federated learning for mobile computing purpose. Teerapittayanon et al. [174] used a cloud server
for training the DDNN among different devices (including edge devices and the cloud), while the
most powerful one trains the network. The training of DDNNs is difficult because of multiple exit
points. To address this issue, the network was trained jointly by combining losses from each exit point
during back-propagation. The training could be made also on pruned model: Chandakkar et al. [184]
designed a new architecture to retrain a pruned network on an edge device. A complete DNN is
trained for an epoch (when an entire dataset is passed forward and backward through the DNN) on
the original data. Also, layer-wise, magnitude-based weight pruning is performed with a user-defined
threshold value. This approach greatly reduces the computational complexity by removing connections
in a DNN model and makes it suitable to run on a limited resources device. Unfortunately, any pruning
process reduces the accuracy of a model. To overcome this issue, this approach finds the indices of
the most important weights for an important feature and excludes these elements from being pruned.
Finally, the pruned DNN network is used while training the next epoch because these operations are
performed cyclically.

To reduce communication costs and keep model accuracy high, Tao and Li introduced a new
method called edge stochastic gradient descent (eSGD) [185]. In this approach, all edge devices
run training tasks separately with independent data and the gradient values generated by the edge
devices are sent to the cloud servers. The server, after obtaining the gradients from the end devices,
uniforms the gradients by performing the average. After that, it updates the parameters by using this
average value. These updated parameters are sent back to the edge devices for the next training step.
This process is called parameter synchronization. Unfortunately, this gradient selection technique
decreases model accuracy. The eSGD uses two mechanisms to maintain a high level of accuracy for the
training:

• ‘Important’ updating: After each mini-batch, only a small fraction of the gradient coordinates
need to be updated. The algorithm determines main gradients, which will then be updated by the
server. This process significantly reduces communication cost.

• Momentum residual accumulation: This mechanism is applied for tracking and accumulating
out-of-date residual gradients, which helps to avoid low convergence rate caused by the previous
important updating method.

Sensors 2020, 20, 2533 16 of 34

The eSGD is capable of reducing the gradient size of a CNN model by up to 90%. Unfortunately,
high gradient shrinking leads to bad accuracy. Tao and Li used Modified National Institute of Standards
and Technology (MNIST) database in their experiments and reported 91.22% accuracy with a 50%
gradient drop.

8.2. Training Hardware

Updating the neural network or computing complex algorithms cannot be completely entrusted to
tiny hardware like microcontrollers. Field-programmable gate array (FPGA) and graphical processing
unit (GPU) consume too much power (the FPGA is still a better choice than the GPU since it is versatile
and consumes less power), but they turn out to be excellent for training NNs or performing powerful
algorithms [186]. GPUs use temporal architectures such as SIMD (single instruction multiple data) or
SIMT (single instruction multiple threads) to perform the MACs in parallel and there are software
libraries designed for GPUs that optimize the matrix multiplications e.g., NVIDIA CUDA®Basic Linear
Algebra Subprograms (cuBLAS) [187], NVIDIA CUDA®Deep Neural Network library (cuDNN) [188].
The matrix multiplications on these platforms can be further improved by applying transforms to
the data to reduce the number of multiplications. Fast Fourier transform (FFT) [189] is a well-known
approach that reduces the number of multiplications from O((N2

o)(N2
f)) to O(N2olog2No), where the

output size is No*No and the filter size is Nf *Nf ; however, the benefits of FFTs decrease with filter size.
Other approaches include Strassen [190] and Winograd [191].

Recently, some very interesting devices are emerging, such as the Hailo-8 DL [192] from the Hailo
company. The Hailo-8 DL is a processor suitable for performing deep-learning at high levels and
allows for very high performance on end devices with minimum power consumption, size, and costs.
In particular, it offers high performance (26 tera-operations per second) and is very efficient and highly
flexible (reprogrammable). Google has developed an ASIC (application-specific integrated circuit)
dedicated to the TensorFlow library TPU (Tensor processing unit) [193], whose computational capacity
is 180 teraflops. These are examples of IA accelerators, such as NPU, that is a class of microprocessors
designed to provide hardware acceleration to artificial NNs, automatic vision, and ML algorithms for
robotics, IoT, and other data-based applications [194]. While hardware DNN accelerators are quite
new, there have already been two branches of designs. The first class of accelerators only looked
at the data flow, ignoring the memory energy consumption. The second one tried to address the
amount of energy consumption due to memory access. The first style of accelerators include ConvNet
Processor (CNP) [195], Neuflow [196], and dynamically configurable (DC) CNN [197], proposing
customized logic to map convolution to hardware with more parallelism and flexibility. The second
wave of accelerators focused on optimizing memory transfer and data movement. As modern NNs
get larger, researchers realize that memory access and moving data is more critical than matrix
products between layers. Among these accelerators (TPU is included in this class of accelerators),
DianNao [198] implements an array of multiply-add units to map large DNNs onto its core architecture.
It has customized on-chip buffer to minimize Dynamic Random Access Memory (DRAM) traffic.
DaDianNao [199] and ShiDianNao [200] eliminate the DRAM access by having all weights on-chip.
An interesting AI accelerator is Movidius stick [201] suited for edge computing because it makes easy
to add deep learning capabilities to existing computing platforms. It is designed mainly for computer
vision tasks at the edge [202] and allows deploying CNNs on low-power applications that require
real-time inferencing. A detailed guide on the use is reported in [203].

Another AI accelerator is Coral [204]. It is a platform from Google that allows realizing devices
with local AI, providing hardware acceleration for neural networks at the edge of the network without
any help from the clouds. At the base of Coral there is Google’s Edge TPU, an ASIC chip optimized
to run lightweight machine learning algorithms. Many applications are reported by Coral project
itself [205]. A selection of AI accelerator devices that implement edge computing is reported in Table 3.

Sensors 2020, 20, 2533 17 of 34

Table 3. Artificial Intelligence (AI) accelerator devices that implement edge computing.

Work DNN Model Application End Devices

[206–208] SVM/CNN Image and Video Analysis Movidius
[209–211] CNN Image and Video Analysis, Robotics Jetson TX1
[212,213] YOLO [214] Image Recognition, Robotics Jetson TX2

[98] AlexNet Image Classification Nvidia Tegra K1
[196] CNN Image Analysis Neuflow
[215] CNN, DNN Image Recognition DianNao
[200] CNN Vision Processing ShiDianNao

9. MNIST Example

In this section we will analyze how it is possible to port a NN to the embedded environment using
one of the most famous models in machine learning world: the MNIST, the ML “Hello World”. We will
show how to create the neural network using the Tensorflow library and subsequently Keras, using
techniques such as pruning and quantization to reduce the size of the model. Finally, the algorithm
will be implemented on the NUCLEO-F746ZG board through the X-CUBE-AI tool.

9.1. Dataset

The dataset MNIST was developed by Yann LeCun [216], Director of the Facebook Research
Center for Artificial Intelligence, to recognize numeric digits. The dataset was created from a series of
documents made available by the NIST (National Institute of Standards and Technology) [217] and the
images were normalized in size and centered. In particular, the dataset provides 28 × 28 handwritten
images with a total of 784 pixels per image, with a splitting of the dataset to implement training and
evaluation of the model to overcome the overfitting issue. The training set consists of 60,000 samples
and the test set of 10,000 samples. The objective is to write an algorithm that allows recognizing which
digit has been written. Since there are 10 types of digits (numbers from 0 to 9), the problem can be seen
as clustering task with 10 possible classes. In a first instance, we will show the realization of the NN
using a DNN with 2 hidden layers between input and output; then we will show how to implement
the same problem using a CNN and Dropout [218] to increase the accuracy of the model.

9.2. Model with Tensorflow

In this first investigation, we will present the implementation of the NN with Tensorflow. The image
was saved in a vector of 784 elements in which each element corresponds to the intensity of the color
associated to the pixel. With the samples normalized, the values closer to 0 are close to white, and those
closer to 1 are classified as black. As already said, this is a classification problem, so the targets are
categories. One way to represent the classes is one hot encoding, which is optimal in the case of limited
classes: The target for each sample fed to the NN is a vector of length 10 (e.g., if we feed the NN with
the digit of value 4, the target associated with it should be [0,0,0,0,1,0,0,0,0,0]).

The NN consists of an input layer (dimensions: 784), two hidden layers (dimensions: 50),
and an output layer (dimensions: 10). Since we are working with a DNN, activation functions are
mandatory. On the basis of several test carried out, the choice falls on a relu for the first layer and
a sigmoid function for the second layer, as this couple produce the higher level of accuracy (Table 4).

Sensors 2020, 20, 2533 18 of 34

Table 4. Accuracy for different activation functions.

First Level Second Level Accuracy on Test

relu relu 96.20%
tanh tanh 96.80%

sigmoid sigmoid 96.96%
relu tanh 97.18%
tanh relu 96.64%

sigmoid relu 96.88%
relu sigmoid 97.25%
tanh sigmoid 97.21%

sigmoid tanh 97.10%

The loss function used, being a classification problem, is the cross entropy applied directly on the
softmax. The function tf.nn.softmax_cross_entropy_with_logits(logits, labels), combines the two operations
making it faster, but also numerically stable. Instead, as optimization function it is possible to use
an adaptive function, i.e., ADAM. Once the model is defined, we have all the requirements for the
training of the NN. Before starting the training, it is necessary to initialize the variables (weights
and biases) using the tf.global_variables_initializer() method. Tensorflow uses Xavier [219] as default
initialization. Then, it is necessary to define the size of the batches, their number as a function of the
size of the dataset, and a threshold for the loss function related to the validation dataset, so that if the
error increases, early stopping prevents overfitting. It should be noted that the threshold has been set
at a high value, so that early stopping will not occur at the first time. The final part of the required
code is related to the actual training, realized through a cycle. For each period, which is repeated to be
a complete iteration of the dataset, a relative to the batches is defined, through which it is possible to
calculate the average error relative to the single period as the sum of the errors associated with the
batches on the number of batches. At the end of each epoch, it is possible to calculate the loss relative
to the validation dataset; if the current validation error is higher than the previous one, then the model
has conformed too much to the dataset and, therefore, has no ability to adapt and it is necessary to stop
learning using early stopping.

The model made with Tensorflow is too heavy in terms of memory occupation for an edge
application; in this example the NN weighed around 15 MB. Tensorflow Lite (TFLite) [220] was created
specifically to overcome this problem, proposing a set of tools that help programmers to run embedded,
mobile, and IoT devices IA models. In the following, we will show how to use TFLite to bring the NN
on a microcontroller. The workflow that we will follow in this tutorial is the following:

- Definition of the model in Keras (using Tensorflow backend),
- Conversion of the model from Keras to TFLite,
- Implementation of a post-training quantization to further decrease the dimension of the NN,
- Design of a Graphical User Interface (GUI) to draw the digit, and
- Test on hardware devices.

9.3. Keras Model

The NN can be built using CNN and the dropout technique. The use of CNN is not necessary,
but it is recommended since the number of input variables is very high (CNN allows training the
model on a smaller dataset, reducing considerably the number of parameters to learn). The model is
defined using the Sequential() method which, according to the documentation [221], allows defining the
model as a linear stack of layers. The first layer is a 2D convolution layer that creates a convolutional
kernel that is superimposed convolutionally with the input layer to produce an output tensor.

To the second layer, also convolutional, is added the MaxPooling operation for spatial data (2D).
The Dropout is then applied to the network in input. The last two layers are densely connected layers;
at the penultimate layer a relu is applied as activation function, whereas at the last one a softmax. Finally,

Sensors 2020, 20, 2533 19 of 34

for the training phase, crossentropy is used as loss function and Adadelta as optimization function.
A summary of the parameters is shown in Table 5.

Table 5. Model outline.

