
sensors

Article

Grid-Based Mobile Robot Path Planning Using
Aging-Based Ant Colony Optimization Algorithm in
Static and Dynamic Environments

Fatin Hassan Ajeil 1 , Ibraheem Kasim Ibraheem 1 , Ahmad Taher Azar 2,3,* and
Amjad J. Humaidi 4

1 Department of Electrical Engineering, College of Engineering, University of Baghdad, Baghdad 10001, Iraq;
fatin.hassan0@gmail.com (F.H.A.); ibraheemki@coeng.uobaghdad.edu.iq (I.K.I.)

2 Robotics and Internet-of-Things Lab (RIOTU), Prince Sultan University, Riyadh 11586, Saudi Arabia
3 Faculty of Computers and Artificial Intelligence, Benha University, Benha 13518, Egypt
4 Department of Control and Systems Engineering, University of Technology, Baghdad 10001, Iraq;

601116@uotechnology.edu.iq
* Correspondence: aazar@psu.edu.sa or ahmad.azar@fci.bu.edu.eg

Received: 7 March 2020; Accepted: 26 March 2020; Published: 28 March 2020
����������
�������

Abstract: Planning an optimal path for a mobile robot is a complicated problem as it allows the
mobile robots to navigate autonomously by following the safest and shortest path between starting
and goal points. The present work deals with the design of intelligent path planning algorithms for
a mobile robot in static and dynamic environments based on swarm intelligence optimization. A
modification based on the age of the ant is introduced to standard ant colony optimization, called
aging-based ant colony optimization (ABACO). The ABACO was implemented in association with
grid-based modeling for the static and dynamic environments to solve the path planning problem.
The simulations are run in the MATLAB environment to test the validity of the proposed algorithms.
Simulations showed that the proposed path planning algorithms result in superior performance by
finding the shortest and the most free-collision path under various static and dynamic scenarios.
Furthermore, the superiority of the proposed algorithms was proved through comparisons with other
traditional path planning algorithms with different static environments.

Keywords: mobile robot; path planning; aging-based ant colony optimization (ABACO); dynamic
environment; grid-based modeling

1. Introduction

Robot navigation is the process of guiding a mobile robot toward the destination to perform
complex tasks, such as cleaning. There are two approaches for navigation: reactive navigation and
map-based navigation. In the first approach, the mobile robot has no map or any idea of where it is.
The mobile robot uses random motion and acquires the information about the environment only from
the contact sensor, i.e., the machine has the ability of sensing and action. On the other hand, map-based
navigation is the process of creating a path for the mobile robot to move from one place to another that
satisfies some criteria, such as the shortest distance and/or the lowest cost. The machine is able to sense,
plan, and act, which is called path planning [1]. Several studies have been conducted to cover the
problem of route planning. A grid map and improved a visible graph based on global path planning
using A* algorithm was pointed out in Reference [2] and the improved A* algorithm, i.e., by considering
the influence of parent node on the heuristic function of the A* algorithm, was adopted in Reference [3]
for autonomous parade robot in the indoor environment. In Reference [4], the memory-efficient A*
(MEA*) algorithm generated a shorter path with less time and less memory requirement when in a grid

Sensors 2020, 20, 1880; doi:10.3390/s20071880 www.mdpi.com/journal/sensors

http://www.mdpi.com/journal/sensors
http://www.mdpi.com
https://orcid.org/0000-0002-0310-7423
https://orcid.org/0000-0001-7009-3634
https://orcid.org/0000-0002-7869-6373
https://orcid.org/0000-0002-9071-1329
http://dx.doi.org/10.3390/s20071880
http://www.mdpi.com/journal/sensors
https://www.mdpi.com/1424-8220/20/7/1880?type=check_update&version=3

Sensors 2020, 20, 1880 2 of 26

environment. A finite resistive grid was implemented in Reference [5] by converting the environment
with obstacles into nodes and edges, and the optimal path was obtained by computing the least resistive
path between the start and goal position. An improved version of the genetic algorithm (GA), based on
special selection and the crossover function, led to a reduced computation time of GA. In addition to the
shortest global path in hexagonal grid modelling, which was investigated in Reference [6], the shortest
and smoothest safest path in static and dynamic environment was obtained using the Hybrid PSO-MFB
algorithm and a local search, in addition to the obstacle detection and avoidance (ODA) technique, as
presented in Reference [7]. Researchers in Reference [8] developed an ant colony optimization (ACO)
path planner by improving the probability of selecting the optimal path to establish target attraction
and proposed a wolf colony to update pheromones for an explosion proof robot (EPR). A concurrent
grid-based implementation of a dynamic programming algorithm was presented in Reference [9]. In
Reference [10], the flower pollination algorithm (FPA) was implemented as partially guided Q learning
to solve a low convergence problem. The suggested technique implemented was a path planner for a
three-wheel mobile robot. The interpolation-based path planning in a grid environment is presented
in Reference [11]. Adaptive particle swarm optimization (APSO) used in Reference [12] was used to
optimize the objective function of a mobile robot, which is the distance between robot to goal and
obstacle. In Reference [13], the authors hybridized the artificial potential field (APF) algorithm with
an enhanced genetic algorithm (EGA) to find the shortest and smoothest path for a multi-robot. An
improved crossover operator based on a genetic algorithm implemented in Reference [14] was used to
find the shortest and least energy of mobile robots in a static environment. The Probabilistic Roadmap
(PRM) used in Reference [15] was used to construct an initial feasible short path then convert the sharp
corners into a smooth corner. The fuzzy logic controller ensures the smoothest path by adjusting the
heading angle. Authors in Reference [16] proposed a method to solve the path planning problem
in a grid-based environment. This method included two stages: the first stage involved generation
of an initial feasible path from the start point to goal point. To create this initial path, suppose the
robot moves straight from its start point to its goal and turns near any obstacle it encounters in the
straight line and returns to a straight line. The second stage implemented a bee colony algorithm
to optimize an initial path. Additionally, a path planning-based static-grid environment using the
ACO algorithm with different complexities was presented in Reference [17]. An energy-efficient
routing algorithm based on information collected by a mobile agent in uneven clustering for wireless
sensor networks (WSNs) is presented in Reference [18]. The PSO and GA adopt a schedule moving
trajectory for the mobile sink for handling problems of hot spots in large-scale WSN, as implemented
in Reference [19]. Authors in Reference [20] improve the bat algorithm in three ways by accelerating
convergence processes of the bat algorithm via enhanced APF, enhancing the adaptive inertia weight
and avoiding trapping in the local minimum. The shortest distance of a mobile robot in an urban area
with traffic-light delay was investigated in Reference [21]. The self-organizing migration algorithm
was implemented as a learning method for fuzzy cognitive map in Reference [22]. The gravitational
search algorithm was adopted in a partially unknown static and dynamic environment to the final
optimal path in Reference [23]. To balance between efficiency and effectiveness, the probabilistic model
was used, then an estimation of the distributed algorithm and composed exhaustive search were used
in Reference [24]. Hybridized Compact Form Dynamic Linearization (CFDL)-Proportional-Derivative
Takagi-Sugeno Fuzzy Algorithm (PDTSFA) and Virtual Reference Feedback Tuning VRFT) proposed in
Reference [25] have been used to produce a data-driven algorithm called CFDL-PDTSFA-VFET, where
the parameters of CFDL-PDTSFA are optimally tuned by VFET in a model free manner.

The main objective of this work is to investigate a path planning algorithm based on aging ant
colony optimization in a dynamic-grid environment as an extension of the work in [17], where the
proposed methodology was implemented in a static-grid environment.

