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Abstract: The use of sensors in the real world is on the rise, providing information on medical
diagnostics for healthcare and improving quality of life. Optical fiber sensors, as a result of their
unique properties (small dimensions, capability of multiplexing, chemical inertness, and immunity
to electromagnetic fields) have found wide applications, ranging from structural health monitoring
to biomedical and point-of-care instrumentation. Furthermore, these sensors usually have good
linearity, rapid response for real-time monitoring, and high sensitivity to external perturbations.
Optical fiber sensors, thus, present several features that make them extremely attractive for a wide
variety of applications, especially biomedical applications. This paper reviews achievements in the
area of temperature optical fiber sensors, different configurations of the sensors reported over the last
five years, and application of this technology in biomedical applications.
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1. Introduction

Requests for detection of environmental changes through physical, chemical, or biological
parameters have grown rapidly over the last decades. There is great interest, not only in the scientific
community, but also in the industry, in developing new sensing devices based on optical fibers, in an
effort to exploit their intrinsic characteristics and find new application fields. In order to compete with
conventional sensors, these sensors need to be trustworthy, robust, highly sensitive, and affordable.

Various techniques are being developed in response to the increased need for non-destructive
techniques that can monitor environments that are difficult to access; some of the most promising ones
are based on optical fiber sensors (OFSs). The ability to have small devices physically near the objects
or media being sensed brings about new opportunities; for example, in structural monitoring and
industrial or pharmaceutical applications [1]. Considering their distinct working principles, there are
several types of OFSs, which normally are separated into two classes: (i) extrinsic, where the optical
fiber is only a medium to convey light to and from a separate element or space, and (ii) intrinsic, where
the optical fiber constitutes the sensing element [2].

The advantages of using OFSs are well known—small dimensions, capability of multiplexing,
chemical inertness, and immunity to electromagnetic fields. Furthermore, these sensors usually present
good linearity, rapid response for real-time monitoring, and high sensitivity. Thus, OFSs present several
features that make them highly sensitive to external perturbations and allow them to be embedded in
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materials [3], which is attractive in a wide variety of applications, namely in the medical, aerospace,
and wind energy industries. They have also been applied in the oil and gas industry, taking advantage
of distributed sensing capability, and in several fields, such as electrical engineering, materials science,
biology, chemistry, physics, and optics [4]. There is no doubt that depending on the application
and parameter or configuration for which the sensors are developed, the possibilities are huge [5,6].
Currently, the fiber sensing field is immense, and there is a wide variety of methods to classify the
sensors, according to:

◦ The application: temperature, strain, displacement, current, magnetic fields, pressure, torsion,
bending, vibration, humidity, lateral load, refractive index, detection of bio-molecules or chemical
species [4].

◦ The measurable spatial scope: point sensors, quasi-distributed sensors, and fully distributed
sensors [6].

◦ The modulation process: intensity, phase, state of polarization, and wavelength shift
(frequency) [4].

◦ The working principle: optical fiber gratings (fiber Bragg grating (FBG), chirped fiber Bragg grating,
tilted fiber Bragg grating (TFBG) and long period grating), interferometry (Fabry-Pérot (FP),
Mach-Zehnder, Michelson, Sagnac, high birefringence fiber loop mirror sensors, and multimode
interferometer) [7–10], distributed sensors (Raman scattering, Rayleigh scattering and Brillouin
scattering) [8], or polarization-optical time domain reflectometry sensors [11,12].

The characteristics mentioned earlier make temperature monitoring using optical fibers very
interesting. Diverse temperature sensors based on optical fibers have been projected over the last
few years [13–15]. These optical sensing platforms are aligned to different techniques, such as
FBG [16,17], Surface Plasmon Resonance (SPR) [18,19], side-polished fibers [20,21], photonic crystal
fibers (PCF) [22–24], fiber FP interferometers [25–29], and tapered fibers [30,31]. Of the two types of
fibers—glass and plastic optical fiber (POF) [32,33] is considered particularly advantageous owing to
its excellent flexibility, easy handling, great numerical aperture, large diameter, and the fact that plastic
is able to resist smaller bend radii more than glass [33,34].

A few of these technologies will be addressed specifically.