Layer (Type) Output Shape Param #

conv2d_1 (Conv2D) (None, 26, 26, 32) 320
conv2d_2 (Conv2D) (None, 24, 24, 64) 18496

max_pooling2d_1 (MaxPooling2) (None, 12, 12, 64) 0
dropout_1 (Dropout) (None, 12, 12, 64) 0

flatten_1 (Flatten) (None, 9216) 0
dense_l (Dense) (None, 64) 589888

dropout_2 (Dropout) (None, 64) 0
dense_2 (Dense) (None, 10) 650

#: Total parameters, 609,354; trainable parameters, 609,354; nontrainable parameters, 0.

After defining the model and parameters for the training phase, it is possible to train the network.
With the presented configuration, it is possible to observe that the use of a CNN is able to increase the
model accuracy from 96% to 99%.

9.4. Tensorflow Lite

The model in Keras was too heavy for an embedded solution (7172 kB), having embedded devices
memories of a few hundred of kB. However, TFlite and the TFliteConverter tool allows considerably
scaling the NN down to 2.4 MB. TFlite is characterized by two main components [222]:

- The interpreter runs the optimized models on different hardware types (including mobile phones,
low computational capacity devices, and microcontrollers), and

- The converter, which converts the model to a more efficient format for use by the interpreter.

In our case, the converter was used to adapt the model to the TFLite format (serial format is based
on FlatBuffers library [223]).

model = ‘Model_Keras_MNIST_CNN_Test.h5’.
converter = tf.lite.TFLiteConverter.from_keras_model_file(model)
tflite_model = converter.convert()

Tensorflow provides tools (Tensorflow Model Optimization Toolkit) for the optimization of the
model. The toolkits support techniques used to:

- Reduce latency and inference costs, and
- Implement IA models on edge devices with limited capacity and low-power profile.

These techniques include post-training quantization and pruning techniques. Unfortunately,
the quantization of TFLite models is not supported by X-CUBE-AI and, therefore, we selected the NN
compression adopted by the ST software.

9.5. Pruning

The reduction of the model can be obtained not only with quantization techniques, but also with
pruning techniques that allow eliminating connections not essential for the NN and consequently
reduce the number of computations and the demand of memory space for the NN. Also, for this purpose,
it is possible to use the libraries provided by TensorFlow and their examples [224]. As discussed in the
previous paragraph, the network is redefined importing the tensor-flow_model_optimization Application
Programming Interfaces (APIs). The APIs can be applied either to the single layer or to the whole
model. In our example, we applied the APIs to the single layer. The pruning technique consists of

Sensors 2020, 20, 2533 20 of 34

iteratively removing connections between layers, given a sparsity parameter (percentage of weights
eliminated) and scheduling (pruning frequency). To help the model convergence, connections should
not be eliminated immediately but every tot; in this example we set the elimination starting from
2000 step every 100 steps. Next, it is necessary to define, among the pruning parameters, the end step.
Then, the model is defined by setting the pruning parameters and applying them to the NN. Finally,
it is possible to convert the model and make the quantization. The technique reduces the number of
parameters and the computations, preserving the model’s accuracy in terms of predictions. The main
impact is due to quantization, but also pruning contributes to this purpose by increasing the inference
speed and reducing the amount of energy used, thus allowing the use of the IA model on devices with
low energy profile and low computational power.

9.6. Graphical User Interface

To test the model validity once brought to the microcontroller, a suitable GUI that allows the
user to type the numeric digit can be used, as well as the direct transfer of saved handwritten digit as
input data. The GUI can be made with PIL [225] (Python Imaging Library), Tkinter [226], de facto
standard of GUIs in Python. The GUI allows drawing the numeric digit using the mouse motion on
the canvas object (Figure 7). Once the drawing is finished, it is possible to export the image as csv,
a format supported for the validation on target made by X-CUBE-AI tool.

Sensors 2020, 20, x FOR PEER REVIEW 20 of 33

input data. The GUI can be made with PIL [225] (Python Imaging Library), Tkinter [226], de facto

standard of GUIs in Python. The GUI allows drawing the numeric digit using the mouse motion on

the canvas object (Figure 7). Once the drawing is finished, it is possible to export the image as csv, a

format supported for the validation on target made by X‐CUBE‐AI tool.

Figure 7. Digit “6” drawn by the user.

9.7. Validation on Target

The STMicroelectronics NUCLEO‐F746ZG board [227] (Figure 8) and the STM32CubeMx tool

were used for deploying the model to a real hardware. To guarantee higher performance, the

operating frequency of the microcontroller must be set to 216 MHz, and the cache should be enabled.

To test the model on the microcontroller, it is necessary to enable the X‐CUBE‐AI tool by choosing

Validation as project mode. The Universal Synchronous‐Asynchronous Receiver/Transmitter

(USART) can be used to let the Personal Computer (PC) communicate with the microcontroller. The

artificial intelligence tool [80] is used to bring the model on the device. The tool does not yet support

techniques such as quantization for NNs defined with TFlite and pruning, but it is possible to load

on the microcontroller the nonquantized model using the compression provided by the program

itself. In particular, the compression method aims to optimize memory usage both in terms of Read‐

only memory (ROM) and RAM, using a dataset‐less approach. The reduction of the NN by the tool

is made possible through the use of various expedients [80]:

‐ Weight compression: It is applicable only to dense layers (or fully connected layers) and

is based on weight‐sharing algorithms such as K‐means clustering.

‐ Layers fusion: It allows merging two layers to optimize data placement, decreasing the

number of the DNNs layers (e.g., nonlinearities or pooling after a convolutional layers).

‐ Activation function optimization: Part of the memory is used to store temporary hidden

layers values, so activation memory is reused across different layers.

‐ Once the model is compressed (in this example we opted for a x4 compression), the tool

gives the possibility to make an analysis of the NN to understand if it is loadable on the

chosen microcontroller and to visualize the diagram of the loaded model. The Table 6

reports the output analysis of the network implemented in the example. It includes:

‐ RAM: Indicates the size of the memory required to store the intermediate calculations;

‐ ROM/Flash: Indicates the memory size needed to store weight and bias after compression;

and

‐ Complexity: Reports the complexity of the model in MAC (multiply‐accumulate

operations), unit of measure used also to express the complexity of the activation

functions.

Figure 7. Digit “6” drawn by the user.

9.7. Validation on Target

The STMicroelectronics NUCLEO-F746ZG board [227] (Figure 8) and the STM32CubeMx tool
were used for deploying the model to a real hardware. To guarantee higher performance, the operating
frequency of the microcontroller must be set to 216 MHz, and the cache should be enabled. To test the
model on the microcontroller, it is necessary to enable the X-CUBE-AI tool by choosing Validation as
project mode. The Universal Synchronous-Asynchronous Receiver/Transmitter (USART) can be used to
let the Personal Computer (PC) communicate with the microcontroller. The artificial intelligence tool [80]
is used to bring the model on the device. The tool does not yet support techniques such as quantization for
NNs defined with TFlite and pruning, but it is possible to load on the microcontroller the nonquantized
model using the compression provided by the program itself. In particular, the compression method
aims to optimize memory usage both in terms of Read-only memory (ROM) and RAM, using
a dataset-less approach. The reduction of the NN by the tool is made possible through the use of
various expedients [80]:

Sensors 2020, 20, 2533 21 of 34

- Weight compression: It is applicable only to dense layers (or fully connected layers) and is based
on weight-sharing algorithms such as K-means clustering.

- Layers fusion: It allows merging two layers to optimize data placement, decreasing the number
of the DNNs layers (e.g., nonlinearities or pooling after a convolutional layers).

- Activation function optimization: Part of the memory is used to store temporary hidden layers
values, so activation memory is reused across different layers.

- Once the model is compressed (in this example we opted for a x4 compression), the tool gives
the possibility to make an analysis of the NN to understand if it is loadable on the chosen
microcontroller and to visualize the diagram of the loaded model. The Table 6 reports the output
analysis of the network implemented in the example. It includes:

- RAM: Indicates the size of the memory required to store the intermediate calculations;
- ROM/Flash: Indicates the memory size needed to store weight and bias after compression; and
- Complexity: Reports the complexity of the model in MAC (multiply-accumulate operations),

unit of measure used also to express the complexity of the activation functions.

Table 6. Prediction of model on hardware.

Name RAM FLASH Complexity

Network 135.68 kBytes 668.97 kBytes 11497654 MACSensors 2020, 20, x FOR PEER REVIEW 21 of 33

Figure 8. STMicrolectronics NUCLEO‐F746ZG.

Table 6. Prediction of model on hardware.

Name RAM FLASH Complexity

Network 135.68 kBytes 668.97 kBytes 11497654 MAC

Finally, it is possible to proceed to the validation to compare the defined model with the one

generated in C language by the ST tool, feeding both models the same set of data. The validation can be

carried out as:

‐ Validation on desktop: The model in C is executed on the PC.

‐ Validation on target: The generated model is executed on the device of interest. It is

necessary to load the code on the microcontroller and set a serial communication to

communicate with the host.

In both cases the data can be either randomly generated by the tool or can be imported from

outside as csv file. After loading the code on the microcontroller, it is possible to enable the validation

on the target, and to load the data generated using the GUI as input. The STM32CubeMx reports the

model results and it is possible to notice that, in this case, the NN allows effectively recognizing the

numeric digit between 10 classes (Figure 9) with an accuracy of 100.00%, root‐mean‐square error

(rmse) = 0.0000, and medium average error (mae) = 0.0000. In Figure 10, the results obtained during

validation are reported; the calculation took about 330 ms and the execution time layer by layer is

shown in Table 7.

With this example, the full implementation of an eML application of image recognition has been

designed and put into practice with good performances.

Figure 8. STMicrolectronics NUCLEO-F746ZG.

Sensors 2020, 20, 2533 22 of 34

Finally, it is possible to proceed to the validation to compare the defined model with the one
generated in C language by the ST tool, feeding both models the same set of data. The validation can
be carried out as:

- Validation on desktop: The model in C is executed on the PC.
- Validation on target: The generated model is executed on the device of interest. It is necessary

to load the code on the microcontroller and set a serial communication to communicate with
the host.

In both cases the data can be either randomly generated by the tool or can be imported from
outside as csv file. After loading the code on the microcontroller, it is possible to enable the validation
on the target, and to load the data generated using the GUI as input. The STM32CubeMx reports
the model results and it is possible to notice that, in this case, the NN allows effectively recognizing
the numeric digit between 10 classes (Figure 9) with an accuracy of 100.00%, root-mean-square error
(rmse) = 0.0000, and medium average error (mae) = 0.0000. In Figure 10, the results obtained during
validation are reported; the calculation took about 330 ms and the execution time layer by layer is
shown in Table 7.

With this example, the full implementation of an eML application of image recognition has been
designed and put into practice with good performances.

Sensors 2020, 20, x FOR PEER REVIEW 22 of 33

Figure 9. Inference result showing the recognition of the digit “6” drawn by the user

(accuracy = 100.00%, root‐mean‐square error (rmse)= 0.0000, medium average error (mae) = 0.0000, 10

classes, 1 sample).

Figure 10. Inference details.

Table 7. Time contribution of each layer.

Description Shape ms

10004/(2D Convolutional) (26, 26, 32) 9.328

10011/(Merged Conv2d/Pool) (12, 12, 64) 299.524

10005/(Dense) (1, 1, 64) 19.562

10009/(Nonlinearity) (1, 1, 64) 0.006

10005/(Dense) (1, 1, 10) 0.022

10009/(Nonlinearity) (1, 1, 10) 0.014

 328.458 (total)

10. Conclusions

Deploying machine learning on Internet of Things devices reduces the network congestion by

allowing computations to be performed close to the data sources, preserving privacy in uploading

data, and reducing power consumption for continuous wireless transmission to gateways or cloud

servers. The aim of this work was to provide a review of the main techniques that guarantee the

execution of machine learning models on hardware with low performances in the Internet of Things

paradigm, paving the way to the Internet of Conscious Things.