The current paper is structured as follows. First, Section 2 introduces the problem statement
and environment modelling. Section 3 presents the swarm-based optimization. The methodologies
proposed for mobile robot path planning in this work are introduced in Section 4, while in Section 5, a

Sensors 2020, 20, 1880 3 of 26

set of simulation results are presented to demonstrate the effectiveness of the proposed methodology,
as compared with other previous works. Section 6 presents the conclusion of the obtained results.

2. Problem Statement and Preliminaries

Suppose the mobile robot (MR) moves from the start position (SP) to the goal position (GP) in an
environment with static and dynamic obstacles to obtain certain performance criteria. The objective of
a path planner is to find the optimal/near-optimal path for the mobile robot without any collision with
obstacles existing in the environment.

2.1. Grid-Based Environment Modelling

The first step of mobile robot path planning is to establish an environment model for the
2-Dimensional (2-D) workspace of the mobile robot. Grids are used to represent the mobile robot
workspace as equal square cells. Each cell is either traversable, i.e., logic 0, or obstructed by an obstacle,
i.e., logic 1, as shown in Figure 1. Each cell is identified by a unique number, called the “address”. The
address of the cells is defined by two methods. The first method is the 2D grid coordinate (r, c), where
the origin of the grid coordinate is the cell in the top left of the grid, with the first location having the
address (1, 1). The second method is the serial number (SN) method, where the addressing of the cells
begins from the left top cell and continues from left to right and top to bottom. The serial number for
each cell can also be converted to its equivalent (x, y) coordinate, as shown in Figure 2.

The mapping from the (r, c) grid to the serial number id given in Equations (1)–(3) and from the
(x, y) coordinates to the serial number given in Equations (4)–(6)

r =
⌈SN

ct

⌉
(1)

c =


⌈

SN
ct

⌉
, R , 0

ct , R = 0
(2)

SN = c + ct(r− 1) (3)

x =

mod
(

SN
xmax

)
, mod , 0

xmax − 0.5 , mod = 0
(4)

y = ymax + 0.5−
⌈ SN

xmax

⌉
(5)

SN = (x + 0.5) + xmax(ymax − (y + 0.5)) (6)

where d.e is the least integer function, ct is the number of columns of the matrix, R is the remainder,
xmax is the end of the abscissa, and ymax is the end of the y-coordinate.

Sensors 2020, 20, 1880 4 of 26

Sensors 2020, 20, x FOR PEER REVIEW 3 of 27

2. Problem Statement and Preliminaries

Suppose the mobile robot (MR) moves from the start position (SP) to the goal position (GP) in
an environment with static and dynamic obstacles to obtain certain performance criteria. The
objective of a path planner is to find the optimal/near-optimal path for the mobile robot without any
collision with obstacles existing in the environment.

2.1. Grid-Based Environment Modelling

The first step of mobile robot path planning is to establish an environment model for the two-
dimension (2-D) workspace of the mobile robot. Grids are used to represent the mobile robot
workspace as equal square cells. Each cell is either traversable, i.e., logic 0, or obstructed by an
obstacle, i.e., logic 1, as shown in Figure 1. Each cell is identified by a unique number, called the
“address”. The address of the cells is defined by two methods. The first method is the 2D grid
coordinate (r, c), where the origin of the grid coordinate is the cell in the top left of the grid, with the
first location having the address (1, 1). The second method is the serial number (SN) method, where
the addressing of the cells begins from the left top cell and continues from left to right and top to
bottom. The serial number for each cell can also be converted to its equivalent (x, y) coordinate, as
shown in Figure 2.

The mapping from the (r, c) grid to the serial number id given in Equations (1)–(3) and from the
(x, y) coordinates to the serial number given in Equations (4)–(6) 𝑟 = ඄𝑆𝑁𝑐௧ ඈ (1)

𝑐 = ቐ඄𝑆𝑁𝑐௧ ඈ , 𝑅 ≠ 0𝑐௧ , 𝑅 = 0 (2)

Figure 1. Grid-based Environment.

𝑆𝑁 = 𝑐 + 𝑐௧(𝑟 − 1) (3)

𝑥 = ቐ𝑚𝑜𝑑 ൬ 𝑆𝑁𝑥௠௔௫൰ , 𝑚𝑜𝑑 ≠ 0𝑥௠௔௫ − 0.5 , 𝑚𝑜𝑑 = 0
(4)

𝑦 = 𝑦௠௔௫ + 0.5 − ඄ 𝑆𝑁𝑥௠௔௫ඈ (5)

𝑆𝑁 = (𝑥 + 0.5) + 𝑥௠௔௫(𝑦௠௔௫ − (𝑦 + 0.5)) (6)

where ⌈. ⌉ is the least integer function, i.e., the cell function, 𝑐௧is the number of columns of the matrix,
R is the remainder, 𝑥௠௔௫ is the end of the abscissa, and 𝑦௠௔௫ is the end of the y-coordinate.

Figure 1. Grid-based Environment.Sensors 2020, 20, x FOR PEER REVIEW 4 of 27

(a) (b)

Figure 2. Correspondence identification types: (a) serial number to the grid; (b) serial number to (x,
y) coordinates.

2.2. Performance Criteria

The shortest distance is the main objective for a mobile robot to move from its start position to
its goal position, provided that it is a safe path, i.e., the mobile robot moves without colliding with
obstacles. This criterion is given by:

𝑓(𝑥, 𝑦) = ෍ ඥ(𝑥௜ାଵ − 𝑥௜)ଶ + (𝑦௜ାଵ − 𝑦௜)ଶ௡ିଵ
௜ୀଵ (7)

𝑔 = 1𝑓(𝑥, 𝑦) + ℇ (8)

where n is the number of steps that the mobile robot needs to navigate toward its goal, g is the fitness
of the solution, and ℇ is a small number, e.g., ℇ = 0.001, used to prevent a division by 0. In every
step, the mobile robot can move from its current location to another one of its surrounding free cells,
as shown in Figure 3.

Figure 3. Possible path direction.

The optimization problem can be defined as:

Figure 2. Correspondence identification types: (a) serial number to the grid; (b) serial number to (x,
y) coordinates.

2.2. Performance Criteria

The shortest distance is the main objective for a mobile robot to move from its start position to
the goal position, provided that it is a safe path, i.e., the mobile robot moves without colliding with
obstacles. This criterion is given by:

f (x, y) =
n−1∑
i=1

√
(xi+1 − xi)

2 + (yi+1 − yi)
2 (7)

g =
1

f (x, y) + ε
(8)

where n is the number of steps that the mobile robot needs to navigate toward its goal, g is the fitness
of the solution, and ε is a small number, e.g., ε = 0.001, used to prevent a division by 0. In every step,
the mobile robot can move from its current location to another one of its surrounding free cells, as
shown in Figure 3.

Sensors 2020, 20, 1880 5 of 26

Sensors 2020, 20, x FOR PEER REVIEW 4 of 27

(a) (b)

Figure 2. Correspondence identification types: (a) serial number to the grid; (b) serial number to (x,
y) coordinates.

2.2. Performance Criteria

The shortest distance is the main objective for a mobile robot to move from its start position to
its goal position, provided that it is a safe path, i.e., the mobile robot moves without colliding with
obstacles. This criterion is given by:

𝑓(𝑥, 𝑦) = ෍ ඥ(𝑥௜ାଵ − 𝑥௜)ଶ + (𝑦௜ାଵ − 𝑦௜)ଶ௡ିଵ
௜ୀଵ (7)

𝑔 = 1𝑓(𝑥, 𝑦) + ℇ (8)

where n is the number of steps that the mobile robot needs to navigate toward its goal, g is the fitness
of the solution, and ℇ is a small number, e.g., ℇ = 0.001, used to prevent a division by 0. In every
step, the mobile robot can move from its current location to another one of its surrounding free cells,
as shown in Figure 3.