1.1. Fiber Bragg Grating

In 1978, Kenneth O. Hill reported the first work on FBGs and their applications, both in optical
communications and optical sensor systems [35]. Since then, this type of sensors has been widely
applied in the measurement of different parameters, such as physical, chemical, clinical, biomedical and
electrical parameters in the energy, aerospace and civil fields. They are simple, intrinsic sensing
elements, which can be photo-inscribed into silica fiber and offer all the advantages associated with
fiber optic sensors. Typically, a FBG sensor can be seen as a selective photo-induced modulation of the
optical fiber core refractive index. The FBG resonant wavelength (Bragg wavelength), λB, is related
to the effective refractive index of the core mode (neff) and the grating period (Λ), according to
Equation (1) [36]:

λB = 2ne f f Λ (1)

When the grating is illuminated by a broadband optical source, the reflected spectrum presents a
sharp peak, which is caused by interference of light with the planes of the grating. Any perturbation
on the grating (e.g., external strain or temperature variation) results in a shift in the Bragg wavelength,
which can be detected either in the reflected or transmitted spectra [6]. See Figure 1.
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building up reflectors externally to the fibers (Figure 2a), or internally (Figure 2b), being classified 
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signals [42], bearing in mind that high reflecting mirrors may be used, although the manufacturing 

Figure 1. Schematic of a Bragg grating structure.

1.2. Fabry-Pérot Interferometers

Interferometric optical fiber sensors are based on the principle of optical interference for
the measurement of chemical or physical properties. These sensors can be an excellent solution
for sensing because they can exhibit high sensitivity compared to FBGs, a wide dynamic range,
multiplexing capacity, and low losses [37].

One of the first works published on a fiber optic sensor based on FP interferometry was in 1982 by
Yoshino [38]. Since then, rapid evolution has occurred in the field. FP interferometers are normally
constituted of two parallel reflecting surfaces, with reflectance R1 and R2, separated by a determined
distance, L, as exemplified in Figure 2 [39]. The FP interferometer can be developed by intentionally
building up reflectors externally to the fibers (Figure 2a), or internally (Figure 2b), being classified into
two categories: extrinsic and intrinsic sensors [40,41].

Sensors 2019, 19, x FOR PEER REVIEW 3 of 20 

 

Figure 1. Schematic of a Bragg grating structure. 

1.2. Fabry-Pérot Interferometers 

Interferometric optical fiber sensors are based on the principle of optical interference for the 

measurement of chemical or physical properties. These sensors can be an excellent solution for 

sensing because they can exhibit high sensitivity compared to FBGs, a wide dynamic range, 

multiplexing capacity, and low losses [37].  

One of the first works published on a fiber optic sensor based on FP interferometry was in 1982 

by Yoshino [38]. Since then, rapid evolution has occurred in the field. FP interferometers are normally 

constituted of two parallel reflecting surfaces, with reflectance R1 and R2, separated by a determined 

distance, L, as exemplified in Figure 2 [39]. The FP interferometer can be developed by intentionally 

building up reflectors externally to the fibers (Figure 2a), or internally (Figure 2b), being classified 

into two categories: extrinsic and intrinsic sensors [40,41]. 

 

Figure 2. a) Extrinsic and b) intrinsic Fabry-Perot interferometer sensor, with reflectance R1 and R2, 

separated by a determined distance, L. The supporting structure in a) was partially removed. 

In the case of extrinsic sensors, air cavity can be formed through a supporting structure, such as 

the one shown in Figure 2a. These sensors are advantageous for obtaining high finesse interference 

signals [42], bearing in mind that high reflecting mirrors may be used, although the manufacturing 
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separated by a determined distance, L. The supporting structure in (a) was partially removed.

In the case of extrinsic sensors, air cavity can be formed through a supporting structure, such as
the one shown in Figure 2a. These sensors are advantageous for obtaining high finesse interference
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signals [42], bearing in mind that high reflecting mirrors may be used, although the manufacturing
process is simple and no expensive equipment is needed. However, they have reduced coupling
efficiency, and careful and precise alignment is required [43].

The intrinsic FP interferometer fiber sensor has reflecting components within the fiber itself.
There are several ways to form this type of sensor, such as micro machining [44–47], by using two
FBGs in series [48,49], through chemical etching [50–52], by thin film deposition [53–55], using special
fibers [56,57], or even creating an air bubble in fibers [58,59]. In the simplest form, when the cavity
has low-reflectivity mirrors, it can be approximated to a two-wave interferometer. In such cases,
the reflection spectrum is essentially determined by the phase difference, δFP, between the waves
generated in the two reflections [59], which is described by:

δFP =
4πnLFP

λ
(2)

where, n, LFP, and λ are the effective refractive index of the cavity material, the physical length of
the cavity, and the wavelength of incident light, respectively. When there is an external perturbation,
such as variation of strain, temperature, or other parameters detectable by the sensors, both the cavity
length and effective refractive index are able to change, translating into a shift of phase difference.
This shift can be easily monitored by using a suitable interrogation system [39,59]. Table 1 presents the
main characteristics of the different intrinsic FP sensors used for temperature measurements reported
over the last five years in the literature.