Figure 9. Inference result showing the recognition of the digit “6” drawn by the user (accuracy = 100.00%,
root-mean-square error (rmse) = 0.0000, medium average error (mae) = 0.0000, 10 classes, 1 sample).

Sensors 2020, 20, x FOR PEER REVIEW 22 of 33

Figure 9. Inference result showing the recognition of the digit “6” drawn by the user

(accuracy = 100.00%, root‐mean‐square error (rmse)= 0.0000, medium average error (mae) = 0.0000, 10

classes, 1 sample).

Figure 10. Inference details.

Table 7. Time contribution of each layer.

Description Shape ms

10004/(2D Convolutional) (26, 26, 32) 9.328

10011/(Merged Conv2d/Pool) (12, 12, 64) 299.524

10005/(Dense) (1, 1, 64) 19.562

10009/(Nonlinearity) (1, 1, 64) 0.006

10005/(Dense) (1, 1, 10) 0.022

10009/(Nonlinearity) (1, 1, 10) 0.014

 328.458 (total)

10. Conclusions

Deploying machine learning on Internet of Things devices reduces the network congestion by

allowing computations to be performed close to the data sources, preserving privacy in uploading

data, and reducing power consumption for continuous wireless transmission to gateways or cloud

servers. The aim of this work was to provide a review of the main techniques that guarantee the

execution of machine learning models on hardware with low performances in the Internet of Things

paradigm, paving the way to the Internet of Conscious Things.

Figure 10. Inference details.

Sensors 2020, 20, 2533 23 of 34

Table 7. Time contribution of each layer.

Description Shape ms

10004/(2D Convolutional) (26, 26, 32) 9.328
10011/(Merged Conv2d/Pool) (12, 12, 64) 299.524

10005/(Dense) (1, 1, 64) 19.562
10009/(Nonlinearity) (1, 1, 64) 0.006

10005/(Dense) (1, 1, 10) 0.022
10009/(Nonlinearity) (1, 1, 10) 0.014

328.458 (total)

10. Conclusions

Deploying machine learning on Internet of Things devices reduces the network congestion by
allowing computations to be performed close to the data sources, preserving privacy in uploading data,
and reducing power consumption for continuous wireless transmission to gateways or cloud servers.
The aim of this work was to provide a review of the main techniques that guarantee the execution of
machine learning models on hardware with low performances in the Internet of Things paradigm,
paving the way to the Internet of Conscious Things.

In this work, a detailed review on models, architectures, and requirements on solutions that
implement edge machine learning on IoT devices was presented, with the main goal to define the state
of the art and envisioning development requirements.

The review focused on ML systems deployed on edge devices, providing a comparison between
the ML algorithms implementable in edge computing. In addition, the process of bringing ML to
the edge was analyzed in detail, considering edge server-based architectures and joint computation,
thus envisioning both the case of the absence (and the related effect on privacy and local computational
operations) and the presence (and how it impacts on cloud/edge server communications and remote data
transmission power consumption) of data transmission to gateways or servers.

The actual state of development of edge computing foresees a series of variegated solutions
able to satisfy a plurality of needs. Depending on the requirements (privacy, energy consumption,
computational complexity), it is possible to define a set of compatible hardware and software to
implement AI-enabled IoT effective solutions.

An example of edge machine learning implementation is provided in the review, demonstrating
the effectiveness and ease of use of the proper edge-platform used for implementing the machine
learning “Hello World”.

Author Contributions: Conceptualization, M.M.; methodology, M.M.; software, C.P.; validation, C.P., D.I. and
M.M.; formal analysis, M.M. and C.P.; investigation, C.P.; resources, M.M.; writing—original draft preparation,
C.P., D.I. and M.M.; writing—review and editing, C.P., D.I. and M.M.; supervision, M.M.; project administration,
M.M. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Acknowledgments: Programma di Azione Coesione PAC Calabria 2014–2020, Asse Prioritario 12, Azione 10.5.12,
is gratefully acknowledged by one of the authors (D.I.).

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Atzori, L.; Iera, A.; Morabito, G. The Internet of Things: A survey. Comput. Networks 2010, 54, 2787–2805.
[CrossRef]

2. Mahdavinejad, M.S.; Rezvan, M.; Barekatain, M.; Adibi, P.; Barnaghi, P.; Sheth, A.P. Machine learning for
internet of things data analysis: A survey. Digit. Commun. Netw. 2018, 4, 161–175. [CrossRef]

3. IoT: Number of Connected Devices Worldwide 2012–2025 | Statista. Available online: https://www.statista.
com/statistics/471264/iot-number-of-connected-devices-worldwide/ (accessed on 21 February 2020).

http://dx.doi.org/10.1016/j.comnet.2010.05.010
http://dx.doi.org/10.1016/j.dcan.2017.10.002
https://www.statista.com/statistics/471264/iot-number-of-connected-devices-worldwide/
https://www.statista.com/statistics/471264/iot-number-of-connected-devices-worldwide/

Sensors 2020, 20, 2533 24 of 34

4. Vahid Dastjerdi, A.; Buyya, R. Fog Computing: Helping the Internet of Things Realize. IEEE Comput. Soc.
2016, 49, 112–116. [CrossRef]

5. Liu, Y.; Yang, C.; Jiang, L.; Xie, S.; Zhang, Y. Intelligent Edge Computing for IoT-Based Energy Management
in Smart Cities. IEEE Netw. 2019, 33, 111–117. [CrossRef]

6. Wang, X.; Han, Y.; Wang, C.; Zhao, Q.; Chen, X.; Chen, M. In-edge AI: Intelligentizing mobile edge computing,
caching and communication by federated learning. IEEE Netw. 2019, 33, 156–165. [CrossRef]

7. Savaglio, C.; Ganzha, M.; Paprzycki, M.; Bădică, C.; Ivanović, M.; Fortino, G. Agent-based Internet of Things:
State-of-the-art and research challenges. Futur. Gener. Comput. Syst. 2020, 102, 1038–1053. [CrossRef]

8. Neto, A.R.; Soares, B.; Barbalho, F.; Santos, L.; Batista, T.; Delicato, F.C.; Pires, P.F. Classifying Smart IoT
Devices for Running Machine Learning Algorithms. In Anais do XLV Seminário Integrado de Software e
Hardware; SBC: Nashville, TN, USA, 2018.

9. Edge Computing—Explore—Google Trends. Available online: https://trends.google.com/trends/explore?
date=all&q=edgecomputing (accessed on 5 March 2020).

10. Scopus Preview - Scopus - Welcome to Scopus. Available online: https://www.scopus.com/ (accessed on
15 March 2020).

11. 1.4. Support Vector Machines—Scikit-Learn 0.22.2 Documentation. Available online: https://scikit-learn.org/

stable/modules/svm.html (accessed on 5 March 2020).
12. Guestrin, C. SVMs, Duality and the Kernel Trick. Mach. Learn. 2006, 10701, 15781.
13. Schmidhuber, J. Deep learning in neural networks: An overview. Neural Netw. 2015, 61, 85–117. [CrossRef]

[PubMed]
14. Lecun, Y.; Bengio, Y.; Hinton, G. Deep learning. Nature 2015, 521, 436–444. [CrossRef]
15. Neapolitan, R.E.; Jiang, X. Neural Networks and Deep Learning. In Artificial Intelligence; CRC Press Taylor&

Francis Group: Boca Raton, FL, USA, 2018.
16. Jordan, M.I.; Bishop, C.M. Neural networks. In Computer Science Handbook, 2nd ed.; CRC Press: Boca Raton,

FL, USA, 2004; ISBN 9780203494455.
17. Merenda, M.; Praticò, F.G.; Fedele, R.; Carotenuto, R.; Corte, D.; Della Corte, F.G. A Real-Time Decision

Platform for the Management of Structures and Infrastructures. Electronics 2019, 8, 1180. [CrossRef]
18. Anandhalli, M.; Baligar, V.P. A novel approach in real-time vehicle detection and tracking using Raspberry

Pi. Alex. Eng. J. 2018, 57, 1597–1607. [CrossRef]
19. Arasteh, H.; Hosseinnezhad, V.; Loia, V.; Tommasetti, A.; Troisi, O.; Shafie-Khah, M.; Siano, P. Iot-based

smart cities: A survey. In Proceedings of the 2016 IEEE 16th International Conference on Environment and
Electrical Engineering (EEEIC), Florence, Italy, 7–10 June 2016; pp. 2–7.

20. Zanella, A.; Bui, N.; Castellani, A.; Vangelista, L.; Zorzi, M. Internet of Things for Smart Cities. IEEE Internet
Things J. 2014, 1, 22–32. [CrossRef]

21. Bibri, S.E. The IoT for smart sustainable cities of the future: An analytical framework for sensor-based big
data applications for environmental sustainability. Sustain. Cities Soc. 2018, 38, 230–253. [CrossRef]

22. Kim, T.H.; Ramos, C.; Mohammed, S. Smart City and IoT. Futur. Gener. Comput. Syst. 2017, 76, 159–162.
[CrossRef]

23. Sajjad, M.; Nasir, M.; Muhammad, K.; Khan, S.; Jan, Z.; Sangaiah, A.K.; Elhoseny, M.; Baik, S.W. Raspberry Pi
assisted face recognition framework for enhanced law-enforcement services in smart cities. Futur. Gener.
Comput. Syst. 2017, 108, 995–1007. [CrossRef]

24. Zhang, T.; Chowdhery, A.; Bahl, P.; Jamieson, K.; Banerjee, S. The design and implementation of a wireless
video surveillance system. In Proceedings of the Annual International Conference on Mobile Computing
and Networking, MobiCom’15: The 21th Annual International Conference on Mobile Computing and
Networking, Paris, France, 7–11 September 2015.

25. Borgia, E. The Internet of Things vision: Key features, applications and open issues. Comput. Commun. 2014,
54, 1–31. [CrossRef]

26. Magrini, M.; Moroni, D.; Palazzese, G.; Pieri, G.; Leone, G.; Salvetti, O. Computer Vision on Embedded
Sensors for Traffic Flow Monitoring. In Proceedings of the 2015 IEEE 18th International Conference on
Intelligent Transportation Systems, Las Palmas, Spain, 15–18 September 2015; pp. 161–166.

27. Arshad, B.; Ogie, R.; Barthelemy, J.; Pradhan, B.; Verstaevel, N.; Perez, P. Computer Vision and IoT-Based
Sensors in Flood Monitoring and Mapping: A Systematic Review. Sensors 2019, 19, 5012. [CrossRef]

http://dx.doi.org/10.1109/MC.2016.245
http://dx.doi.org/10.1109/MNET.2019.1800254
http://dx.doi.org/10.1109/MNET.2019.1800286
http://dx.doi.org/10.1016/j.future.2019.09.016
https://trends.google.com/trends/explore?date=all&q=edgecomputing
https://trends.google.com/trends/explore?date=all&q=edgecomputing
https://www.scopus.com/
https://scikit-learn.org/stable/modules/svm.html
https://scikit-learn.org/stable/modules/svm.html
http://dx.doi.org/10.1016/j.neunet.2014.09.003
http://www.ncbi.nlm.nih.gov/pubmed/25462637
http://dx.doi.org/10.1038/nature14539
http://dx.doi.org/10.3390/electronics8101180
http://dx.doi.org/10.1016/j.aej.2017.06.008
http://dx.doi.org/10.1109/JIOT.2014.2306328
http://dx.doi.org/10.1016/j.scs.2017.12.034
http://dx.doi.org/10.1016/j.future.2017.03.034
http://dx.doi.org/10.1016/j.future.2017.11.013
http://dx.doi.org/10.1016/j.comcom.2014.09.008
http://dx.doi.org/10.3390/s19225012

Sensors 2020, 20, 2533 25 of 34

28. Fafoutis, X.; Marchegiani, L.; Elsts, A.; Pope, J.; Piechocki, R.; Craddock, I. Extending the battery lifetime of
wearable sensors with embedded machine learning. In Proceedings of the 2018 IEEE 4th World Forum on
Internet of Things (WF-IoT), Singapore, 5–8 February 2018; pp. 269–274.