Figure 3. Possible path direction.

The optimization problem can be defined as:

Figure 3. Possible path directions.

The optimization problem can be defined as:
“Find the shortest distance between the start point (SP) and the goal point (GP), such that the above criteria

g (Equation (8)) is maximized”.

2.3. Obstacles Movement

In this case, the obstacles change their location continuously at each time step, and, in dynamic
environments, the position of the obstacle (xobs, yobs) is updated according to,

xobs = xobs + vobs × cosθobs (9)

yobs = yobs + vobs × sinθobs (10)

where vobs is the velocity of obstacles and θobs is the slope of the linear motion.

3. Swarm-Based Optimization Algorithms

3.1. Ant Colony Optimization

Swarm intelligence is based on nature-inspired behavior and is successfully applied to optimize
problems in a variety of applications. The ant colony optimization (ACO) algorithm is a stochastic-based
optimization technique that replicates the behavior of real ants when searching for food, invented by
Dorigo [26]. It discovers the shortest route from an ant nest to food places through the interchange of
information collaboration [27]. The ants move along the same path by following one another. This
is because every ant leaves a chemical substance called pheromone while moving on the path. The
other ants sense the intensity of the pheromone and follow the path with a higher concentration of
pheromone. This is their tactic to find an optimized path. Initially, the ants wander randomly to find
their way to the destination. On their back tour, the ants sense the pheromone intensity and choose
the path with a higher concentration of pheromone. The pheromone evaporates with time and hence
the concentration of pheromone would be higher along the shortest path as the time taken to cover
the shortest path would be minimal as compared to other paths. Hence, almost every ant would be
attracted by the higher intensity of the pheromone along the shortest path and selects the optimized
path. The philosophy of ant behavior can be summarized as follows.

Sensors 2020, 20, 1880 6 of 26

3.1.1. Ant Searching Behavior

For the kth ant at position i to move to the next node j, the following probability formula is
used [28,29]:

Pi j(k) =
ταi j(k) ∗ η

β
i j(k)∑S

k=1 τ
α
i j ∗ η

β
i j

(11)

where α and β are the degrees of importance of pheromones and heuristic function, respectively, τi j is
the pheromone concentration on the path between i and j, and ηi j is the heuristic function, i.e., which is
equivalent to the reciprocal of the distance between the i and j positions.

3.1.2. Path Retracing and Pheromone Updating

After ants complete their tour, the pheromone trial values are updated according to [30]:

τi j(t + 1) = (1− ρ)τi j(t) + ∆τi j (12)

where ρ is the pheromone decay parameter range ∈ (0, 1) to mimic the evaporation of the pheromone
and ∆τi j is the amount of pheromones added by all the ants.

∆τi j =
N∑

k=1

∆τk
i j (13)

∆τk
i j =

Q
Lk

(14)

where ∆τk
i j is the amount of pheromones added by the kth ant, Q is the pheromone update constant, N

is the total number of ants in the nest, and Lk is the length of the path traveled by the kth ant.

3.2. Aging-Based Ant Colony Optimization (ABACO)

In standard ACO, the amount of pheromone deposits by the ants is assumed to be constant.
Pheromone control can be used to reduce the influence of non-optimal solutions and encourages the
exploration of new paths that are near-optimal or optimal. Bad experiments can also be reduced by
controlling the amount of pheromones for each ant according to its age. Ant aging is based on the
rationale that old ants are less successful in locating the optimal paths, since they take a longer time to
reach their destination. Both aging and evaporation encourage the discovery of new paths that are
previously non-optimal. The amount of pheromone released by each ant is given by Equation (13), and
Equation (14) indicates that ∆τi j(k) varies according to the age of the ant. The inclusion of the age of
ants is suggested by allocating random values of Q to different ants. This is reflected in the updated
pheromones in Equation (14), being different for each ant. Hopefully, the assignment process for the
random values of Q is done in such a way that the ant with the shortest path, i.e., the younger ant,
gets a higher value of Q, which in turn has a higher value of pheromone. In contrast, the ant with the
longest path, i.e., the old ant, gets a lower pheromone update, which means it is assigned a lower value
of Q. Figure 4 shows the flow chart of the aging-based ant colony optimization (ABACO) algorithm.

Sensors 2020, 20, 1880 7 of 26

Sensors 2020, 20, x FOR PEER REVIEW 6 of 27

∆𝜏௜௝ = ෍ ∆𝜏௜௝௞ே
௞ୀଵ (13)

∆𝜏௜௝௞ = 𝑄𝐿௞ (14)

where ∆𝜏௜௝௞ is the amount of pheromones added by the kth ant, 𝑄 is the pheromone update constant, 𝑁 is the total number of ants in the nest, and 𝐿௞ is the length of the path traveled by the kth ant.

3.2. Aging-Based Ant Colony Optimization (AACO)

In standard ACO, the amount of pheromone deposits by the ants is assumed to be constant.
Pheromone control can be used to reduce the influence of non-optimal solutions and encourages the
exploration of new paths that are near-optimal or optimal. Bad experiments can also be reduced by
controlling the amount of pheromones for each ant according to its age. Ant aging is based on the
rationale that old ants are less successful in locating the optimal paths, since they take a longer time
to reach their destination. Both aging and evaporation encourage the discovery of new paths that are
previously non-optimal. The amount of pheromone released by each ant is given by Equation (13),
and Equation (14) indicates that ∆𝜏௜௝(𝑘) varies according to the age of the ant. The inclusion of the
age of ants is suggested by allocating random values of Q to different ants. This is reflected in the
updated pheromones in Equation (14), being different for each ant. Hopefully, the assignment
process for the random values of Q is done in such a way that the ant with the shortest path, i.e., the
younger ant, gets a higher value of Q, which in turn has a higher value of pheromone. In contrast,
the ant with the longest path, i.e., the old ant, gets a lower pheromone update, which means it is
assigned a lower value of Q. Figure 4 shows the flow chart of the aging ant colony optimization
(AACO) algorithm.

Figure 4. Flow chart of aging ant colony optimization (AACO).

The optimization problem of finding the shortest distance will be solved by AACO, which will
be explained next in this paper.

Figure 4. Flow chart of an aging-based ant colony optimization (ABACO) algorithm.

The optimization problem of finding the shortest distance will be solved by ABACO, which will
be explained next in this paper.

3.3. Algorithmic Iteration Concepts and Feasible Solutions

In the ABACO algorithm, the solution from the start point to the goal point through various layers
in between represents one complete iteration. Each ant can select one cell in each layer in accordance
with the state transition rule given by Equation (11). Figure 5 depicts three iterations with two ants;
each ant constructs its solution, i.e., a series of nodes selected by each ant from the start point (SP) to
the goal point (GP). The best path is obtained after a certain number of iterations with a higher amount
of pheromone, i.e., the shaded cells, i.e., the green cells, represent the best solution.

Sensors 2020, 20, x FOR PEER REVIEW 7 of 27

3.3. Algorithmic Iteration Concepts and Feasible Solutions

In the AACO algorithm, the solution from the start point to the goal point through various layers
in between represents one complete iteration. Each ant can select one cell in each layer in accordance
with the state transition rule given by Equation (11). Figure 5 depicts three iterations with two ants;
each ant constructs its solution, i.e., a series of nodes selected by each ant from the start point (SP) to
the goal point (GP). The best path is obtained after a certain number of iterations with a higher
amount of pheromone, i.e., the shaded cells, i.e., the green cells, represent the best solution.