Table 1. Different configurations of Fabry-Perot sensors reported from 2015 to 2020.

Year Configuration Length (µm) Range Sensitivity Ref.

2015 SMF + dual HCF 33.84 20 to 60 ◦C −0.4810 nm/◦C [60]
2015 Polymer capped on the end face of SMF 35.1 40 to 90 ◦C 0.249 nm/◦C [61]
2015 Rectangular air bubble between SMFs ~61 25 to 100 ◦C 2.0 pm/◦C [62]
2015 SMF + silicon pillar 200 20 to 100 ◦C 84.6 pm/◦C [63]
2015 MMF + Pyrex glass + silicon diaphragm ~32 −50 to 100 ◦C 6.07 nm/◦C [64]

2016 Air cavities with capillary fiber between 2
SMFs ~25–200 50 to 400 ◦C 0.8 pm/◦C [65]

2016 SMF + hollow-core photonic crystal fiber
(PCF) 75 17 to 900 ◦C 0.94 pm/◦C [66]

2016 SMF + PCF 94 20 to 90 ◦C 9.17 pm/◦C [67]
2017 Etched MMF filled with UV adhesive 37.7 55 to 85◦C 213 pm/◦C [68]
2018 SMF + Hollow core tube + SMF ~100 50–450 ◦C 0.902 pm/◦C [69]
2018 Fiber core near the end of a standard SMF 60 500 to 1000 ◦C 18.6 pm/◦C [70]
2018 SMF +capillary + nafion film 200 −30 to 85 ◦C 2.71 nm/◦C [71]
2019 SMF + HCF + HCF 210 30 to 200 ◦C 9.22 pm/◦C [72]
2019 SMF + HCF + grapefruit PCF 1229 25 to 70 ◦C 10.64 pm/◦C [73]

2019 SMF + HCF + long period fiber grating
+SMF 474.4 31.5 to 82.4◦C 135.19 pm/◦C [74]

2020 SMF + FBG + FBG + SMF —— 25 to 45 ◦C 307.6 pm/◦C [75]

2020 Parallel FPI 26
61 20 to 80 ◦C 0.74 pm/◦C

1.37 pm/◦C [76]

2020 SMF + polarization maintaining PCF 150 300 to 800 ◦C −92 pm/◦C [77]

1.3. Multimode Fiber Interferometers Sensors

A scheme of a typical multimode fiber interferometer (MMI) sensor is presented in Figure 3, where a
section of the multimode fiber (MMF) is sandwiched between two single-mode fibers (SMFs) [78].
This is the so-called single-mode-multimode-single mode (SMS) fiber structure; however, MMIs can
also be obtained using a single-mode-multimode fiber configuration [79]. It has a series of advantages
that allows it to be used as a sensor—simple structure, low cost, small size, and high stability. Some of
the parameters that have been monitored with this kind of sensor are strain and temperature [80],
displacement [81], refractive index [82], and microbend [83].
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The subjacent operating principle of this kind of sensor is the MMI excitation between modes
in the MMF section, which can be influenced by external perturbations [84,85], i.e., the fundamental
mode that propagates along the SMF will couple into the MMF, exciting many modes, each of which
has a different propagation constant [6]. After passing through the multimode section, they reconnect
to the SMF. Since each mode has already experienced a different phase shift, the modes interfere.

The main configurations of the MMI structures are simple and enable the detection of a change in
the refractive index of the surrounding medium, i.e., due to the high interaction of the evanescent field
with the external environment. The manufacturing of new concepts of MMIs can be greatly enhanced
through the combination of fiber optics with nano-structure technology and the use of sensitive thin
films [86–89]. Sensors based on MMI, allied with the functionalization with thin films as sensitive
elements, could open new fields for optical fiber sensor applications. Functional materials can be
deposited on the side- or end-face of fibers with different techniques, such as spin-coating, dip-coating,
thermal evaporation, or sputtering [90]. The use of polymeric sensitive materials in optical fiber sensors
has the advantage of enhanced response time with better sensitivity and selectivity [6,91]. Table 2
reports the main configurations for temperature parameter using MMI sensors reported over the last
five years.

Table 2. Multimode interference sensors reported in the literature from 2015 to 2020.