29. Ieracitano, C.; Mammone, N.; Hussain, A.; Morabito, F.C. A novel multi-modal machine learning based
approach for automatic classification of EEG recordings in dementia. Neural Netw. 2020, 123, 176–190.
[CrossRef]

30. Rajkomar, A.; Dean, J.; Kohane, I. Machine learning in medicine. N. Engl. J. Med. 2019, 380, 1347–1358.
[CrossRef]

31. Ngiam, K.Y.; Khor, I.W. Big data and machine learning algorithms for health-care delivery. Lancet Oncol.
2019, 20, e262–e273. [CrossRef]

32. Beam, A.L.; Kohane, I. Big Data and Machine Learning in Health Care. JAMA 2018, 319, 1317. [CrossRef]
[PubMed]

33. Amato, F.; López, A.; Peña-Méndez, E.M.; Vanhara, P.; Hampl, A.; Havel, J. Artificial neural networks in
medical diagnosis. J. Appl. Biomed. 2013, 11, 47–58. [CrossRef]

34. Syafrudin, M.; Alfian, G.; Fitriyani, N.L.; Rhee, J. Performance Analysis of IoT-Based Sensor, Big Data
Processing, and Machine Learning Model for Real-Time Monitoring System in Automotive Manufacturing.
Sensors 2018, 18, 2946. [CrossRef] [PubMed]

35. Kihei, B.; Copeland, J.A.; Chang, Y. Automotive Doppler sensing: The Doppler profile with machine learning
in vehicle-to-vehicle networks for road safety. In Proceedings of the IEEE Workshop on Signal Processing
Advances in Wireless Communications, SPAWC, Sapporo, Japan, 3–6 July 2017.

36. Gharib, M.; Lollini, P.; Botta, M.; Amparore, E.; Donatelli, S.; Bondavalli, A. On the Safety of Automotive
Systems Incorporating Machine Learning Based Components: A Position Paper. In Proceedings of the 48th
Annual IEEE/IFIP International Conference on Dependable Systems and Networks Workshops, DSN-W 2018,
Luxembourg, 25–28 June 2018.

37. Luckow, A.; Kennedy, K.; Manhardt, F.; Djerekarov, E.; Vorster, B.; Apon, A. Automotive big data: Applications,
workloads and infrastructures. In Proceedings of the 2015 IEEE International Conference on Big Data, IEEE Big
Data 2015, Santa Clara, CA, USA, 29 October–1 November 2015.

38. OpenCV. Available online: https://opencv.org/ (accessed on 3 January 2020).
39. Viola, P.; Jones, M.J. Robust Real-Time Object Detection; Technical Reports; Cambridge Research Laboratory:

Cambridge, MA, USA, 2001.
40. Rublee, E.; Rabaud, V.; Konolige, K.; Bradski, G. ORB: An efficient alternative to SIFT or SURF. In Proceedings

of the IEEE International Conference on Computer Vision, Barcelona, Spain, 6–13 November 2011.
41. Shashua, A. Introduction to Machine Learning: Class Notes 67577. arXiv 2009, arXiv:0904.3664.
42. Transactions, E.A.I.E.; Health, P. Designing wearable sensing platforms for healthcare in a residential

environment. EAI Endorsed Trans. Pervasive Health Technol. 2017, 3, 12.
43. Shoeb, A.; Carlson, D.; Panken, E.; Denison, T. A micropower support vector machine based seizure detection

architecture for embedded medical devices. In Proceedings of the 2009 Annual International Conference
of the IEEE Engineering in Medicine and Biology Society, Minneapolis, MN, USA, 3–6 September 2009;
pp. 4202–4205.

44. Lee, D.D.; Seung, H.S. Learning in intelligent embedded systems. In WOES’99: Proceedings of the Workshop on
Embedded Systems on Workshop on Embedded Systems; USENIX Association: Berkeley, CA, USA, 1999; p. 9.

45. Li, H.; Ota, K.; Dong, M. Learning IoT in Edge: Deep Learning for the Internet of Things with Edge
Computing. IEEE Netw. 2018, 32, 96–101. [CrossRef]

46. Yazici, M.; Basurra, S.; Gaber, M. Edge Machine Learning: Enabling Smart Internet of Things Applications.
Big Data Cogn. Comput. 2018, 2, 26. [CrossRef]

47. Praticò, F.G.; Della Corte, F.G.; Merenda, M. Self-powered sensors for road pavements. In Proceedings of the
Functional Pavement Design—4th Chinese-European Workshop on Functional Pavement Design, CEW 2016,
Delft, The Netherlands, 29 June–1 July 2016.

48. Iero, D.; Della Corte, F.G.; Felini, C.; Merenda, M.; Minarini, C.; Rubino, A. RF-Powered UHF-RFID Analog
Sensors Platform. In Proceedings of the 2015 XVIII AISEM Annual Conference, Trento, Italy, 3–5 February
2015.

49. Fedele, R.; Merenda, M.; Giammaria, F.; Praticò, F.G. Energy harvesting for IoT road monitoring systems.
Instrumentation Mesure Métrologie 2018, 18, 17. [CrossRef]

http://dx.doi.org/10.1016/j.neunet.2019.12.006
http://dx.doi.org/10.1056/NEJMra1814259
http://dx.doi.org/10.1016/S1470-2045(19)30149-4
http://dx.doi.org/10.1001/jama.2017.18391
http://www.ncbi.nlm.nih.gov/pubmed/29532063
http://dx.doi.org/10.2478/v10136-012-0031-x
http://dx.doi.org/10.3390/s18092946
http://www.ncbi.nlm.nih.gov/pubmed/30181525
https://opencv.org/
http://dx.doi.org/10.1109/MNET.2018.1700202
http://dx.doi.org/10.3390/bdcc2030026
http://dx.doi.org/10.3166/i2m.17.605-623

Sensors 2020, 20, 2533 26 of 34

50. Merenda, M.; Iero, D.; Pangallo, G.; Falduto, P.; Adinolfi, G.; Merola, A.; Graditi, G.; Della Corte, F.G.
Open-Source Hardware Platforms for Smart Converters with Cloud Connectivity. Electronics 2019, 8, 367.
[CrossRef]

51. Della Corte, F.G.; Merenda, M.; Bellizzi, G.G.; Isernia, T.; Carotenuto, R. Temperature Effects on the Efficiency
of Dickson Charge Pumps for Radio Frequency Energy Harvesting. IEEE Access 2018, 6, 65729–65736.
[CrossRef]

52. Tatarinova, T.V.; Editors, Y.N.; Raschka, S.; Verdier, C.F.J.E.S.O.; Hearty, J.; Huffman, J.; Pajankar, A.
Python Machine Learning; Packt Publishing: Birmingham, UK, September 2015; ISBN 978-1-78439-390-8.

53. Kingma, D.P.; Ba, J.L. Adam: A method for stochastic optimization. In Proceedings of the 3rd International
Conference on Learning Representations, ICLR 2015—Conference Track Proceedings, San Diego, CA, USA,
7–9 May 2015.

54. Krizhevsky, A.; Sutskever, I.; Hinton, G.E. Pdf ImageNet classification with deep convolutional neural
networks. Commun. ACM 2017, 60, 84–90. [CrossRef]

55. Caterini, A.L.; Chang, D.E. Recurrent neural networks. In SpringerBriefs in Computer Science; Springer
International Publishing: New York, NY, USA, 2018. [CrossRef]

56. Russakovsky, O.; Deng, J.; Su, H.; Krause, J.; Satheesh, S.; Ma, S.; Huang, Z.; Karpathy, A.; Khosla, A.;
Bernstein, M.; et al. ImageNet Large Scale Visual Recognition Challenge. Int. J. Comput. Vis. 2015, 115,
211–252. [CrossRef]

57. Schuster, M.; Paliwal, K.K. Bidirectional recurrent neural networks. IEEE Trans. Signal Process. 1997, 45,
2673–2681. [CrossRef]

58. Beil, J.; Perner, G.; Asfour, T. Speech Recognition With Deep Recurrent Neural Networks. In Proceedings of
the IEEE International Conference on Rehabilitation Robotics, Singapore, 1–14 August 2015; pp. 119–124.

59. Hochreiter, S.; Urgen Schmidhuber, J. Long Shortterm Memory. Neural Comput. 1997, 9, 1735–1780. [CrossRef]
60. Goodfellow, I.; Pouget-Abadie, J.; Mirza, M.; Xu, B.; Warde-Farley, D.; Ozair, S.; Courville, A.; Bengio, Y.

Genrative Adversial Nets. In Proceedings of the 27th International Conference on Neural Information
Processing Systems–Volume 2, Montreal, QC, Canada, 8–13 December 2014; pp. 2672–2680.

61. Altman, N.S. An introduction to kernel and nearest-neighbor nonparametric regression. Am. Stat. 1992, 46,
175–185.

62. Gupta, C.; Suggala, A.S.; Goyal, A.; Simhadri, H.V.; Paranjape, B.; Kumar, A.; Goya, S.; Udupa, R.; Varma, M.;
Jain, P. ProtoNN: Compressed and accurate kNN for resource-scarce devices. In Proceedings of the 34th
International Conference on Machine Learning ICML, Sydney, Australia, 6–11 August 2017; Volume 3,
pp. 2144–2159.

63. Gope, D.; Dasika, G.; Mattina, M. Ternary Hybrid Neural-Tree Networks for Highly Constrained IoT
Applications. arXiv 2019, arXiv:1903.01531.

64. Kumar, A.; Goyal, S.; Varma, M. Resource-efficient machine learning in 2 KB RAM for the Internet of
Things. In Proceedings of the 34th International Conference on Machine Learning ICML, Sydney, Australia,
6–11 August 2017; Volume 4, pp. 3062–3071.

65. Haigh, K.Z.; Mackay, A.M.; Cook, M.R.; Lin, L.G. Machine Learning for Embedded Systems: A Case Study;
Technical Report; BBN Technologies: Cambridge, MA, USA, 2015.

66. Chen, J.; Ran, X. Deep Learning With Edge Computing: A Review. Proc. IEEE 2019, 107, 1655–1674.
[CrossRef]

67. Sze, V.; Chen, Y.H.; Emer, J.; Suleiman, A.; Zhang, Z. Hardware for machine learning: Challenges
and opportunities. In Proceedings of the 2017 IEEE Custom Integrated Circuits Conference (CICC),
Austin, TX, USA, 30 April–3 May 2017; pp. 1–8.

68. Howard, A.G.; Zhu, M.; Chen, B.; Kalenichenko, D.; Wang, W.; Weyand, T.; Andreetto, M.; Adam, H.
MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications. arXiv 2017,
arXiv:1704.04861.

69. Iandola, F.N.; Han, S.; Moskewicz, M.W.; Ashraf, K.; Dally, W.J.; Keutzer, K. SqueezeNet: AlexNet-level
accuracy with 50x fewer parameters and <0.5MB model size. arXiv 2016, arXiv:1602.07360.

70. Han, S.; Mao, H.; Dally, W.J. Deep Compression: Compressing Deep Neural Networks with Pruning, Trained
Quantization and Huffman Coding. arXiv 2015, arXiv:1510.00149.