Figure 5. Solution construction in ant colony optimization (ACO) algorithm.

4. Proposed Path Planning Algorithm

Since the mobile robot is a physical body, the obstacles are expanded by the radius of the mobile
robot 𝑟ெோ , i.e., to take into account the actual size of the mobile robot, and then the mobile robot is
considered as a point. Figure 6 illustrates the expansion of the obstacle size. The flowchart for a
mobile robot path planning in grid static and dynamic environments using AACO is shown in
Figures 7 and 8, respectively.

(a)

(b)

Figure 6. Expanding obstacles size corresponding to mobile robot size: (a) physical robot; (b) grid
obstacle.

Figure 5. Solution construction in an ant colony optimization (ACO)-based path planning algorithm.

Sensors 2020, 20, 1880 8 of 26

4. Proposed Path Planning Algorithm

Since the mobile robot is a physical body, the obstacles are expanded by the radius of the mobile
robot rMR, i.e., to take into account the actual size of the mobile robot, and then the mobile robot is
considered as a point. Figure 6 illustrates the expansion of the obstacle size. The flowchart for a mobile
robot path planning in grid static and dynamic environments using ABACO is shown in Figures 7
and 8, respectively.

Sensors 2020, 20, x FOR PEER REVIEW 7 of 27

3.3. Algorithmic Iteration Concepts and Feasible Solutions

In the AACO algorithm, the solution from the start point to the goal point through various layers
in between represents one complete iteration. Each ant can select one cell in each layer in accordance
with the state transition rule given by Equation (11). Figure 5 depicts three iterations with two ants;
each ant constructs its solution, i.e., a series of nodes selected by each ant from the start point (SP) to
the goal point (GP). The best path is obtained after a certain number of iterations with a higher
amount of pheromone, i.e., the shaded cells, i.e., the green cells, represent the best solution.

Figure 5. Solution construction in ant colony optimization (ACO) algorithm.

4. Proposed Path Planning Algorithm

Since the mobile robot is a physical body, the obstacles are expanded by the radius of the mobile
robot 𝑟ெோ , i.e., to take into account the actual size of the mobile robot, and then the mobile robot is
considered as a point. Figure 6 illustrates the expansion of the obstacle size. The flowchart for a
mobile robot path planning in grid static and dynamic environments using AACO is shown in
Figures 7 and 8, respectively.

(a)

(b)

Figure 6. Expanding obstacles size corresponding to mobile robot size: (a) physical robot; (b) grid
obstacle.

Figure 6. Expanding obstacles size corresponding to the mobile robot size: (a) physical robot; (b) grid
shaped obstacle.

Sensors 2020, 20, x FOR PEER REVIEW 8 of 27

Figure 7. Flowchart of mobile robot path planning in a static environment using AACO. Figure 7. Flowchart of mobile robot path planning in a static environment using ABACO algorithm.

Sensors 2020, 20, 1880 9 of 26Sensors 2020, 20, x FOR PEER REVIEW 9 of 27

Figure 8. Flowchart of mobile robot path planning in a dynamic environment using AACO.

5. Simulation Results

5.1. Effect of Design Parameters on AACO

This section presents the influence of design parameters: number of iteration, ants, and
evaporation factor (𝜌) on a global search. The results were applied to 18 × 18 (m2) and 28 × 28 (m2),
as given below:

5.1.1. Number of Iterations

From Figure 9a, it is evident that the algorithm found an optimal path with an increase in the
total number of iterations. As shown in Figure 9a, at iteration (70), the path lengths were (26.3848 m)
and (28.5563 m) for 18 × 18 (m2) and 28 × 28 (m2) map sizes, respectively. Additionally, the whole time
required is increased as shown in Figure 9b.

Figure 8. Flowchart of mobile robot path planning in a dynamic environment using ABACO algorithm.

5. Simulation Results

5.1. Effect of Design Parameters on ABACO

This section presents the influence of design parameters: number of iteration, ants, and evaporation
factor (ρ) on a global search. The results were applied to 18 × 18 (m2) and 28 × 28 (m2), as given below:

5.1.1. Number of Iterations

From Figure 9a, it is evident that the algorithm found an optimal path with an increase in the total
number of iterations. As shown in Figure 9a, at iteration (70), the path lengths were (26.3848 m) and
(28.5563 m) for 18 × 18 (m2) and 28 × 28 (m2) map sizes, respectively. Additionally, the whole time
required is increased as shown in Figure 9b.

Sensors 2020, 20, 1880 10 of 26

Sensors 2020, 20, x FOR PEER REVIEW 10 of 27

(a)

(b)

Figure 9. Effect of number of iterations on (a) path length and (b) execution time for environment 1

and environment 2.

5.1.2. Number of Ants

By changing the total number of ants in the colony from (10) to (100), as shown in Figure 10a,

the best path lengths obtained for 18 × 18 (m2) map and 28 × 28 (m2) were (26.3848 m) and (28.5563

m), respectively, with 40 ants in the colony, as shown in Figure 10a,b. In addition, the total time

required increased, as shown in Figure 10b.

Figure 9. Effect of the number of iterations on (a) path length and (b) execution time for environment 1
and environment 2.

5.1.2. Number of Ants

By changing the total number of ants in the colony from (10) to (100), as shown in Figure 10a, the
best path lengths obtained for 18 × 18 (m2) map and 28 × 28 (m2) were (26.3848 m) and (28.5563 m),
respectively, with 40 ants in the colony, as shown in Figure 10a,b. In addition, the total time required
increased, as shown in Figure 10b.

Sensors 2020, 20, 1880 11 of 26

Sensors 2020, 20, x FOR PEER REVIEW 11 of 27

(a)

(b)

Figure 10. Effect of the number of ants on (a) path length and (b) execution time for environment 1

and environment 2.

5.1.3. Evaporation Factor (ρ)

The best value of evaporation factor (𝜌) was between (0.3) and (0.7) for all dimensions of the

searching space, as shown in Figure 11a, and had no effect on the computation time, as depicted in

Figure 11b.

Figure 10. Effect of the number of ants on (a) path length and (b) execution time for environment 1 and
environment 2.

5.1.3. Evaporation Factor (ρ)

The best value of evaporation factor (ρ) was between (0.3) and (0.7) for all dimensions of the
searching space, as shown in Figure 11a, and had no effect on the computation time, as depicted in
Figure 11b.

Sensors 2020, 20, 1880 12 of 26
Sensors 2020, 20, x FOR PEER REVIEW 12 of 27

(a)

(b)

Figure 11. Effect of evaporation factor (ρ) on (a) path length and (b) execution time for environment

1 and environment 2.

5.2. Static Environment with Grid-Based Modeling

The AACO algorithm applied for path planning plans the entire path from the start point up to

the endpoint in one complete iteration.

Figure 11. Effect of the evaporation factor (ρ) on (a) path length and (b) execution time for environment
1 and environment 2.

Sensors 2020, 20, 1880 13 of 26

5.2. Static Environment with Grid-Based Modeling

The ABACO algorithm applied for path planning plans the entire path from the start point up to
the endpoint in one complete iteration.