Year Configuration Length
(mm) Range Sensitivity Ref

2015 SMF + no core fiber (NCF) (diameter of 96 µm) +
SMF 34.43 −30 to 100 ◦C 38.7 pm/◦C [92]

2015 SMF + offset SMF + SMF 46 30 to 270 ◦C 0.0449 nm/◦C [93]
2015 SMF + NCF + SMF 40 10 to 100 ◦C 5.15 nm/◦C [94]
2017 SMF + MMF (core of 105 µm) + SMF 44 15 to 75 ◦C 29.33 pm/◦C [95]
2017 SMF + polymer optical fiber (POF) + SMF 10 25 to 105 ◦C 102.2 pm/◦C [96]
2017 SMF + MMF + MMF + SMF 100 30 to 90 ◦C 6.8 pm/◦C [97]

2018 SMF + NCF (with alcohol solution within a silica
capillary tube) + SMF 40 20 to 45 ◦C 0.49 dB/◦C [98]

2018 SMF + NCF 43.9 100 to 700 ◦C 6.8 pm/◦C [79]
2018 SMF + NCF 30 10 to 70 ◦C 13.6 pm/◦C [99]
2019 SMF + MMF + SMF 70 31.4 to 80.2 ◦C 21 pm/◦C [100]
2019 SMF + MMF + NCF + MMF + SMF 1 20 to 100 ◦C 33 pm/◦C [101]

2019 SMF + MMF + polarization maintaining fiber +
MMF + SMF 32 20 to 40 ◦C 0.188 nm/◦C [102]

2020 SMF + NCF (with a gold film) + SMF 12 20 to 80 ◦C 37.9 pm/◦C [103]
2020 SMF + NCF (with coating) + SMF 15 −5 to 45 ◦C −4.677 nm/◦C [104]
2020 SMF + hollow-core capillary waveguide + SMF 29.5 25 to 75 ◦C −0.49 nm/◦C [105]
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2. Biomedical Optical Fiber Temperature Sensors

In clinical practice, patient temperature is a basic diagnostic procedure and often a critical
control parameter, as in hyperthermia therapy [106]. Almost all chemical processes and reactions are
temperature dependent, justifying temperature sensors as the largest class of commercially available
OFS. Nevertheless, they are quite few compared to the large number of schemes that have been
proposed but never reached commercialization [107]. Thermocouple and thermistor devices have been
extensively used for temperature measurements in clinical practice. However, due to the presence of
metallic conductors, they are inappropriate for clinical procedures involving incident radio frequency
(RF), EM or microwave (MW) fields [108–110]. To overcome these limitations, fiber optic fluorescent
techniques have been proposed. The fluoroptic technology uses fluorescent materials, such as rare-earth
phosphors or gallium arsenide (GaAs), and an adequate light source to excite them. Temperature can
be determined by measuring fluorescence emission decay times in the fluoroptic probes [111–114].
Solid state materials can also be used for fluorescence thermometry and some schemes have been
presented for biomedical purposes, using the ruby [111,115] and the trivalent-chromium ion doped
material [116]. An excellent review of fluorescent intensity, the first technique being proposed,
and fluorescence lifetime based systems was published by Grattan and Zhang [107].

The Luxtron m3300 is a currently available fluoroptic system that can be used in biomechanical
and biomedical laboratory settings (LumaSense Technologies, Santa Clara, CA, USA). Its non-metallic
probe has a phosphorescent sensor localized at the probe tip and can provide real-time temperature
measurements, ranging from 0 ◦C to 120 ◦C, with an accuracy of ±0.2 ◦C and 2 ◦C, respectively [117].
The probe has a 0.5 mm outer diameter (OD) and is protected with a Tefzel®ethylene-tetrafluoroethylene
(ETFE) fluoropolymer jacket allowing its use in magnetic resonance imaging (MRI), radio frequency (RF),
or microwave (MW) environments and during ablation procedures [118,119]. A reported limitation of
the Luxtron fluoroptic probe is its propensity to record higher temperatures compared to reference
thermocouples sensors [120]. This was observed under localized heating at distances less than 4 mm
from the laser source [120]. The T1™ Fiber Optic Temperature Sensor (Neoptix, Inc., Québec, QC,
Canada) is also a commercially available OFS based on a GaAs semiconductor crystal located in the tip
of the sensor. Sensor specifications include a temperature range from−272 ◦C to +250 ◦C, an accuracy of
±0.2 ◦C, a resolution of 0.1 ◦C, and a response time of 500 ms [121]. The outer protective jacket is made
of polytetrafluoroethylene (PTFE) Teflon™ with 1.15 mm OD. It has been used to monitor temperature
during cryogenic [122] and laser ablation procedures [123,124] as well as in non-incineration methods
for sterilizing hospital infectious wastes [125]. Unfortunately, fluorescent materials are relatively bulky
and expensive, which increases the cost of these systems [109].