71. TensorFlow. Available online: https://www.tensorflow.org/ (accessed on 11 November 2019).
72. Home—Keras Documentation. Available online: https://keras.io/ (accessed on 11 November 2019).

http://dx.doi.org/10.3390/electronics8030367
http://dx.doi.org/10.1109/ACCESS.2018.2876920
http://dx.doi.org/10.1145/3065386
http://dx.doi.org/10.1007/978-3-319-70338-1
http://dx.doi.org/10.1007/s11263-015-0816-y
http://dx.doi.org/10.1109/78.650093
http://dx.doi.org/10.1162/neco.1997.9.8.1735
http://dx.doi.org/10.1109/JPROC.2019.2921977
https://www.tensorflow.org/
https://keras.io/

Sensors 2020, 20, 2533 27 of 34

73. Yao, S.; Zhao, Y.; Zhang, A.; Su, L.; Abdelzaher, T. DeepIoT: Compressing Deep Neural Network Structures
for Sensing Systems with a Compressor-Critic Framework. In Proceedings of the 15th ACM Conference on
Embedded Network Sensor Systems, Delft, The Netherlands, 6–8 November 2017.

74. Molchanov, P.; Tyree, S.; Karras, T.; Aila, T.; Kautz, J. Pruning Convolutional Neural Networks for Resource
Efficient Inference. arXiv 2016, arXiv:1611.06440.

75. Anwar, S.; Sung, W. Compact Deep Convolutional Neural Networks With Coarse Pruning. arXiv 2016,
arXiv:1610.09639.

76. Yang, T.J.; Chen, Y.H.; Sze, V. Designing energy-efficient convolutional neural networks using energy-aware
pruning. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
Honolulu, HI, USA, 21–26 July 2017; pp. 6071–6079.

77. Narang, S.; Elsen, E.; Diamos, G.; Sengupta, S. Exploring Sparsity in Recurrent Neural Networks. arXiv 2017,
arXiv:1704.05119.

78. Guo, Y.; Yao, A.; Chen, Y. Dynamic network surgery for efficient DNNs. In Proceedings of the 30th
International Conference on Neural Information Processing Systems (NIPS’16); Curran Associates Inc.: Red
Hook, NY, USA, 2016; pp. 1387–1395.

79. Hinton, G.; Vinyals, O.; Dean, J. Distilling the Knowledge in a Neural Network. arXiv 2015, arXiv:1503.02531.
80. X-CUBE-AI—AI Expansion Pack for STM32CubeMX—STMicroelectronics. Available online: https://www.st.

com/en/embedded-software/x-cube-ai.html#overview (accessed on 18 November 2019).
81. TensorFlow Lite for Microcontrollers. Available online: https://www.tensorflow.org/lite/microcontrollers

(accessed on 15 March 2020).
82. Arduino Nano 33 BLE Sense with Headers | Arduino Official Store. Available online: https://store.arduino.

cc/arduino-nano-33-ble-sense-with-headers (accessed on 15 March 2020).
83. SparkFun Edge Development Board—Apollo3 Blue—DEV-15170—SparkFun Electronics. Available online:

https://www.sparkfun.com/products/15170 (accessed on 15 March 2020).
84. Artificial Intelligence (AI)—STMicroelectronics. Available online: https://www.st.com/content/st_com/en/

about/innovation---technology/artificial-intelligence.html (accessed on 15 March 2020).
85. Adafruit EdgeBadge—TensorFlow Lite for Microcontrollers ID: 4400—$35.95: Adafruit Industries, Unique

& fun DIY Electronics and Kits. Available online: https://www.adafruit.com/product/4400 (accessed on
15 March 2020).

86. Overview | Espressif Systems. Available online: https://www.espressif.com/en/products/hardware/esp32-
devkitc/overview (accessed on 15 March 2020).

87. Overview | Espressif Systems. Available online: https://www.espressif.com/en/products/hardware/esp-eye/

overview (accessed on 15 March 2020).
88. High-Performing AI Solutions to Transform our Digital World—Arm. Available online: https://www.arm.

com/solutions/artificial-intelligence (accessed on 15 March 2020).
89. New AI technology from Arm delivers intelligence for IoT—Arm. Available online: https://www.arm.com/

company/news/2020/02/new-ai-technology-from-arm (accessed on 15 March 2020).
90. Zhao, Z.; Barijough, K.M.; Gerstlauer, A. DeepThings: Distributed adaptive deep learning inference on

resource-constrained IoT edge clusters. IEEE Trans. Comput. Des. Integr. Circuits Syst. 2018, 37, 2348–2359.
[CrossRef]

91. Nikouei, S.Y.; Chen, Y.; Song, S.; Xu, R.; Choi, B.Y.; Faughnan, T. Smart surveillance as an edge network
service: From harr-cascade, SVM to a Lightweight CNN. In Proceedings of the 2018 IEEE 4th International
Conference on Collaboration and Internet Computing (CIC), Philadelphia, PA, USA, 18–20 October 2018;
pp. 256–265.

92. Xu, R.; Nikouei, S.Y.; Chen, Y.; Polunchenko, A.; Song, S.; Deng, C.; Faughnan, T.R. Real-Time Human
Objects Tracking for Smart Surveillance at the Edge. In Proceedings of the IEEE International Conference on
Communications, Kansas City, MO, USA, 20–24 May 2018.

93. Chand, G.; Ali, M.; Barmada, B.; Liesaputra, V.; Ramirez-Prado, G. Tracking a person’s behaviour in a smart
house. In International Conference on Service-Oriented Computing; Lecture Notes in Computer Science; Springer:
Cham, Switzerland, 2019.

94. Rosato, D.; Comai, S.; Masciadri, A.; Salice, F. Non-invasive monitoring system to detect sitting people.
In Proceedings of the 4th EAI International Conference on Smart Objects and Technologies for Social Good,
Bologna, Italy, 28–30 November 2018; pp. 261–264.

https://www.st.com/en/embedded-software/x-cube-ai.html#overview
https://www.st.com/en/embedded-software/x-cube-ai.html#overview
https://www.tensorflow.org/lite/microcontrollers
https://store.arduino.cc/arduino-nano-33-ble-sense-with-headers
https://store.arduino.cc/arduino-nano-33-ble-sense-with-headers
https://www.sparkfun.com/products/15170
https://www.st.com/content/st_com/en/about/innovation---technology/artificial-intelligence.html
https://www.st.com/content/st_com/en/about/innovation---technology/artificial-intelligence.html
https://www.adafruit.com/product/4400
https://www.espressif.com/en/products/hardware/esp32-devkitc/overview
https://www.espressif.com/en/products/hardware/esp32-devkitc/overview
https://www.espressif.com/en/products/hardware/esp-eye/overview
https://www.espressif.com/en/products/hardware/esp-eye/overview
https://www.arm.com/solutions/artificial-intelligence
https://www.arm.com/solutions/artificial-intelligence
https://www.arm.com/company/news/2020/02/new-ai-technology-from-arm
https://www.arm.com/company/news/2020/02/new-ai-technology-from-arm
http://dx.doi.org/10.1109/TCAD.2018.2858384

Sensors 2020, 20, 2533 28 of 34

95. SparkFun Edge Hookup Guide—learn.sparkfun.com. Available online: https://learn.sparkfun.com/tutorials/
sparkfun-edge-hookup-guide/all (accessed on 14 April 2020).

96. Shi, W.; Cao, J.; Zhang, Q.; Li, Y.; Xu, L. Edge Computing: Vision and Challenges. IEEE Internet Things J.
2016, 3, 637–646. [CrossRef]

97. Yu-han, T.; Ravindranath, L.; Deng, S.; Chen, T.Y. Continuous, Real-Time Object Recognition on Mobile
Devices Categories and Subject Descriptors. In Proceedings of the 13th ACM Conference on Embedded
Networked Sensor Systems (SenSys ‘15). Association for Computing Machinery, New York, NY, USA; 2015;
pp. 155–168.

98. Hung, C.C.; Ananthanarayanan, G.; Bodik, P.; Golubchik, L.; Yu, M.; Bahl, P.; Philipose, M. VideoEdge:
Processing camera streams using hierarchical clusters. In Proceedings of the 2018 IEEE/ACM Symposium on
Edge Computing (SEC), Seattle, WA, USA, 25–27 October 2018; pp. 115–131.

99. Jiang, A.H.; Wong, D.L.K.; Canel, C.; Tang, L.; Misra, I.; Kaminsky, M.; Kozuch, M.A.; Pillai, P.; Labs, I.;
Andersen, D.G.; et al. Mainstream: Dynamic Stem-Sharing for Multi-Tenant Video Processing. In Proceedings
of the 2018 USENIX Annual Technical Conference (USENIX ATC 18), Boston, MA, USA, 11–13 July 2018.

100. Radio Regulations. Available online: https://www.itu.int/pub/R-REG-RR/en (accessed on 22 February 2020).
101. Radio Versions | Bluetooth®Technology Website. Available online: https://www.bluetooth.com/learn-about-

bluetooth/bluetooth-technology/radio-versions/ (accessed on 11 March 2020).
102. Dekimpe, R.; Xu, P.; Schramme, M.; Flandre, D.; Bol, D. A Battery-Less BLE IoT Motion Detector Supplied by

2.45-GHz Wireless Power Transfer. In Proceedings of the 2018 IEEE 28th International Symposium on Power
and Timing Modeling, Optimization and Simulation, PATMOS, Platja d’Aro, Spain, 2–4 July 2018; Institute
of Electrical and Electronics Engineers Inc.: Piscataway, NJ, USA, 2018; pp. 68–75.

103. Bluetooth 5: Go Faster, Go Further. Available online: https://www.bluetooth.com/wp-content/uploads/2019/

03/Bluetooth_5-FINAL.pdf (accessed on 9 April 2020).
104. Bluetooth Special Interest Group (SIG). Bluetooth Core Specification Version 5.0. In Bluetooth Core Specif. Version

5.2; Bluetooth Special Interest Group (SIG): Kirkland, WA, USA, 2019. Available online: https://www.bluetooth.
com/wp-content/uploads/2020/01/Bluetooth_5.2_Feature_Overview.pdf (accessed on 20 April 2020).

105. Zigbee Alliance Website. Available online: https://zigbeealliance.org/ (accessed on 11 March 2020).
106. 802.15.4v-2017—IEEE Standard for Low-Rate Wireless Networks—Amendment 5: Enabling/Updating the

Use of Regional Sub-GHz Bands. Available online: https://standards.ieee.org/standard/802_15_4v-2017.html
(accessed on 11 March 2020).

107. Pan, M.S.; Tseng, Y.C. ZigBee and Their Applications. In Sensor Networks and Configuration, Fundamentals,
Standards, Platforms, and Applications; Springer: Berlin/Heidelberg, Germany, 2007; Volume 16, pp. 349–368.

108. Islam, M.L.; Faizan, C.; Quavi, S.M.A. IOT Based Smart Garbage Monitoring System. Int. J. Comput. Sci. Eng.
2019, 7, 649–651. [CrossRef]

109. Yaqoob, I.; Hashem, I.A.T.; Mehmood, Y.; Gani, A.; Mokhtar, S.; Guizani, S. Enabling communication
technologies for smart cities. IEEE Commun. Mag. 2017, 55, 112–120. [CrossRef]

110. Sahitya, G.; Balaji, N.; Naidu, C.D.; Abinaya, S. Designing a wireless sensor network for precision agriculture
using zigbee. In Proceedings of the 7th IEEE International Advanced Computing Conference, IACC 2017,
Hyderabad, India, 5–7 January 2017.