5.2.1. Grid-Based Static Environment 1

In this experiment, the size of the search space was (18 × 18 m2) per grid cell, and there were
eight obstacles with different sizes and locations, as shown in Table 1. After executing the ABACO
algorithm 10 times, the shortest path length was (26.3848 m) at iteration (54) with different execution
times, ranging from (0.2255 min) to (0.3057 min). The best path obtained (see Figure 12a) and the
convergence curve for this environment (See Figure 12b) are shown in Figure 12a,b respectively.

Table 1. Grid-based static environment 1 setting.

Point Type Position (row, col)

SP (1, 1)
GP (18, 18)
rMR 0.5

Obs1 (3, 4)
Obs2 (2, 11)
Obs3 (7, 8:11)
Obs4 (9, 2)
Obs5 (10, 10)
Obs6 (6, 16)
Obs7 (13, 3:6)
Obs8 (15, 14:16)

Sensors 2020, 20, x FOR PEER REVIEW 13 of 27

5.2.1. Grid-Based Static Environment 1

In this experiment, the size of the search space was (18 × 18 m2) per grid cell, and there were
eight obstacles with different sizes and locations, as shown in Table 1. After executing the AACO
algorithm 10 times, the shortest path length was (26.3848 m) at iteration (54) with different execution
times, ranging from (0.2255 min) to (0.3057 min). The best path obtained (see Figure 12a) and the
convergence curve for this environment (See Figure 12b) are shown in Figure 12a,b respectively.

Table 1. Grid-based static environment 1 setting.

Point Type Position (row, col) SP (1, 1) GP (18, 18) 𝑟ெோ 0.5 Obsଵ (3, 4) Obsଶ (2, 11) Obsଷ (7, 8:11) Obsସ (9, 2) Obsହ (10, 10) Obs଺ (6, 16) Obs଻ (13, 3:6) Obs଼ (15, 14:16)

(a)

Figure 12. Cont.

Sensors 2020, 20, 1880 14 of 26Sensors 2020, 20, x FOR PEER REVIEW 14 of 27

(b)

Figure 12. The best path achieved within the AACO grid-based static environment 1.

5.2.2. Grid-Based Static Environment 2

In this experiment, the size of the search space was (28 × 28 m2) per grid cell, and there were 14
obstacles with different sizes and locations, as shown in Table 2.

Table 2. Grid-based static environment 2 setting.

Point Type Position (row, col) SP (26, 6) GP (5, 20) 𝑟ெோ 0.5 Obsଵ (3, 4) Obsଶ (2, 10:15) Obsଷ (5, 22) Obsସ (7, 17:18) Obsହ (9:10, 4:5) Obs଺ (10:12, 10:12) Obs଻ (12:19, 3) Obs଼ (16, 16) Obsଽ (20:27, 13) Obsଵ଴ (24, 15) Obsଵଵ (20:22, 20:22) Obsଵଶ (24, 6) Obsଵଷ (27, 25) Obsଵସ (11:12, 18:26)

After running AACO 10 times, the shortest path length was found to be (28.5563 m) at iteration
(48), with different execution times ranging from (0.8231 min) to (0.875 min). The best path obtained

Figure 12. The results of the proposed ABACO-based path planning algorithm in grid-based static
environment 1, (a) the best path achieved, (b) the convergence curve of the proposed ABACO based
path planning algorithm.

5.2.2. Grid-Based Static Environment 2

In this experiment, the size of the search space was (28 × 28 m2) per grid cell, and there were 14
obstacles with different sizes and locations, as shown in Table 2.

Table 2. Grid-based static environment 2 setting.

Point Type Position (row, col)

SP (26, 6)
GP (5, 20)
rMR 0.5

Obs1 (3, 4)
Obs2 (2, 10:15)
Obs3 (5, 22)
Obs4 (7, 17:18)
Obs5 (9:10, 4:5)
Obs6 (10:12, 10:12)
Obs7 (12:19, 3)
Obs8 (16, 16)
Obs9 (20:27, 13)
Obs10 (24, 15)
Obs11 (20:22, 20:22)
Obs12 (24, 6)
Obs13 (27, 25)
Obs14 (11:12, 18:26)

After running ABACO 10 times, the shortest path length was found to be (28.5563 m) at iteration
(48), with different execution times ranging from (0.8231 min) to (0.875 min). The best path obtained

Sensors 2020, 20, 1880 15 of 26

(see Figure 13a) and the convergence curve for this environment (see Figure 13b) are shown in
Figure 13a,b, respectively.

Sensors 2020, 20, x FOR PEER REVIEW 15 of 27

(see Figure 13a) and the convergence curve for this environment (see Figure 13b) are shown in Figure
13a,b, respectively.

(a)

(b)

Figure 13. The best path achieved within the AACO Grid-based static environment 2.

5.3. Dynamic Environment with Grid-Based Modeling

Figure 13. The results of the proposed ABACO-based path planning algorithm in grid static
environment 2, (a) the best path obtained, (b) the convergence curve of the proposed ABACO
based path planning algorithm.

Sensors 2020, 20, 1880 16 of 26

5.3. Dynamic Environment with Grid-Based Modeling

5.3.1. Grid-Based Dynamic Environment 1

This environment consisted of three moving obstacles, defined in Table 3: The starting point (SP)
at the location (5, 3) grid coordinate, the goal point (GP) at the (15, 15) grid coordinate, and the rMR at
(0.5).

Table 3. Grid-based dynamic environment 1 setting.

Obsno. ObsPos(row, col) ObsPos(x, y) VObs (m/s) θObs

Obs1 (10, 3) (2.5, 5) 0.5 60◦

Obs2 (5, 15) (14.5, 13.1) 0.39 230◦

Obs3 (12, 10) (9.1, 3.5) 0.36 0◦

Table 4 shows the obtained solutions and their corresponding computation times using the
ABACO algorithm, where the optimize fitness function is defined as in Equation (8). From Table 4, it
can be concluded that run number (1) gave the best results with the shortest path length of (19.7279
m) and computation time (1.3876 min) (see bold values). Figure 14 shows the planned path of the
mobile robot while avoiding three dynamic obstacles with different velocity, and each obstacle moved
according to Equations (9) and (10), then the mapping in the new position from (x, y) coordinated to
the corresponding (r, c) grid coordinate.

Table 4. Simulation results for the grid-based dynamic environment 1 using the ABACO algorithm.

Run Path Length (m) Fitness Computation Time (min)

1 19.7279 0.050689632 1.3876
2 20.5563 0.048646886 3.0373
3 20.3137 0.0492278610 1.5335
4 19.7279 0.0506896324 1.3946
5 21.7279 0.0460237758 1.4395
6 20.5563 0.0486468868 1.6428
7 19.7279 0.0506896324 1.4544
8 19.7279 0.0506896324 1.3837
9 20.5563 0.0486468868 1.8156

10 19.7279 0.0506896324 1.4833

Sensors 2020, 20, 1880 17 of 26

Sensors 2020, 20, x FOR PEER REVIEW 17 of 27

(a)

(b)

Figure 14. Cont.

Sensors 2020, 20, 1880 18 of 26
Sensors 2020, 20, x FOR PEER REVIEW 18 of 27

(c)

(d)

Figure 14. The best path achieved within the AACO grid-based dynamic environment 1.

5.3.2. Grid-Based Dynamic Environment 2

This environment included three moving obstacles with initial locations and orientation, as
defined in Table 5: The start point (SP) at the location (4, 15) grid coordinate, the goal point)GP) at
the (17, 5) grid coordinate, and the 𝑟ெோ is (0.5).