Interferometric technology was explored by Wolthuis et al. [109], who presented a FP temperature
sensor based on a LED-microshift method (Figure 4). It consisted of a light emitting diode (LED) light
source, used to interrogate changes in optical cavity depth occurring between two reflectance peaks,
and of a dichroic ratio technique used to analyze the returned signal [126]. The authors argued that
the method was more sophisticated than others involving FP sensors, such as incremental, intensity,
white-light, and LED-deep cavity. The optical cavity consisted of a thin layer of silicon packed
between two pieces of glass. Temperature variations cause the silicon refractive index to change and,
consequently, the light being reflected. Sensor performance fulfilled (American Association for Medical
Instrumentation) AAMI specifications presenting a span linearity of 1% and sensitivity of 0.1% ratio
change per ◦C. Temperature resolution and accuracy were 0.2 ◦C (0.02 ◦C with averaging) and 0.1 ◦C,
respectively, for a measurement range from ~15 to ~55 ◦C. The sensor was able to reach 90% of its final
value for a temperature change from ice to boiling water in about 200 ms [109]. RJC Enterprises, LLC
(Bothell, WA, USA) is commercializing this type of sensor with some possibilities of customization
(e.g., total assembly length and capillary pedestal length).
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An interferometric configuration was also applied by Rao and Jackson [127] to propose a
high-resolution temperature sensor (Figure 5). It consisted of a miniature extrinsic fiber optic-based
Fizeau temperature sensor, with a cavity length of several hundred microns and a dual-wavelength
pseudo-heterodyne phase detection scheme. A measurement resolution of 0.006 ◦C, a 1% span
linearity over a temperature range of 27.3 to 62.5 ◦C, and a bandwidth of 30 Hz were achieved.
To get temperature independent measurements, two FBG sensors located in a bimetallic beam were
monitored interferometrically. Sensor performance meets or exceeds medical requirements but, to our
best knowledge, it is not being marketed.Sensors 2019, 19, x FOR PEER REVIEW 8 of 20 
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Previously mentioned sensors are point sensors, i.e., they provide information only at the site they
are placed and may be insufficient for a more complete clinical assessment. Multiplexing techniques
using FBG sensors can contribute to overcoming this spatial constraint. The first configurations for
medical use were proposed by Rao et al. [108] and Rao [128], consisting of an array of four in-line
FBG (4 mm length each and 10 mm spaced) and a simple monochromator for demultiplexing the
wavelength encoded signals (Figure 6). Wavelength-shifts induced by temperature variations were
measured using a high-resolution drift-compensated interferometric detection scheme, based on a
bulk unbalanced Michelson interferometer. To minimize strain effects, the probe end was sealed with a
nylon sleeve of 1 mm OD. A resolution of 0.1 ◦C and an accuracy of ±0.2 ◦C, over a temperature range
of 30 ◦C to 60 ◦C, were achieved in bench tests [129].
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The above sensor was proposed for in vivo temperature monitoring during tumor therapy; in vivo
trials occurred later using a similar configuration that was proposed by the same research group
(Applied Optics Group, The University Canterbury, Kent, UK) [130]. A portable sensing unit with
five in line FBGs was used. The source was a super luminescent diode (SLD) and the detector a
miniature charge-coupled device (CCD) based spectrometer. Sensor resolution was 0.2 ◦C. This type
of sensor was used to monitor hyperthermia treatments of the kidney and liver of rabbits [130,131].
Nevertheless, it was not applied in clinical settings because a nonlinear response of some FBG sensors
and an initial system calibration drift exceeding 10 ◦C was reported [132]. To overcome these limitations,
a polymer coated FBG (PFBG) probe was proposed [132]. It consisted of a 0.5 mm OD prototype with
10 FBG sensors at 5 mm intervals and 50 mm length. The PFBG sensor closely followed the behavior
of well-established commercial hyperthermia thermometry probes. A swept wavelength laser-based
readout system was capable to achieve 0.1 ◦C precision, while maintaining a better than 0.5 ◦C stability
over 10 h and an absolute measurement accuracy of ±0.25 ◦C [132]. The sensor was tested only under
simulated MW hyperthermia treatment to a tissue equivalent phantom.