111. Hidayat, T. Internet of Things Smart Agriculture on ZigBee: A Systematic Review. J. Telekomun. dan Komp′ût.
2017, 8, 75–86. [CrossRef]

112. Lei, Y.; Wang, T.; Wu, J. Vehicles relative positioning based on ZigBee and GPS technology. In Proceedings of the
ICEIEC 2016 IEEE 6th International Conference on Electronics Information and Emergency Communication,
Beijing, China, 17–19 June 2016.

113. Dong, C.; Chen, X.; Dong, H.; Yang, K.; Guo, J.; Bai, Y. Research on intelligent vehicle infrastructure cooperative
system based on zigbee. In Proceedings of the 2019 5th International Conference on Transportation
Information and Safety (ICTIS), Liverpool, UK, 14–17 July 2019; pp. 1337–1343.

114. Lee, H.J.; Lee, S.H.; Ha, K.S.; Jang, H.C.; Chung, W.-Y.C.; Kim, J.Y.; Chang, Y.-S.; Yoo, D.H. Ubiquitous
healthcare service using Zigbee and mobile phone for elderly patients. Int. J. Med Inform. 2009, 78, 193–198.
[CrossRef]

115. Chae, M.J.; Yoo, H.; Kim, J.; Cho, M. Development of a wireless sensor network system for suspension bridge
health monitoring. Autom. Constr. 2012, 21, 237–252. [CrossRef]

https://learn.sparkfun.com/tutorials/sparkfun-edge-hookup-guide/all
https://learn.sparkfun.com/tutorials/sparkfun-edge-hookup-guide/all
http://dx.doi.org/10.1109/JIOT.2016.2579198
https://www.itu.int/pub/R-REG-RR/en
https://www.bluetooth.com/learn-about-bluetooth/bluetooth-technology/radio-versions/
https://www.bluetooth.com/learn-about-bluetooth/bluetooth-technology/radio-versions/
https://www.bluetooth.com/wp-content/uploads/2019/03/Bluetooth_5-FINAL.pdf
https://www.bluetooth.com/wp-content/uploads/2019/03/Bluetooth_5-FINAL.pdf
https://www.bluetooth.com/wp-content/uploads/2020/01/Bluetooth_5.2_Feature_Overview.pdf
https://www.bluetooth.com/wp-content/uploads/2020/01/Bluetooth_5.2_Feature_Overview.pdf
https://zigbeealliance.org/
https://standards.ieee.org/standard/802_15_4v-2017.html
http://dx.doi.org/10.26438/ijcse/v7i2.649651
http://dx.doi.org/10.1109/MCOM.2017.1600232CM
http://dx.doi.org/10.22441/incomtech.v8i1.2146
http://dx.doi.org/10.1016/j.ijmedinf.2008.07.005
http://dx.doi.org/10.1016/j.autcon.2011.06.008

Sensors 2020, 20, 2533 29 of 34

116. Z-Wave | Safer, Smarter Homes Start with Z-Wave. Available online: https://www.z-wave.com/ (accessed on
12 March 2020).

117. ANT Protocol | Dynastream Innovations. Available online: https://www.dynastream.com/solutions/ant-
wireless/ (accessed on 9 April 2020).

118. What is ANT+—THIS IS ANT. Available online: https://www.thisisant.com/consumer/ant-101/what-is-ant/
(accessed on 16 April 2020).

119. Mulligan, G. The 6LoWPAN architecture. In Proceedings of the 4th Workshop on Embedded Networked
Sensors, EmNets, Cork, Ireland, 25–26 June 2007.

120. Unwala, I.; Taqvi, Z.; Lu, J. Thread: An IoT protocol. In Proceedings of the IEEE Green Technologies
Conference, Austin, TX, USA, 4–6 April 2018.

121. Shop Humidor Monitoring from Smartphone and Tablet Habueno. Available online: https://www.habueno.
com/shop/?lang=en (accessed on 16 April 2020).

122. WiFi HaLow | WiFi Alliance. Available online: https://www.WiFi.org/discover-WiFi/WiFi-halow (accessed on
12 March 2020).

123. Flores, A.B.; Guerra, R.E.; Knightly, E.W.; Ecclesine, P.; Pandey, S. IEEE 802.11af: A standard for TV white
space spectrum sharing. IEEE Commun. Mag. 2013, 51, 92–100. [CrossRef]

124. Bellalta, B. IEEE 802.11ax: High-efficiency WLANS. IEEE Wirel. Commun. 2016, 23, 38–46. [CrossRef]
125. Merenda, M.; Iero, D.; Della Corte, F.G. CMOS RF Transmitters with On-Chip Antenna for Passive RFID and

IoT Nodes. Electronics 2019, 8, 1448. [CrossRef]
126. Lazaro, A.; Villarino, R.; Girbau, D. A Survey of NFC Sensors Based on Energy Harvesting for IoT Applications.

Sensors 2018, 18, 3746. [CrossRef] [PubMed]
127. LoRa Alliance®Website. Available online: https://lora-alliance.org/ (accessed on 11 March 2020).
128. Chiani, M.; Elzanaty, A. On the LoRa Modulation for IoT: Waveform Properties and Spectral Analysis.

IEEE Internet Things J. 2019, 6, 8463–8470. [CrossRef]
129. Augustin, A.; Yi, J.; Clausen, T.H.; Townsley, W.M. A Study of LoRa: Long Range & Low Power Networks

for the Internet of Things. Sensors 2016, 16, 1466.
130. Suresh, V.M.; Sidhu, R.; Karkare, P.; Patil, A.; Lei, Z.; Basu, A. Powering the IoT through embedded machine

learning and LoRa. In Proceedings of the IEEE World Forum on Internet of Things, WF-IoT, Singapore,
5–8 February 2018.

131. Merenda, M.; Felini, C.; Della Corte, F.G. A Monolithic Multisensor Microchip with Complete On-Chip RF
Front-End. Sensors 2018, 18, 110. [CrossRef]

132. Sigfox—The Global Communications Service Provider for the Internet of Things (IoT). Available online:
https://www.sigfox.com/en (accessed on 5 January 2020).

133. Huang, J.; Qian, F.; Guo, Y.; Zhou, Y.; Xu, Q.; Mao, Z.M.; Sen, S.; Spatscheck, O. An in-depth study of LTE:
Effect of network protocol and application behavior on performance. Comput. Commun. Rev. 2013, 43,
363–374. [CrossRef]

134. Akpakwu, G.A.; Silva, B.J.; Hancke, G.P.; Abu-Mahfouz, A.M. A Survey on 5G Networks for the Internet of
Things: Communication Technologies and Challenges. IEEE Access 2018, 6, 3619–3647. [CrossRef]

135. Li, S.; Xu, L.D.; Zhao, S. 5G Internet of Things: A survey. J. Ind. Inf. Integr. 2018, 10, 1–9. [CrossRef]
136. GSMA | Narrowband – Internet of Things (NB-IoT) | Internet of Things. Available online: https://www.gsma.

com/iot/narrow-band-internet-of-things-nb-iot/ (accessed on 11 March 2020).
137. Ratasuk, R.; Mangalvedhe, N.; Zhang, Y.; Robert, M.; Koskinen, J.P. Overview of narrowband IoT in LTE

Rel-13. In Proceedings of the 2016 IEEE Conference on Standards for Communications and Networking
(CSCN), Berlin, Germany, 31 October–2 November 2016.

138. Borkar, S.R. Long-term evolution for machines (LTE-M). In LPWAN Technologies for IoT and M2M Applications;
Academic Press: Cambridge, MA, USA, 2020; pp. 145–166.

139. Wang, D.; Chen, D.; Song, B.; Guizani, N.; Yu, X.; Du, X. From IoT to 5G I-IoT: The Next Generation IoT-Based
Intelligent Algorithms and 5G Technologies. IEEE Commun. Mag. 2018, 56, 114–120. [CrossRef]

140. Morocho-Cayamcela, M.E.; Lee, H.; Lim, W. Machine learning for 5G/B5G mobile and wireless
communications: Potential, limitations, and future directions. IEEE Access 2019, 7, 137184–137206. [CrossRef]

141. Al-Sarawi, S.; Anbar, M.; Alieyan, K.; Alzubaidi, M. Internet of Things (IoT) communication protocols:
Review. In Proceedings of the ICIT 2017—8th International Conference on Information Technology, Amman,
Jordan, 17–18 May 2017.

https://www.z-wave.com/
https://www.dynastream.com/solutions/ant-wireless/
https://www.dynastream.com/solutions/ant-wireless/
https://www.thisisant.com/consumer/ant-101/what-is-ant/
https://www.habueno.com/shop/?lang=en
https://www.habueno.com/shop/?lang=en
https://www.WiFi.org/discover-WiFi/WiFi-halow
http://dx.doi.org/10.1109/MCOM.2013.6619571
http://dx.doi.org/10.1109/MWC.2016.7422404
http://dx.doi.org/10.3390/electronics8121448
http://dx.doi.org/10.3390/s18113746
http://www.ncbi.nlm.nih.gov/pubmed/30400233
https://lora-alliance.org/
http://dx.doi.org/10.1109/JIOT.2019.2919151
http://dx.doi.org/10.3390/s18010110
https://www.sigfox.com/en
http://dx.doi.org/10.1145/2534169.2486006
http://dx.doi.org/10.1109/ACCESS.2017.2779844
http://dx.doi.org/10.1016/j.jii.2018.01.005
https://www.gsma.com/iot/narrow-band-internet-of-things-nb-iot/
https://www.gsma.com/iot/narrow-band-internet-of-things-nb-iot/
http://dx.doi.org/10.1109/MCOM.2018.1701310
http://dx.doi.org/10.1109/ACCESS.2019.2942390

Sensors 2020, 20, 2533 30 of 34

142. Mahmoud, M.S.; Mohamad, A.A.H. A Study of Efficient Power Consumption Wireless Communication
Techniques/ Modules for Internet of Things (IoT) Applications. Adv. Internet Things 2016, 6, 19–29. [CrossRef]

143. Mekki, K.; Bajic, E.; Chaxel, F.; Meyer, F. A comparative study of LPWAN technologies for large-scale IoT
deployment. ICT Express 2019, 5, 1–7. [CrossRef]

144. Choi, C.S.; Jeong, J.D.; Lee, I.W.; Park, W.K. LoRa based renewable energy monitoring system with open IoT
platform. In Proceedings of the International Conference on Electronics, Information and Communication,
ICEIC, Honolulu, HI, USA, 24–27 January 2018.

145. Zhou, Q.; Zheng, K.; Hou, L.; Xing, J.; Xu, R. Design and Implementation of Open LoRa for IoT. IEEE Access
2019, 7, 100649–100657. [CrossRef]

146. Wang, S.Y.; Chen, Y.R.; Chen, T.Y.; Chang, C.H.; Cheng, Y.H.; Hsu, C.C.; Lin, Y.B. Performance of
LoRa-based IoT applications on campus. In Proceedings of the IEEE Vehicular Technology Conference,
Toronto, ON, Canada, 24–27 September 2017.

147. Sarker, V.K.; Queralta, J.P.; Gia, T.N.; Tenhunen, H.; Westerlund, T. A survey on LoRa for IoT: Integrating edge
computing. In Proceedings of the 2019 4th International Conference on Fog and Mobile Edge Computing,
FMEC, Rome, Italy, 10–13 June 2019.

148. Poursafar, N.; Alahi, M.E.E.; Mukhopadhyay, S. Long-range wireless technologies for IoT applications:
A review. In Proceedings of the International Conference on Sensing Technology, ICST, Sydney, Australia,
4–6 December 2017.

149. Vejlgaard, B.; Lauridsen, M.; Nguyen, H.; Kovacs, I.Z.; Mogensen, P.; Sorensen, M. Coverage and Capacity
Analysis of Sigfox, LoRa, GPRS, and NB-IoT. In Proceedings of the IEEE Vehicular Technology Conference,
Sydney, Australia, 4–7 June 2017.