Table 5. Grid-based dynamic environment 2 setting 𝐎𝐛𝐬𝐧𝐨. 𝐎𝐛𝐬𝐏𝐨𝐬(𝒓𝒐𝒘, 𝒄𝒐𝒍) 𝐎𝐛𝐬𝐏𝐨𝐬(𝒙, 𝒚) 𝐕𝑶𝒃𝒔 (m/s) 𝛉𝐎𝐛𝐬 Obsଵ (5, 2) (1.5, 15.1) 0.23 −45° Obsଶ (5, 12) (11.3, 15.6) 0.43 230°

Figure 14. The best path achieved within the ABACO grid-based dynamic environment 1, (a) the
mobile robot starts from its starting position, (b) the mobile robot is moving toward its goal position, (c)
the mobile robot is at its midway and is avoiding the obstacles, (d) the mobile robot is approaching its
goal position.

5.3.2. Grid-Based Dynamic Environment 2

This environment included five moving obstacles with initial locations and orientation, as defined
in Table 5: The start point (SP) at the location (4, 15) grid coordinate, the goal point (GP) at the (17, 5)
grid coordinate, and the rMR is (0.5).

Table 5. Grid-based dynamic environment 2 setting.

Obsno. ObsPos(row, col) ObsPos(x, y) VObs (m/s) θObs

Obs1 (5, 2) (1.5, 15.1) 0.23 −45◦

Obs2 (5, 12) (11.3, 15.6) 0.43 230◦

Obs3 (16, 7) (6.5, 4.5) 0.47 45◦

Obs4 (17, 14) (13, 3) 0.34 180◦

Obs5 (3, 18) (17.1, 17.1) 0.36 250◦

Sensors 2020, 20, 1880 19 of 26

Table 6 shows the achieved solutions and computation times for 10 executions using the ABACO
algorithm. The best results are found at run number (3) with the shortest path length of (23.7279 m)
and computation time (7.4359 min) (see bold values). Figure 15 shows the planned path of the mobile
robot while avoiding five dynamic obstacles with different velocity and direction. Each obstacle moved
according to Equations (9) and (10), then the mapping of the new position from (x, y) coordinated to
the corresponding (r, c) grid coordinate.

Table 6. Simulation results for the grid-based dynamic environment 2 using the ABACO algorithm.

Run Path Length (m) Fitness Computation Time (min)

1 23.9706 0.041717770 8.1258
2 23.9706 0.041717770 8.2659
3 23.7279 0.042144479 7.4359
4 23.7279 0.042144479 8.7085
5 25.9706 0.038505078 8.7177
6 23.7279 0.042144479 9.9965
7 25.9706 0.038505078 8.8647
8 23.9706 0.041717770 8.2728
9 25.3848 0.039393652 8.5407
10 23.7279 0.042144479 9.3426

Sensors 2020, 20, x FOR PEER REVIEW 20 of 27

Table 6. Simulation results for the grid-based dynamic environment 2 using the AACO algorithm.

Run Path Length (m) Fitness Computation time (min)
1 23.9706 0.041717770 8.1258
2 23.9706 0.041717770 8.2659
3 23.7279 0.042144479 7.4359
4 23.7279 0.042144479 8.7085
5 25.9706 0.038505078 8.7177
6 23.7279 0.042144479 9.9965
7 25.9706 0.038505078 8.8647
8 23.9706 0.041717770 8.2728
9 25.3848 0.039393652 8.5407

10 23.7279 0.042144479 9.3426

(a)

(b)

Figure 15. Cont.

Sensors 2020, 20, 1880 20 of 26

Sensors 2020, 20, x FOR PEER REVIEW 21 of 27

(c)

(d)

Figure 15. The best path achieved within the AACO grid-based dynamic environment 2.

5.4. Comparison with Other Previous Works

In order to show the efficiency of the proposed algorithms, these algorithms were compared
with other algorithms in different researches. For a fair comparison, the same assumptions, including
the map dimension, number of obstacles, and consideration of the mobile robot as a single point,
were used.

Performance Evaluation for AACO in the Static Grid environment. In Reference [31], three algorithms
were implemented to solve path planning in a static grid for two environments. These algorithms
were the pattern search (PS) algorithm, the genetic algorithm (GA), and particle swarm optimization
(PSO). Figure 16 represents the first environment with five static obstacles, while the second
environment consists of four static obstacles, as shown in Figure 17. The proposed algorithm (AACO)
applied to both environments. The comparison results between all these algorithms are listed in Table
7.

Figure 15. The best path achieved using the ABACO –based path planning algorithm in grid-based
dynamic environment 2, (a) the mobile robot starts from its starting position, (b) the mobile robot is
moving toward its goal position, (c) the mobile robot is at its midway and is avoiding the obstacles, (d)
the mobile robot is approaching its goal position.

5.4. Comparison with Other Previous Works

In order to show the efficiency of the proposed algorithms, these algorithms were compared
with other algorithms in different researches. For a fair comparison, the same assumptions, including
the map dimension, number of obstacles, and consideration of the mobile robot as a single point,
were used.

Now, we discuss the Performance Evaluation of the ABACO based path planning algorithm in
a Static Grid environment. In [31], three algorithms were implemented to solve path planning in a
static grid for two environments. These algorithms were the pattern search (PS) algorithm, the genetic
algorithm (GA), and particle swarm optimization (PSO). Figure 16 represents the first environment
with five static obstacles, while the second environment consists of four static obstacles, as shown in
Figure 17. The proposed ABACO algorithm was applied to both environments and the comparison
results between all these algorithms are listed in Table 7.

Sensors 2020, 20, 1880 21 of 26
Sensors 2020, 20, x FOR PEER REVIEW 22 of 27

(a)

(b)

(c)

Figure 16. Cont.

Sensors 2020, 20, 1880 22 of 26
Sensors 2020, 20, x FOR PEER REVIEW 23 of 27

(d)

Figure 16. The best path achieved by (a) aging ant colony optimization (AACO), (b) the genetic algorithm
(GA) [31], (c) pattern search (PS) [31], and (d) particle swarm optimization (PSO) [31] (Map 1).

(a)

(b)

Figure 16. The best path achieved by (a) aging-based ant colony optimization (ABACO), (b) the genetic
algorithm (GA) [31], (c) pattern search (PS) [31], and (d) particle swarm optimization (PSO) [31] (Map
1).

Sensors 2020, 20, x FOR PEER REVIEW 23 of 27

(d)

Figure 16. The best path achieved by (a) aging ant colony optimization (AACO), (b) the genetic algorithm
(GA) [31], (c) pattern search (PS) [31], and (d) particle swarm optimization (PSO) [31] (Map 1).

(a)

(b)

Figure 17. Cont.

Sensors 2020, 20, 1880 23 of 26
Sensors 2020, 20, x FOR PEER REVIEW 24 of 27

(c)

(d)

Figure 17. The best path achieved by (a) AACO, (b) GA [31], (c) PS [31], and (d) PSO [31] (Map 2).

Table 7. Performance comparison of the proposed AACO and the algorithms of Reference [31].

 Algorithm GA PS PSO AACO

Environment 1 Path Length 17.8051 17.3103 16.9362 13.8995
Environment 2 Path Length 18.4410 17.7430 17.7001 14.4853

Table 7 shows that the shortest path for the first and second environments was obtained using
the AACO algorithm, which were (13.8995) and (14.4853), respectively (see bold values). The
improvement ratio (IR) of the proposed algorithm compared with other algorithms is calculated by
the following relation: 𝐼𝑅 = ฬ𝑃𝐴 − 𝑂𝐴𝑂𝐴 ฬ × 100% (15)

where 𝑃𝐴 is the proposed algorithm and 𝑂𝐴 is the other algorithms. The IR for the AACO,
compared with algorithms listed in Table 7, is presented in Table 8, in terms of the shortest distance.
In Reference [16], the case study was performed using Search Results Web results

Figure 17. The best path achieved by (a) ABACO, (b) GA [31], (c) PS [31], and (d) PSO [31] (Map 2).