The potentialities of other coating materials were explored in both MRI environments and
cryoablation procedures. Samset et al. [133] were able to observe the dynamics of the freezing process
during in vivo cryoablation of a porcine liver in a MRI room. Two multiplexed FBG array probes were
used—one coated with polyimide (1.25 OD), the other with titanium (1.40 mm OD). The materials were
considered biocompatible, sterilizable, and immune to EM interference. The probes exhibited excellent
mechanical stability under cooling (−195.8 ◦C), hitting over a sharp edge, and bending to a radius of
20 mm at body temperature. The sensor, with 10 in-line FBGs, was calibrated for temperature through
immersion in liquid nitrogen (−195.8 ◦C), ice slush (0 ◦C), and boiling water (100 ◦C). A reference
platinum thermos resistance (Pt-100) was used to obtain the wavelength to temperature conversion
parameters. Temperature measurements performed during prostate cancer cryosurgery confirmed
FBG sensor thermometry potentialities for clinical applications [134,135]. A commercial reusable
multiplexed FBG temperature monitor system was used (TMS, MultitempTM 1601, InvivoSense,
Trondheim, Norway). Ultrafine 17 gauge needles were used to guide the sensor to the target tissue and
temperatures were measured in four and eight FBG sensors with 10 mm and 5 mm distance intervals,
respectively. Temperatures of about −40 ◦C or −60 ◦C were attained during the cryosurgery treatments,
which are in the range (−100 ◦C and +130 ◦C) of these FBG multiplexed sensors.

The use of FBG arrays or other spatially distributed sensing techniques (e.g., modal modulation
techniques) is also emerging for healthcare applications, namely for distributed body temperature
monitoring using FBGs arrays. Martin et al. [136] proposed the use of FBG sensors to measure and
monitor patient body temperature non-intrusively on a smart bedsheet. The use of FBG sensors allows
a smart bedsheet to have the look and feel of a conventional bedsheet since FBG sensors have a very
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thin and light linear geometry. Additionally, they are dielectric in nature and have total immunity to
electromagnetic and radio frequency (RF) interferences.

FBG sensors also prove to be useful in the field of prosthesis design and testing, namely, to measure
polymerization temperature profiles of cemented hip mantles [137]. Peak temperatures of 110 ◦C
reached within 300 s and stabilized to room temperature after 3600 s were measured with a resolution
of 1 µε and precision of ±5 µε.

Cennamo et al. [138] presented a novel optical temperature sensor in a multimode plastic optical
fiber with a polymethyl-methacrylate (PMMA) core of 980 µm, having a silicone layer (fluorinated
polymer cladding of a 20 µm) deposited around the fiber tip for hyperthermia in cancer treatment (the
optical fiber sensor is especially suited for minimally invasive measurement of local tissue temperature).
This approach is dedicated to a portable temperature-sensing platform centered on low-cost, small size,
and easy-to-use configuration (Figure 7). In this configuration, the silicone layer is extremely vital
to monitor the temperature of the medium, since without it, the sensing structure is sensitive to the
refractive index of the medium itself. Besides, in the hyperthermia treatment, the biocompatible
silicone layer also contributes to minimally invasive measurement of local tissue temperature. A simple
experimental setup, based on a halogen lamp as light source and two spectrum analyzers (one for the
signal and the other for the reference) is used to monitor the sensor’s response at different wavelengths
(652 nm and 736 nm). The proposed sensor behaves differently when the wavelength changes. The fiber
temperature sensor proposed could be used to monitor temperatures in hyperthermia treatment, in the
desired 35 to 45 ◦C range, with a resolution of about 0.1 ◦C.

Recently, the use of hyperthermia—a technique that exploits heat to alter the biological
state of tumors—as adjuvant therapy has been shown to increase the efficiency of the treatment.
Through controlled elevation of tumor temperature, tumor physiology, including oxygenation and
blood flow, can be altered. This control of the tumor micro-environment, allows the clinician to better
plan and carry out the therapy.Sensors 2019, 19, x FOR PEER REVIEW 10 of 20 
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It is known that the temperature is one of the vital signs and a crucial and routinely monitored
parameter in medicine, which is measured using a variety of technologies [139] in all clinical settings,
including surgeries, oncology treatment, and intensive care units [140]. In healthcare, the temperature
sensing requirements are application dependent, but generally, a temperature range of 35–45 ◦C with a
resolution of at least 0.1 ◦C is required [141].