150. Ray, B. NB-IoT vs. LoRa vs. Sigfox. Available online: https://www.link-labs.com/blog/nb-iot-vs-lora-vs-
sigfox (accessed on 16 April 2020).

151. Zuniga, J.C.; Ponsard, B.; Sigfox System Description. Ietf 97. Available online: https://datatracker.ietf.org/

meeting/97/materials/slides-97-lpwan-25-sigfox-system-description-00 (accessed on 16 April 2020).
152. Froiz-Míguez, I.; Fernandez-Carames, T.M.; Fraga-Lamas, P.; Castedo, L. Design, Implementation and

Practical Evaluation of an IoT Home Automation System for Fog Computing Applications Based on MQTT
and ZigBee-WiFi Sensor Nodes. Sensors 2018, 18, 2660. [CrossRef]

153. Ergen, S.C. ZigBee/IEEE 802.15.4 Summary. UC Berkeley September 2004. Available online: http://users.eecs.
northwestern.edu/~{}peters/references/ZigtbeeIEEE802.pdf (accessed on 16 April 2020).

154. Li, Y.; Chi, Z.; Liu, X.; Zhu, T. Passive-ZigBee: Enabling zigbee communication in IoT networks with 1000X+

less power consumption. In Proceedings of the SenSys 2018—16th Conference on Embedded Networked
Sensor Systems, Shenzhen, China, 4–7 November 2018.

155. Patil, S.M.; Moiz Baig, M. Survey on Creating ZigBee Chain Reaction Using IoT. Int. J. Sci. Res. Comput. Sci.
Eng. Inf. Technol. 2018, 3, 545–549.

156. Hersent, O.; Boswarthick, D.; Elloumi, O. Z-Wave. In The Internet of Things: Key Applications and Protocols;
John Wiley & Sons: Hoboken, NJ, USA, 2011; ISBN 9781119994350.

157. Raza, S.; Misra, P.; He, Z.; Voigt, T. Building the Internet of Things with bluetooth smart. Ad Hoc Networks
2017, 57, 19–31. [CrossRef]

158. Cha, S.-C.; Chen, J.-F.; Su, C.; Yeh, K.-H. A Blockchain Connected Gateway for BLE-Based Devices in the
Internet of Things. IEEE Access 2018, 6, 24639–24649. [CrossRef]

159. Jeon, K.E.; She, J.; Soonsawad, P.; Ng, P.C. BLE Beacons for Internet of Things Applications: Survey,
Challenges, and Opportunities. IEEE Internet Things J. 2018, 5, 811–828. [CrossRef]

160. Collotta, M.; Pau, G.; Talty, T.; Tonguz, O.K. Bluetooth 5: A Concrete Step Forward toward the IoT.
IEEE Commun. Mag. 2018, 56, 125–131. [CrossRef]

161. Ray, P.P.; Agarwal, S. Bluetooth 5 and Internet of Things: Potential and architecture. In Proceedings of the
International Conference on Signal Processing, Communication, Power and Embedded System, SCOPES
2016, Paralakhemundi, India, 3–5 October 2016.

162. Pau, G.; Collotta, M.; Maniscalco, V. Bluetooth 5 Energy Management through a Fuzzy-PSO Solution for
Mobile Devices of Internet of Things. Energies 2017, 10, 992.

163. López-Matencio, P.; Vales-Alonso, J.; Costa-Montenegro, E. ANT: Agent Stigmergy-Based IoT-Network for
Enhanced Tourist Mobility. Mob. Inf. Syst. 2017, 2017, 1–15. [CrossRef]

http://dx.doi.org/10.4236/ait.2016.62002
http://dx.doi.org/10.1016/j.icte.2017.12.005
http://dx.doi.org/10.1109/ACCESS.2019.2930243
https://www.link-labs.com/blog/nb-iot-vs-lora-vs-sigfox
https://www.link-labs.com/blog/nb-iot-vs-lora-vs-sigfox
https://datatracker.ietf.org/meeting/97/materials/slides-97-lpwan-25-sigfox-system-description-00
https://datatracker.ietf.org/meeting/97/materials/slides-97-lpwan-25-sigfox-system-description-00
http://dx.doi.org/10.3390/s18082660
http://users.eecs.northwestern.edu/~{}peters/references/ZigtbeeIEEE802.pdf
http://users.eecs.northwestern.edu/~{}peters/references/ZigtbeeIEEE802.pdf
http://dx.doi.org/10.1016/j.adhoc.2016.08.012
http://dx.doi.org/10.1109/ACCESS.2018.2799942
http://dx.doi.org/10.1109/JIOT.2017.2788449
http://dx.doi.org/10.1109/MCOM.2018.1700053
http://dx.doi.org/10.1155/2017/1328127

Sensors 2020, 20, 2533 31 of 34

164. Shrivastava, V.; Rayanchu, S.; Yoon, J.; Banerjee, S. 802.11n under the microscope. In Proceedings of the ACM
SIGCOMM Internet Measurement Conference, IMC, Vouliagmeni, Greece, 20–22 October 2008.

165. IEEE. IEEE Std 802.11ah-2016 (Amendment to IEEE Std 802.11-2016, as Amended by IEEE Std 802.11ai-2016).
IEEE Standard for Information Technology–Telecommunications and Information Exchange between Systems—Local
and Metropolitan Area Networks–Specific Requirements—Part 11: Wireless LAN Medium Access Control (MAC)
and Physical Layer (PHY) Specifications Amendment 2: Sub 1 GHz License Exempt Operation; IEEE Computer
Society: Washington, DC, USA, 14 December 2016. [CrossRef]

166. Park, M. IEEE 802.11ah: Sub-1-GHz license-exempt operation for the internet of things. IEEE Commun. Mag.
2015, 53, 145–151. [CrossRef]

167. Hossain, M.I.; Lin, L.; Markendahl, J. A Comparative Study of IoT-Communication Systems Cost Structure:
Initial Findings of Radio Access Networks Cost. In Proceedings of the 11th CMI International Conference,
2018: Prospects and Challenges Towards Developing a Digital Economy within the EU, PCTDDE 2018,
Copenhagen, Denmark, 29–30 November 2018.

168. Chen, M.; Miao, Y.; Hao, Y.; Hwang, K. Narrow Band Internet of Things. IEEE Access 2017, 5, 20557–20577.
[CrossRef]

169. Sara, J.J.; Hossain, M.S.; Khan, W.Z.; Aalsalem, M.Y. Survey on Internet of Things and 4G. In Proceedings of
the 2019 International Conference on Radar, Antenna, Microwave, Electronics, and Telecommunications
(ICRAMET), Tangerang, Indonesia, 23–24 October 2019; pp. 1–6.

170. Gemalto Introducing 5G Networks—Characteristics and Usages. 2016. Available online: Https://www.
Gemalto.Com (accessed on 16 April 2020).

171. Martinez, I.S.H.; Salcedo, I.P.O.J.; Daza, I.B.S.R. IoT application of WSN on 5G infrastructure. In Proceedings
of the 2017 International Symposium on Networks, Computers and Communications, ISNCC, Marrakech,
Morocco, 16–18 May 2017.

172. Mumtaz, S.; Bo, A.; Al-Dulaimi, A.; Tsang, K.F. Guest Editorial 5G and beyond Mobile Technologies and
Applications for Industrial IoT (IIoT). IEEE Trans. Ind. Inf. 2018, 14, 2588–2591. [CrossRef]

173. Kang, Y.; Hauswald, J.; Gao, C.; Rovinski, A.; Mudge, T.; Mars, J.; Tang, L. Neurosurgeon: Collaborative
intelligence between the cloud and mobile edge. In Proceedings of the Twenty-Second International
Conference on Architectural Support for Programming Languages and Operating Systems, Xi’an, China,
8–12 April 2017; pp. 615–629.

174. Teerapittayanon, S.; McDanel, B.; Kung, H.T. Distributed Deep Neural Networks over the Cloud, the Edge
and End Devices. In Proceedings of the 2017 IEEE 37th International Conference on Distributed Computing
Systems (ICDCS), Atlanta, GA, USA, 5–8 June 2017; pp. 328–339.

175. Wang, J.; Zhu, X.; Zhang, J.; Cao, B.; Bao, W.; Yu, P.S. Not just privacy: Improving performance of private
deep learning in mobile cloud. In Proceedings of the 24th ACM SIGKDD International Conference on
Knowledge Discovery & Data Mining, London, UK, 19–23 August 2018; pp. 2407–2416.

176. Du, M.; Wang, K.; Xia, Z.; Zhang, Y. Differential Privacy Preserving of Training Model in Wireless Big Data
with Edge Computing. IEEE Trans. Big Data 2018. [CrossRef]

177. Abadi, M.; McMahan, H.B.; Chu, A.; Mironov, I.; Zhang, L.; Goodfellow, I.; Talwar, K. Deep learning with
differential privacy. In Proceedings of the ACM Conference on Computer and Communications Security,
Vienna, Austria, 25–27 October 2016.

178. Xu, C.; Ren, J.; Zhang, D.; Zhang, Y. Distilling at the Edge: A Local Differential Privacy Obfuscation
Framework for IoT Data Analytics. IEEE Commun. Mag. 2018, 56, 20–25. [CrossRef]

179. Miao, Q.; Jing, W.; Song, H. Differential privacy–based location privacy enhancing in edge computing.
Concurr. Comput. Pract. Exp. 2018, 31, e4735. [CrossRef]

180. Dowlin, N.; Edu, N.; Gilad-Bachrach, R.; Laine, K.; Lauter, K.; Naehrig, M.; Wernsing, J.; Com, J.W.
CryptoNets: Applying neural networks to Encrypted data with high throughput and accuracy—Microsoft
research. Microsoft Res. Tech. Rep. 2016, 48, 1–12.

181. Dias, M.; Abad, A.; Trancoso, I. Exploring Hashing and Cryptonet Based Approaches for Privacy-Preserving
Speech Emotion Recognition. In Proceedings of the ICASSP, IEEE International Conference on Acoustics,
Speech and Signal Processing, Calgary, AB, Canada, 15–20 April 2018.

182. Morris, A.; Mellis, C. Privacy-preserving classifification on deep neural network. IACR Cryptol. ePrint Arch.
2017, 2017, 35.

http://dx.doi.org/10.1109/IEEESTD.2016.7786995
http://dx.doi.org/10.1109/MCOM.2015.7263359
http://dx.doi.org/10.1109/ACCESS.2017.2751586
Https://www.Gemalto.Com
Https://www.Gemalto.Com
http://dx.doi.org/10.1109/TII.2018.2823311
http://dx.doi.org/10.1109/TBDATA.2018.2829886
http://dx.doi.org/10.1109/MCOM.2018.1701080
http://dx.doi.org/10.1002/cpe.4735

Sensors 2020, 20, 2533 32 of 34

183. Mao, J.; Chen, X.; Nixon, K.W.; Krieger, C.; Chen, Y. MoDNN: Local distributed mobile computing system for
Deep Neural Network. In Proceedings of the Design, Automation & Test in Europe Conference & Exhibition
(DATE), Lausanne, Switzerland, 27–31 March 2017; pp. 1396–1401.

184. Chandakkar, P.S.; Li, Y.; Ding, P.L.K.; Li, B. Strategies for Re-Training a Pruned Neural Network in an Edge
Computing Paradigm. In Proceedings of the 2017 IEEE International Conference on Edge Computing
(EDGE), Honolulu, HI, USA, 25–30 June 2017; pp. 244–247.

185. Tao, Z.; Li, Q. eSGD: Communication efficient distributed deep learning on the edge. In Proceedings of the
USENIX Workshop on Hot Topics in Edge Computing, HotEdge 2018, Co-Located with USENIX ATC 2018,
Boston, MA, USA, 10 July 2018.