Table 7. Performance comparison of the proposed ABACO and the algorithms of [31].

Algorithm GA PS PSO ABACO

Environment 1 Path Length 17.8051 17.3103 16.9362 13.8995
Environment 2 Path Length 18.4410 17.7430 17.7001 14.4853

Table 7 shows that the shortest path for the first and second environments was obtained using
the ABACO algorithm, which were (13.8995) and (14.4853), respectively (see bold values). The
improvement ratio (IR) of the proposed algorithm compared with other algorithms is calculated by the
following relation:

IR =

∣∣∣∣∣PA−OA
OA

∣∣∣∣∣× 100% (15)

where PA is the proposed algorithm and OA is the other algorithms. The IR for the ABACO, compared
with algorithms listed in Table 7, is presented in Table 8, in terms of the shortest distance. In [16], the
case study was performed using artificial bee colony (ABC) optimization algorithms. The environment
consisted of a 20 × 20 m2 grid with different obstacles. The start position was from the middle-top of
the grid to the middle-bottom of the grid as a goal point. The ABC algorithm was applied to obtain
the shortest distance. The ABACO was applied to the same environment and obtained the results,
as shown in Figure 18. The best path obtained using ABC, as shown in Figure 18a, was (25.9706),

Sensors 2020, 20, 1880 24 of 26

while the path obtained using ABACO algorithm, as shown in Figure 18b, was 23.1421 m for the same
environment. The improvement ratio (IR) for the ABACO over the ABC was (10.89%).

Table 8. Improvement ratio (IR) of the ABACO and algorithms in [31].

IR for ABACO with: GA PS PSO

Environment 1 21.9% 19.7% 17.9%
Environment 2 21.45% 18.3605% 18.1626%

Sensors 2020, 20, x FOR PEER REVIEW 25 of 27

Artificial bee colony (ABC) optimization algorithms. The environment consisted of a 20 × 20 m2 grid
with different obstacles. The start position was from the middle-top of the grid to the middle-bottom
of the grid as a goal point. The ABC algorithm was applied to obtain the shortest distance. The AACO
was applied to the same environment and obtained the results, as shown in Figure 18. The best path
obtained using ABC, as shown in Figure 18a, was (25.9706), while the path obtained using AACO, as
shown in Figure 18b, was 23.1421 m for the same environment. The improvement ratio (IR) for the
AACO over the ABC was (10.89%).

Table 8. Improvement ratio (IR) of the AACO and algorithms in Reference [31].

IR for AACO with: GA PS PSO
Environment 1 21.9% 19.7% 17.9%
Environment 2 21.45% 18.3605% 18.1626%

(a)

(b)

Figure 18. (20 × 20) grid using (a) the ABC algorithm and (b) the AACO algorithm Figure 18. (20 × 20) grid using (a) the ABC algorithm and (b) the ABACO algorithm.

6. Conclusions

The path planner based on ABACO and grid-based modelling is proposed in this paper to find
the optimal/near-optimal path of the mobile robot in static and dynamic environments. The age of the
ant was taken into consideration to produce a new kind of ACO optimization. which is exploited in
the design of mobile robot path planning. Grid-based modelling was found to be less flexible (hard
of implementation) in dynamic environments as compared to free-space-based modelling. However,

Sensors 2020, 20, 1880 25 of 26

it easily modelled the mobile robot and the obstacles in the 2D-environment. When the proposed
ABACO algorithm was applied to mobile robot path planning, it was found that the proposed ABACO
algorithm outperformed the standard ACO algorithm in terms of the shortest path. Based on the
comparison results, the ABACO algorithm is superior to GA, PSO, and ABC. Finally, to overcome the
unused space inside the cell using grid-based modelling, a future work will be conducted by increasing
the resolution of the grid, which will supposedly help in reducing the waste of space of the individual
cells and result in a smoother path from the start to end points.

Author Contributions: Conceptualization, I.K.I., F.H.A.; methodology, I.K.I., F.H.A., A.T.A., A.J.H.; software,
F.H.A., A.J.H.; validation, A.T.A., A.J.H., I.K.T., F.H.A.; formal analysis, I.K.I., F.H.A., A.T.A., A.J.H.; resources,
A.T.A., A.J.H.; writing—original draft preparation F.H.A., I.K.I., A.T.A., A.J.H.; writing—review and editing,
A.J.H., I.K.I., A.T.A., F.H.A.; visualization, I.K.I., A.J.H.; funding acquisition, A.T.A. All authors have read and
agreed to the published version of the manuscript.

Funding: This research is funded by Prince Sultan University, Riyadh, Kingdom of Saudi Arabia. Special
acknowledgement to Robotics and Internet-of-Things Lab (RIOTU), Prince Sultan University, Riyadh, Saudi
Arabia. We would like to show our gratitude to Prince Sultan University, Riyadh, Saudi Arabia.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Corke, P. Robotics, Vision and Control; Springer: Berlin/Heidelberg, Germany, 2011; Volume 73.
2. Zhu, B.; Li, C.; Song, L.; Song, Y.; Li, Y. A* algorithm of global path planning based on the grid map and

V-graph environmental model for the mobile robot. In Proceedings of the 2017 Chinese Automation Congress
(CAC), Jinan, China, 20–22 October 2017; pp. 4973–4977. [CrossRef]

3. Lin, M.; Yuan, K.; Shi, C.; Wang, Y. Path planning of mobile robot based on improved A* algorithm. In
Proceedings of the 2017 29th Chinese Control And Decision Conference (CCDC), Chongqing, China, 28–30
May 2017; pp. 3570–3576. [CrossRef]

4. Noreen, I.; Khan, A.; Habib, Z. Optimal Path Planning for Mobile Robots Using Memory Efficient A*. In
Proceedings of the 2016 International Conference on Frontiers of Information Technology (FIT), Islamabad,
Pakistan, 19–21 December 2016; pp. 142–146. [CrossRef]

5. Petavratzis, E.K.; Volos, C.K.; Stouboulos, I.N.; Kyprianidis, I.M.; Nistazakis, H.E.; Tombras, G.S. Robot’s path
planning based on emulated finite resistive grids. In Proceedings of the 2018 7th International Conference
on Modern Circuits and Systems Technologies (MOCAST), Thessaloniki, Greece, 7–9 May 2018; pp. 1–4.
[CrossRef]

6. Samadi, M.; Othman, M.F. Global path planning for autonomous mobile robot using genetic algorithm. In
Proceedings of the 2013 International Conference on Signal-Image Technology & Internet-Based Systems,
Kyoto, Japan, 2–5 December 2013; pp. 726–730. [CrossRef]

7. Ajeil, F.H.; Ibraheem, I.K.; Sahib, M.A.; Humaidi, A.J. Multi-objective path planning of an autonomous
mobile robot using hybrid PSO-MFB optimization algorithm. Appl. Soft Comput. 2020, 106076. [CrossRef]

8. Che, H.; Wu, Z.; Kang, R.; Yun, C. Global path planning for explosion-proof robot based on improved
ant colony optimization. In Proceedings of the 2016 Asia-Pacific Conference on Intelligent Robot Systems
(ACIRS), Tokyo, Japan, 20–22 July 2016; pp. 36–40. [CrossRef]