The required response time of the temperature sensor is also application dependent [142]. For some
thermal treatment procedures, such as high-intensity focused ultrasound ablation, the coagulative
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temperature (43.5–57.0 ◦C) is reached in less than 30 s [143], while for laser ablation, this can lie between
5 and 15 min [143].

Wu et al. [144] proposed a fluorescence optic-fiber sensor particularly adapted to the field of
biomedicals in the range of 20 ◦C to 50 ◦C, based on modulated phase-locked detection (PLD) with
pulse modulation signal references (PMSR). The probe of the detection system is composed of an
optical system used to excite and transmit fluorescence and an electronic system used to probe and
process the fluorescence signals. This probe is placed in a pure silicone catheter, which is to be
planted at the location of the prostate. To monitor the temperature of the tissue under radiofrequency
treatment, the temperature probe is placed in the catheter along with the radiofrequency treatment.
The temperature probe is depicted in Figure 8. The volume of the LiSrAlF6: Cr3+ sample used was
circa 0.3 × 0.2 × 0.3 mm3; nevertheless, this specific size is not critical.
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Wook et al. [145] proposed two types of non-invasive optical fiber respiration sensors (Figure 9)
that can measure respiratory signal during magnetic resonance image acquisition. These sensors
were based on thermo-chromic material deposited onto the tip of plastic optical fiber for respiratory
monitoring inside an MRI system. The reported sensors have two different applications; one of
them was a nasal-cavity attached sensor that can measure the temperature variation of air-flow using
a thermochromic pigment, and the other one, was an abdomen attached sensor that can measure
abdominal circumference change using a sensing part composed of polymethyl-methacrylate tubes,
a mirror, and a spring. They measured the modulated light guided towards the detectors in the
MRI control room via optical fibers due to the respiratory movements of the patient in the MR room;
the respiratory signals of the optical fiber respiration sensors are compared with those of the BIOPAC®

system. The authors verified that respiratory signals can be obtained without deteriorating the MR
image. The intensity of the reflected light was changed by the variation of the distance between the
mirror and the distal end of the plastic optical fiber according to abdominal movement.

Tosi et al. [146] proposed a FBG array-based sensing probe installed on a device for radiofrequency
thermal ablation (RFTA). The probe was made of five FBGs with 0.5 cm active area and 1 cm spacing,
to provide quasi-distributed thermal pattern measurements. Multiple experiments have been conducted
on porcine liver, reporting a temperature pattern along the ablation axis. Thermal maps allowed
quantifying of the exposure of each part of the tissue to the high temperature field and provided a
comparison between different procedures. The achieved results showed the possibility of embedding
FBG arrays on ablation devices in order to dynamically estimate the efficiency of the procedure and
predict the ablation output. Such results have significant importance for hepatic tumors, in which the
electrical properties of the liver limit the RFTA to tumors up to ~3 cm in size.
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The same team [147], in a similar work, proposed a distributed temperature sensor (DTS) with
a submillimeter spatial resolution for the monitoring of RFTA in porcine liver tissue. The DTS
demodulates the chaotic Rayleigh backscattering pattern with an interferometric setup to obtain the
real-time temperature distribution. A measurement chamber has been set up with the fiber crossing the
tissue along different diameters. Several experiments have been carried out measuring the space-time
evolution of temperature during RFTA. The work showed cases that had temperature monitoring in
RFTA with unprecedented spatial resolution and that which can be exportable to in vivo measurements;
the acquired data can be particularly useful for the validation of RFTA computational models.

Ding et al. [148] and Chen et al. [149] proposed one of the first applications of FBG for thermometry
in laser ablation; they developed a distributed FBG sensor with length of 10 mm, encapsulated within a
glass capillary, and used it to monitor temperature distribution in an ex vivo liver and an in vivo mouse.
The authors assumed that uniform grating turns into chirped grating in a non-uniform temperature
field. The algorithm implemented was useful to dynamically control the temperature of the target at
43 ◦C; the temperature at the edge and outside the target at 38 ◦C. FBGs also have been included in
numerous studies involving temperature monitoring during cryoablation. The research team of Samset
started working on the development of FBG sensors for temperature monitoring in tissues undergoing
cryoablation, and afterwards used this sensor to calibrate MR thermometry [150]. The distributed
sensor was an optical fiber (cladding diameter 125 µm) embedding 10 FBGs. The center-to-center
separation between the sensing elements was 6.5 mm and thus the total length of the sensor array was
58.5 mm. Two arrays were fabricated and mounted inside polyimide and titanium tubes, both materials
having magnetic susceptibility close to that of the tissue, with a total outer diameter of 1.4 mm.
The sensor was calibrated in the range −189.5 ◦C to 100 ◦C. Mechanical stability and MRI compatibility
were acceptable, allowing routine use.