186. Deep Learning Hardware: FPGA vs. GPU. Available online: https://semiengineering.com/deep-learning-
hardware-fpga-vs-gpu/ (accessed on 18 February 2020).

187. cuBLAS | NVIDIA Developer. Available online: https://developer.nvidia.com/cublas (accessed on
21 February 2020).

188. NVIDIA cuDNN | NVIDIA Developer. Available online: https://developer.nvidia.com/cudnn (accessed on
21 February 2020).

189. Mathieu, M.; Henaff, M.; LeCun, Y. Fast Training of Convolutional Networks through FFTs. arXiv 2013,
arXiv:1312.5851.

190. Cong, J.; Xiao, B. Minimizing in Convolutional Neural Networks. Int. Conf. Artif. Neural Networks 2014, 8681,
281–290.

191. Lavin, A.; Gray, S. Fast Algorithms for Convolutional Neural Networks. In Proceedings of the IEEE Computer
Society Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016.

192. Hailo–Top Performing AI Chip for Edge Devices. Available online: https://hailo.ai/ (accessed on 18 November 2019).
193. Cloud TPU | Google Cloud. Available online: https://cloud.google.com/tpu/ (accessed on 18 November 2019).
194. US8655815B2—Neural processing unit—Google Patents. Available online: https://patents.google.com/patent/

US8655815B2/en (accessed on 6 March 2020).
195. Farabet, C.; Poulet, C.; Han, J.Y.; LeCun, Y. CNP: An FPGA-based processor for Convolutional Networks.

In Proceedings of the 2009 International Conference on Field Programmable Logic and Applications, Prague,
Czech, 31 August–2 September 2009; Volume 1, pp. 32–37.

196. Farabet, C.; Martini, B.; Corda, B.; Akselrod, P.; Culurciello, E.; LeCun, Y. NeuFlow: A runtime reconfigurable
dataflow processor for vision. In Proceedings of the CVPR 2011 WORKSHOPS, Colorado Springs, CO, USA,
20–25 June 2011; pp. 109–116.

197. Chakradhar, S.; Sankaradas, M.; Jakkula, V.; Cadambi, S. A dynamically configurable coprocessor for
convolutional neural networks. In Proceedings of the 37th Annual International Symposium on Computer
Architecture, Saint-Malo, France, 19–23 June 2010; pp. 247–257.

198. Nuño-Maganda, M.; Torres-Huitzil, C. A temporal coding hardware implementation for spiking neural
networks. ACM SIGARCH Comput. Archit. News 2011, 38, 2. [CrossRef]

199. Chen, Y.; Luo, T.; Liu, S.; Zhang, S.; He, L.; Wang, J.; Li, L.; Chen, T.; Xu, Z.; Sun, N.; et al. DaDianNao:
A Machine-Learning Supercomputer. In Proceedings of the 2014 47th Annual IEEE/ACM International
Symposium on Microarchitecture, Cambridge, UK, 13–17 December 2014; pp. 609–622.

200. Du, Z.; Fasthuber, R.; Chen, T.; Ienne, P.; Li, L.; Luo, T.; Feng, X.; Chen, Y.; Temam, O. ShiDianNao: Shifting
vision processing closer to the sensor. In Proceedings of the 42nd Annual International Symposium on
Computer Architecture, Portland, Oregon, 13–17 June 2015; pp. 92–104.

201. Intel®Neural Compute Stick 2 | Intel®Software. Available online: https://software.intel.com/en-us/neural-
compute-stick (accessed on 16 April 2020).

202. Othman, N.A.; Aydin, I. A New Deep Learning Application Based on Movidius NCS for Embedded Object
Detection and Recognition. In Proceedings of the 2018 2nd International Symposium on Multidisciplinary
Studies and Innovative Technologies (ISMSIT), Ankara, Turkey, 19–21 October 2018.

203. Get Started with Intel®Neural Compute Stick 2 | Intel®Software. Available online: https://software.intel.
com/en-us/articles/get-started-with-neural-compute-stick (accessed on 16 April 2020).

204. Coral. Available online: https://www.coral.ai/ (accessed on 16 April 2020).
205. Examples | Coral. Available online: https://coral.ai/examples/ (accessed on 16 April 2020).

https://semiengineering.com/deep-learning-hardware-fpga-vs-gpu/
https://semiengineering.com/deep-learning-hardware-fpga-vs-gpu/
https://developer.nvidia.com/cublas
https://developer.nvidia.com/cudnn
https://hailo.ai/
https://cloud.google.com/tpu/
https://patents.google.com/patent/US8655815B2/en
https://patents.google.com/patent/US8655815B2/en
http://dx.doi.org/10.1145/1926367.1926369
https://software.intel.com/en-us/neural-compute-stick
https://software.intel.com/en-us/neural-compute-stick
https://software.intel.com/en-us/articles/get-started-with-neural-compute-stick
https://software.intel.com/en-us/articles/get-started-with-neural-compute-stick
https://www.coral.ai/
https://coral.ai/examples/

Sensors 2020, 20, 2533 33 of 34

206. Hochstetler, J.; Padidela, R.; Chen, Q.; Yang, Q.; Fu, S. Embedded deep learning for vehicular edge computing.
In Proceedings of the 2018 3rd ACM/IEEE Symposium on Edge Computing, SEC 2018, Bellevue, WA, USA,
25–27 October 2018.

207. Marantos, C.; Karavalakis, N.; Leon, V.; Tsoutsouras, V.; Pekmestzi, K.; Soudris, D. Efficient support
vector machines implementation on Intel/Movidius Myriad 2. In Proceedings of the 2018 7th International
Conference on Modern Circuits and Systems Technologies, MOCAST 2018, Thessaloniki, Greece, 7–9 May
2018.

208. Barry, B.; Brick, C.; Connor, F.; Donohoe, D.; Moloney, D.; Richmond, R.; O’Riordan, M.; Toma, V.; Nicholls, D.
Always-on Vision Processing Unit for Mobile Applications. IEEE Micro 2015, 35, 56–66. [CrossRef]

209. Liu, Q.; Huang, S.; Han, T. Demo: Fast and accurate object analysis at the edge for mobile augmented reality.
In Proceedings of the 2017 2nd ACM/IEEE Symposium on Edge Computing, SEC 2017, San Jose, CA, USA,
12–14 October 2017.

210. Lee, S.; Son, K.; Kim, H.; Park, J. Car plate recognition based on CNN using embedded system with GPU.
In Proceedings of the 2017 10th International Conference on Human System Interactions, HSI 2017, Ulsan,
Korea, 17–19 July 2017.

211. Ezra Tsur, E.; Madar, E.; Danan, N. Code generation of graph-based vision processing for multiple CUDA
Cores SoC Jetson TX. In Proceedings of the 2018 IEEE 12th International Symposium on Embedded
Multicore/Many-Core Systems-on-Chip, MCSoC 2018, Hanoi, Vietnam, 12–14 September 2018.

212. Rungsuptaweekoon, K.; Visoottiviseth, V.; Takano, R. Evaluating the power efficiency of deep learning
inference on embedded GPU systems. In Proceedings of the 2017 2nd International Conference on Information
Technology, INCIT 2017, Nakhonpathom, Thailand, 2–3 November 2017.

213. Chinchali, S.; Sharma, A.; Harrison, J.; Elhafsi, A.; Kang, D.; Pergament, E.; Cidon, E.; Katti, S.; Pavone, M.
Network Offloading Policies for Cloud Robotics: A Learning-Based Approach. In Proceedings of the
Robotics: Science and Systems 2019, Freiburg im Breisgau, Germany, 22–26 June 2019.

214. Jana, A.P.; Biswas, A. Mohana YOLO based detection and classification of objects in video records.
In Proceedings of the 2018 3rd IEEE International Conference on Recent Trends in Electronics, Information
and Communication Technology, RTEICT 2018, Bangalore, India, 18–19 May 2018.

215. Chen, T.; Du, Z.; Sun, N.; Wang, J.; Wu, C.; Chen, Y.; Temam, O. DianNao: A small-footprint high-throughput
accelerator for ubiquitous machine-learning. In Proceedings of the International Conference on Architectural
Support for Programming Languages and Operating Systems—ASPLOS, Salt Lake City, UT, USA, 1–5 March
2014.

216. MNIST Handwritten Digit Database, Yann LeCun, Corinna Cortes and Chris Burges. Available online:
http://yann.lecun.com/exdb/mnist/ (accessed on 16 April 2020).

217. National Institute of Standards and Technology | NIST. Available online: https://www.nist.gov/ (accessed on
8 January 2020).

218. Cook, L.T.; Zhu, Y.; Hall, T.J. Bioelasticity imaging: II. Spatial resolution. Med. Imaging 2000, 3982, 315–325.
219. Glorot, X.; Bengio, Y. Understanding the difficulty of training deep feedforward neural networks.

In Proceedings of the Journal of Machine Learning Research, 2010, 13th International Conference on
Artificial Intelligence and Statistics, AISTATS 2010, Sardinia, Italy, 13–15 May 2010; 2010.

220. TensorFlow Lite models | TensorFlow. Available online: https://www.tensorflow.org/lite/models (accessed on
8 January 2020).

221. Sequential—Keras Documentation. Available online: https://keras.io/models/sequential/ (accessed on
8 January 2020).

222. TensorFlow Lite inference. Available online: https://www.tensorflow.org/lite/guide/inference (accessed on
16 April 2020).

223. FlatBuffers: FlatBuffers. Available online: https://google.github.io/flatbuffers/ (accessed on 8 January 2020).
224. Magnitude-Based Weight Pruning with Keras. Available online: https://www.tensorflow.org/model_

optimization/guide/pruning/pruning_with_keras (accessed on 8 January 2020).
225. Python Imaging Library (PIL). Available online: https://pythonware.com/products/pil/ (accessed on

8 January 2020).

http://dx.doi.org/10.1109/MM.2015.10
http://yann.lecun.com/exdb/mnist/
https://www.nist.gov/
https://www.tensorflow.org/lite/models
https://keras.io/models/sequential/
https://www.tensorflow.org/lite/guide/inference
https://google.github.io/flatbuffers/
https://www.tensorflow.org/model_optimization/guide/pruning/pruning_with_keras
https://www.tensorflow.org/model_optimization/guide/pruning/pruning_with_keras
https://pythonware.com/products/pil/

Sensors 2020, 20, 2533 34 of 34

226. TkInter—Python Wiki. Available online: https://wiki.python.org/moin/TkInter (accessed on 8 January 2020).
227. NUCLEO-F746ZG—STM32 Nucleo-144 Development Board with STM32F746ZG MCU, Supports Arduino,

ST Zio and Morpho Connectivity—STMicroelectronics. Available online: https://www.st.com/en/evaluation-
tools/nucleo-f746zg.html (accessed on 15 March 2020).

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

https://wiki.python.org/moin/TkInter
https://www.st.com/en/evaluation-tools/nucleo-f746zg.html
https://www.st.com/en/evaluation-tools/nucleo-f746zg.html
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Machine Learning Algorithms
	Deep Learning
	RNN, GAN, K-NN
	Tree-Based ML Algorithms
	SVM

	Bringing Machine Learning to the Edge
	Architectures
	Model and Hardware
	Model Design
	Model Compression
	Hardware Choice

	Edge Server-Based Architectures
	Wireless Standards for AI-Enabled IoT Devices
	Joint Computation
	Partial Offload
	Hierarchical Architectures
	Distributed Computing

	Privacy
	Add Noise to Data
	Cryptographic Techniques

	Training
	Training Algorithms
	Training Hardware

	MNIST Example
	Dataset
	Model with Tensorflow
	Keras Model
	Tensorflow Lite
	Pruning
	Graphical User Interface
	Validation on Target

	Conclusions
	References