9. Cossell, S.; Guivant, J. Concurrent dynamic programming for grid-based problems and its application for
real-time path planning. Robot. Auton. Syst. 2014, 62, 737–751. [CrossRef]

10. Low, E.S.; Ong, P.; Cheah, K.C. Solving the optimal path planning of a mobile robot using improved
Q-learning. Robot. Auton. Syst. 2019, 115, 143–161. [CrossRef]

11. Đakulović, M.; Čikeš, M.; Petrović, I. Efficient interpolated path planning of mobile robots based on occupancy
grid maps. IFAC Proc. 2012, 45, 349–354. [CrossRef]

12. Dewang, H.S.; Mohanty, P.K.; Kundu, S. A robust path planning for mobile robot using smart particle swarm
optimization. Procedia Comput. Sci. 2018, 133, 290–297. [CrossRef]

13. Nazarahari, M.; Khanmirza, E.; Doostie, S. Multi-objective multi-robot path planning in continuous
environment using an enhanced genetic algorithm. Expert Syst. Appl. 2019, 115, 106–120. [CrossRef]

14. Lamini, C.; Benhlima, S.; Elbekri, A. Genetic algorithm based approach for autonomous mobile robot path
planning. Procedia Comput. Sci. 2018, 127, 180–189. [CrossRef]

http://dx.doi.org/10.1109/CAC.2017.8243661
http://dx.doi.org/10.1109/CCDC.2017.7979125
http://dx.doi.org/10.1109/FIT.2016.034
http://dx.doi.org/10.1109/MOCAST.2018.8376608
http://dx.doi.org/10.1109/SITIS.2013.118
http://dx.doi.org/10.1016/j.asoc.2020.106076
http://dx.doi.org/10.1109/ACIRS.2016.7556184
http://dx.doi.org/10.1016/j.robot.2014.03.002
http://dx.doi.org/10.1016/j.robot.2019.02.013
http://dx.doi.org/10.3182/20120905-3-HR-2030.00162
http://dx.doi.org/10.1016/j.procs.2018.07.036
http://dx.doi.org/10.1016/j.eswa.2018.08.008
http://dx.doi.org/10.1016/j.procs.2018.01.113

Sensors 2020, 20, 1880 26 of 26

15. Mohanta, J.C.; Keshari, A. A knowledge based fuzzy-probabilistic roadmap method for mobile robot
navigation. Appl. Soft Comput. 2019, 79, 391–409. [CrossRef]

16. Agarwal, M.; Goel, P. Path Planning of Mobile Robots using Bee Colony Algorithm. Int. J. Comput. Sci. Inf.
Technol. 2013, 3, 86–89.

17. Ibraheem, I.K.; Ajeil, F.H. Path Planning of an autonomous Mobile Robot using Swarm Based Optimization
Techniques. Al-Khwarizmi Eng. J. 2016, 12, 12–25. [CrossRef]

18. Wang, J.; Gu, X.; Liu, W.; Sangaiah, A.K.; Kim, H.J. An empower hamilton loop based data collection
algorithm with mobile agent for WSNs. Hum.-Cent. Comput. Inf. Sci. 2019, 9, 1–14. [CrossRef]

19. Wang, J.; Gao, Y.; Zhou, C.; Sherratt, S.; Wang, L. Optimal coverage multi-path scheduling scheme with
multiple mobile sinks for WSNs. Comput. Mater. Contin. 2020, 62, 695–711. [CrossRef]

20. Lin, N.; Tang, J.; Li, X.; Zhao, L. A novel improved bat algorithm in UAV path planning. J. Comput. Mater.
Contin. 2019, 61, 323–344. [CrossRef]

21. Hu, L.; Yang, J.; Huang, J. The real-time shortest path algorithm with a consideration of traffic-light. J. Intell.
Fuzzy Syst. 2016, 31, 2403–2410. [CrossRef]

22. Vaščák, J. Adaptation of fuzzy cognitive maps by migration algorithms. Kybernetes 2012, 41, 429–443.
[CrossRef]

23. Purcaru, C.; Precup, R.E.; Iercan, D.; Fedorovici, L.O.; David, R.C.; Dragan, F. Optimal robot path planning
using gravitational search algorithm. Int. J. Artif. Intell. 2013, 10, 1–20.

24. Soares, A.; Râbelo, R.; Delbem, A. Optimization based on phylogram analysis. Expert Syst. Appl. 2017, 78,
32–50. [CrossRef]

25. Roman, R.C.; Precup, R.E.; Bojan-Dragos, C.A.; Szedlak-Stinean, A.I. Combined Model-Free Adaptive
Control with Fuzzy Component by Virtual Reference Feedback Tuning for Tower Crane Systems. Procedia
Comput. Sci. 2019, 162, 267–274. [CrossRef]

26. Dorigo, M.; Birattari, M.; Stutzle, T. Ant Colony Optimization. IEEE Comput. Intell. Mag. 2006, 1, 28–39.
[CrossRef]

27. Roul, S.P. Application of Ant Colony Optimization for Finding Navigational Path of Mobile Robot. Ph.D.
Thesis, National Institute of Technology, Rourkela, India, 2011.

28. Yang, X.S. Nature-Inspired Optimization Algorithms, 1st ed.; Elsevier: Amsterdam, The Netherlands, 2014.
29. Buniyamin, N.; Sariff, N.; Wan Ngah, W.A.J.; Mohamad, Z. Robot Global Path Planning Overview and A

variation of Ant Colony System Algorithm. Int. J. Math. Comput. Simul. 2011, 5, 9–16.
30. Rao, S.S. Engineering Optimization: Theory and Practice; John Wiley & Sons: Hoboken, NJ, USA, 2009.
31. Fetanat, M.; Haghzad, S.; Shouraki, S.B. Optimization of dynamic mobile robot path planning based on

evolutionary methods. In Proceedings of the 2015 AI & Robotics (IRANOPEN), Qazvin, Iran, 12 April 2015;
pp. 1–7. [CrossRef]

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1016/j.asoc.2019.03.055
http://dx.doi.org/10.22153/kej.2016.08.002
http://dx.doi.org/10.1186/s13673-019-0179-4
http://dx.doi.org/10.32604/cmc.2020.08674
http://dx.doi.org/10.32604/cmc.2019.05674
http://dx.doi.org/10.3233/JIFS-169081
http://dx.doi.org/10.1108/03684921211229505
http://dx.doi.org/10.1016/j.eswa.2017.02.012
http://dx.doi.org/10.1016/j.procs.2019.11.284
http://dx.doi.org/10.1109/MCI.2006.329691
http://dx.doi.org/10.1109/RIOS.2015.7270743
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Problem Statement and Preliminaries
	Grid-Based Environment Modelling
	Performance Criteria
	Obstacles Movement

	Swarm-Based Optimization Algorithms
	Ant Colony Optimization
	Ant Searching Behavior
	Path Retracing and Pheromone Updating

	Aging-Based Ant Colony Optimization (ABACO)
	Algorithmic Iteration Concepts and Feasible Solutions

	Proposed Path Planning Algorithm
	Simulation Results
	Effect of Design Parameters on ABACO
	Number of Iterations
	Number of Ants
	Evaporation Factor ()

	Static Environment with Grid-Based Modeling
	Grid-Based Static Environment 1
	Grid-Based Static Environment 2

	Dynamic Environment with Grid-Based Modeling
	Grid-Based Dynamic Environment 1
	Grid-Based Dynamic Environment 2

	Comparison with Other Previous Works

	Conclusions
	References