Zou et al [151] proposed a miniature fiber optic temperature sensor based on the FP interferometric
principle, which was specifically designed, fabricated, packaged, and tested for intravascular blood
temperature measurements during thermal angioplasty. The FP fiber optic sensor was fabricated by
using chemical etching and thermal deposition, and compared with other fiber optic temperature
sensors. The FP fiber optic sensor was notable for its remote-sensing capability and high-spatial
resolution point measurement. An in-vivo experiment was performed by using a swine model.
During the animal test, intravascular blood temperature was obtained at different locations in the
coronary artery to demonstrate the capability of the fiber optic sensor. In order to demonstrate the
sensor’s usage in angioplasty applications, the rise and drop of local intravascular blood temperatures
were successfully captured by the fiber optic sensor.

Najafi et al. [152] proposed and tested SmartSox, designed and made by Novinoor LLC
(Wilmette, IL, USA), which is based on highly flexible fiber optics embedded in a comfortable standard
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sock, in patients with diabetic peripheral neuropathy. Using an optical amplifier and signal processing,
SmartSox used five embedded highly flexible and thin (<0.3 mm) fiber optic sensors based on fiber Bragg
gratings (FBGs) that were woven into a comfortable sock to measure plantar temperature and pressure
under the first metatarsal head (MTH), fifth MTH, midfoot, and hind foot. This allows simultaneous
measurements of temperature, plantar pressure, and toes range of motion, which makes it suitable
for objectively assessing lower extremity regions at risk. The authors of this work found a moderate
agreement in foot temperature changes between SmartSox and an infrared thermal camera [153].

Fook et al. [154] presented a novel approach of using fibers to provide the actual sensors itself
used Internet of Things (IoT) applications developed to assist medical staff in caring for residents in
nursing homes. Specially designed and packaged highly sensitive FBG-based optical fiber sensors
are developed for use in a monitoring and alert system that oversees residents continuously without
disturbing them, and automatically alerts medical staff during emergencies through mobile devices
such as mobile phones or tablets [155]. The system is able to monitor temperature and detect the onset
of high fever in residents. An IoT FBG-based sensor button was also developed to allow the residents
to call or alert medical staff when necessary. The monitoring and alert system was primarily based on
FBG technology. Using FBG technology, uniquely designed FBG sensors are packaged into IoT devices
such as IoT sensor mat, IoT thermometer, and IoT button. They term the packaged Fiber-based IoT
sensors as F-IoT devices because they used fibers to provide the actual sensors itself. In this kind of
project, the sensitivity of the sensor mat can be adjusted based on sensor design, number of sensors,
placement, and packaging material. A sleeve-based FBG design was selected by the authors due to its
robustness and high sensitivity. Eight sensors were used and placed into two rows. The authors of this
work took into account user comfort when designing the mat. The FBG sensor array was packaged
onto a polycarbonate sheet. The final packaged IoT sensor mat was placed on top of mattresses to
monitor vital parameters of residents in nursing homes.

3. Final Remarks

This paper reviewed achievements in the area of temperature optical fiber sensors, where different
configurations of the sensors reported from 2015 to 2020 were presented and their possible potential
for biomedical applications studied.

In view of this review article, we can mention that the use of FBG sensors and spatially distributed
sensing techniques is assuming high relevance for non-intrusive monitoring of temperature and other
clinically relevant parameters, since they retain the mechanical stability of the optical fiber and also
avoid referencing issues.

Temperature is a vital sign and a crucial and habitually monitored parameter in medicine; it is
measured using a variety of technologies in all clinical settings, including surgeries, oncology treatment,
and intensive care units.

Thermocouple and thermistor devices are widely used for temperature measurements in clinical
practice. However, due to the presence of metallic conductors, they are inappropriate for clinical
procedures involving, for instance, incident radio frequency or microwave fields. Thus, it is important
that new optical fiber technologies are developed, preferably portable temperature sensing platforms
that offer low costs, small sizes, and easy-to-use configuration; and can use artificial intelligence for
faster data analysis.

The main advantages of optical fiber sensors for medical solutions are their small dimensions,
chemical inertness, immunity to electromagnetic fields, rapid response for real-time monitoring,
and ability to be embedded into materials.
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